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A B S T R A C T The Limulus retina responds as a linear system to light stimuli which 
vary moderately about a mean level. The dynamics of  such a system may 
conveniently be summarized by means of a spatiotemporal transfer function, which 
describes the response of the system to moving sinusoidal gratings. The response 
of the system to an arbitrary stimulus may then be calculated by adding together 
the system's responses to suitably weighted sinusoidal stimuli. We have measured 
such a spatiotemporal transfer function for the Limulus eye. We have then 
accurately predicted, in a parameter-free calculation, the eye's response to various 
stimulus patterns which move across it at several different velocities. 

I N T R O D U C T I O N  

T h e  ret ina of  the lateral eye of  the horseshoe  crab Limulus polyphemus has been  
the subject o f  extensive study (for reviews, see Har t l ine  and  Ratliff, 1972; 
Ratliff, 1974). In recent  years,  many  o f  these studies have been addressed  to the 
resolution o f  the eye's neura l  response  into the actions o f  individual physiologi- 
cal subsystems at the cellular level. T o  this end ,  these studies have  exploi ted  
techniques such as the optical isolation o f  single visual units and  the electrical 
manipula t ion  o f  single cells by means  o f  intracellular microelect rodes .  These  
methods  are in tended  to suppress  the b road  integrat ive actions o f  the ret ina so 
that  the actions o f  small componen t s  may be studied.  T h e  present  s tudy is 
c o m p l e m e n t a r y  to this earl ier  work.  O u r  goal is to deve lop  a me thodo logy  which 
describes the neura l  action o f  the Limulus ret ina as an in tegra ted  whole. In  
principle,  such a descr ipt ion should pe rmi t  the quanti tat ive predict ion of  the 
response  o f  the ret ina to an arb i t ra ry  st imulus,  as well as permi t  the fu r t he r  
elucidation o f  the c o m p o n e n t  cellular processes which under ly  the response .  

In  the present  pape r ,  we describe the applicat ion o f  such a me thodo logy  to 
the Limulus ret ina.  We have developed  a set o f  s t andard  visual stimuli which 
genera te  responses  which should comple te ly  character ize the retina.  We also 
show how this character izat ion may be used to predict  the response  o f  the re t ina  
to light stimuli which vary both  in space and  in t ime. In the following p a p e r  
(Brodie et al., 1978) we relate this descr ipt ion of  the ret ina 's  integrat ive action to 
the under ly ing  electrophysiological  processes.  

O u r  character izat ion task is greatly simplified by the fact that  the Limulus 
ret ina is, to an excellent  app rox ima t ion ,  a "l inear system;" that  is, its response  to 
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the sum of  two stimuli is the sum of  its responses to each stimulus presented  
separately (Knight et al., 1970). Al though various nonl inear  effects have been 
observed in the Limulus eye (Hartl ine and Ratliff, 1957; Barlow and Lange,  
1974), they appear  to be more  p rominen t  in the action of  isolated visual units 
than in the response of  the ret ina as a whole. Ultimately, the validity of  our  
linear description should be j u d g ed  by the extent  of  the agreement  between the 
response o f  the eye and the predictions der ived f rom the linear characterization.  

T H E O R Y  

In this section we develop the theoretical basis for  ou r  analysis of  the response 
of  the Limulus retina. We begin with a very general  discussion o f  linear systems 
analysis, and then specialize this t rea tment  for  application to the present  
measurements .  We first make three fundamenta l  assumptions about the system 
unde r  study, which we may refer  to as stationarity, linearity, and continuity.  

By stationarity, we re fe r  to the assumption that the proper t ies  o f  the system 
are stable with respect to time. In o ther  words,  we require  that the system give 
the same response each time it is presented  with the same stimulus. I f  we denote  
the stimulus as a funct ion of  time by ~(t),  and the cor responding  response by 
~(t),  and use an arrow (-+) to denote  the action o f  the system u n d e r  study, we 
may express the stationarity conditions as: 

~(t) ~ ~(t) implies 5~(t - r) -~ ~ ( t  - r), (1) 

where r is any constant shift in time. O f  course,  as nearly every biological system 
ages, and most neurophysiological  preparat ions  deter iorate ,  this assumption is 
necessarily an approximat ion.  

Linearity refers  to the assumption that the system obeys the superposi t ion 
rule,  that the response to a sum of  inputs is the sum of  the responses to the 
inputs taken separately. In symbols, 

~i(t) ~ ~i(t),  5~2(t) --~ ~2(t) implies ~i(t) + S~(t) ~ a~l(t) + ~2(t). (2) 

This  is a very s trong assumption,  whose consequences will be vigorously 
exploited below. In general,  many biological systems saturate when presented  
with very s trong stimuli, but  operate  nearly linearly when presented  with stimuli 
consisting of  small fluctuations about a mean  value. 

T h e  assumption of  continuity states that small changes in the stimulus 
presented to the system produce  only small changes in the response.  This  is a 
mild assumption for  most systems in the middle o f  their  opera t ing  range,  but  it 
of ten does not hold for  systems at the ext remes of  their  range.  T h e  effect  of  this 
assumption is to justify various mathematical  manipulat ions below. For example ,  
if x is some pa ramete r  and ~ ( t )  varies smoothly with x, then the continuity 
assumption allows us to assert the following cont inuous analog of  Eq. 2: 

j 5f x(t) dx ~ J ~x(t) dx. (3) ~ x( t) ~x(t) implies 

T h e  assumptions of  linearity and continuity together  imply "weighted" versions 
of  Eqs. 2 and 3: 
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5r ---) ~l(t),  5r ---) ~2(t) implies a3~,(t) + bSf2(t) ---) a~l( t )  + b~z(t); (2') 

5~(t) --* ~x(t) implies f a(x)Sf x(t) dx ---) J a(x)~:( t )  dx, (3') 

where  a and b are  numbers ,  and a(x) is a funct ion o f x .  
In general ,  a stationary, linear, cont inuous  system (a "l inear system," for  

short) can be completely character ized in several equivalent ways. 
One  such characterizat ion consists o f  measur ing the system's response to an 

"impulse," a stimulus o f  finite s t rength delivered within an arbitrarily short  
time. We will deno te  such a stimulus as a Dirac del ta-function,  6(t). T h e  
response to such an impulse del ivered at time t = 0 will be called the "impulse 
response,"  deno ted  5~(t). T h e  impulse response provides a complete  characteri-  
zation o f  a l inear system by virtue o f  the following identity,  which constitutes a 
fundamenta l  p roper ty  of  the delta-function:  

= f  (u)8(t - u)du,  (4) 

which expresses an arbi t rary stimulus 5F(t) as a weighted combinat ion of  
impulses occurr ing  at d i f fe ren t  times; the weighting funct ion is simply the 
stimulus funct ion itself. T h e  stationarity assumption implies that the response 
to the stimulus 8(t - u) is ~(t - u); we may now apply Eq. 3' to conclude 

5f(t) ---) ~ ( t )  = f S f (u ) .~ ( t  - u )du .  (5) 

This  is a fo rmula  for  the response of  the system to an arbi t rary stimulus 5r 
given in terms o f  the impulse response 5~. 

An alternative characterizat ion o f  a l inear system can be obtained f rom Eq. 5 
by consider ing the response of  the system to a sinusoidal input .  We may greatly 
simplify the calculations by adopt ing  the complex-exponent ia l  notat ion for 
sinusoidal functions; we thus identify cos cot with the real part  o f  the complex 
exponent ia l  e t~ = cos cot + i sin cot. In general ,  any complex quanti ty is to be 
in te rpre ted  as represen t ing  its real part .  This  is valid, because "taking the real 
par t"  o f  a complex  quanti ty obeys the superposi t ion principle. With this 
convent ion,  we choose for  ou r  stimulus 5r = e ~'~t, a sinusoid o f  angular  
f requency  co. According to Eq. 5, for  this stimulus, we obtain the response:  

= f ei~uS~( t - u) du ~(t)  
J (6) 

=fe'~('-")5(u)du=ife-~"~(u)du).e 'o''. 
Thus ,  the response o f  a l inear system to a sinusoidal input  5r : e ~"t is a 
sinusoid o f  the same f requency,  multiplied by some (complex) number ,  which 
depends  on the f requency,  on, and upon  the impulse response,  5~, of  the system. 
We re fe r  to this coefficient (considered as a funct ion of  co) as the " t ransfer  
funct ion" o f  the system, and denote  it by ~(co). We then have 

~( t )  = ~(co). e ~'t, (6') 
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where 

~(co) = [ e-~t#(t) dt. (7) 

5F(co) is the Fourier  t ransform of  the impulse response, 5~(t). 
The  transfer  function ~(oJ) provides a complete characterization o f  a linear 

system as a consequence of  the following Fourier  inversion formula: 

5r = ~-~ e~~ doJ, (8) 

where 
/ -  

~(oJ) ~ l e-~tg~(t) dt. (9) 

This expresses an arbitrary stimulus ~(t) as a weighted sum of  sinusoids e~Ot; the 
weighting function ~(w) is the Fourier  t ransform of  the stimulus. Applying Eqs. 
3' and 6' to Eq. 8 yields 

~(t) = ~ (e  ~t" o~(co) �9 P(c0) dco. (10) 
2 r r J  

This is an expression for the response of  the system to an arbitrary stimulus 5~(t) 
in terms of  the transfer function ,~(c0). The response is the inverse Fourier  
t ransform of  the product  of  the transfer function of  the system and the Fourier  
t ransform 57(co) of  the arbitrary stimulus 5e(t). 

It is appropriate to note here that a l though these two mathematical character- 
izations of  a linear system are informationally equivalent, and each can be 
readily obtained from the other (by Eq. 7 and its Fourier  inversion formula),  
the transfer function is often the more suitable characterization for direct 
laboratory measurement .  This is because an impulse stimulus, though of  finite 
total strength,  has extremely large intensity (even in a laboratory realization o f  
the theoretical infinite intensity). Such large signals may easily drive the system 
out of  its linear range, or even damage it irreversibly (consider, for example,  
the study of  a skin pressure receptor; in this case, an impulse takes the form of  
a sharp blow). Even when an impulse stimulus might not saturate the system, it 
may be difficult or impossible to provide a satisfactory impulse stimulus, 
especially if one studies a transduction whose only accessible input is the ou tpu t  
of  another  transduction.  In such a case, sinusoidal inputs are readily obtained, 
but impulses are unavailable. 

We now proceed to formulate the analysis given above in terms appropriate  
to our  particular experimental  situation. We introduce coordinates on the 
Limulus lateral eye, with the x-axis horizontaI, the y-axis vertical, and the origin 
centered on the test ommat id ium (the ommat id ium whose eccentric cell action 
potentials are being recorded). A completely general stimulus takes the form 5 r 
-- 5r y, t); for computational  convenience, we restrict all fur ther  discussion to 
stimuli which depend  only on x and t, that is, to stimuli which, at any time t, are 
constant along each vertical line. This reduces our  problem to one dimension of  
time, and one of  space. To fur ther  facilitate the analysis, we ignore the discrete 
structure of  the Limulus eye, and assume instead that it is made of  a cont inuum 
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of  photosensitive elements,  each possessing the same dynamical properties as 
the test ommat id ium (Kirschfield and Reichardt,  1964). The  ommatidia  are 
sufficiently numerous  and homogeneous  so that this approximation is reasona- 
bly innocuous.  Our  final specialization is to restrict our  calculations to predic- 
tions of  the response to arbitrary intensity patterns which move uniformly across 
the eye. Al though the Fourier methods outl ined above are perfectly adequate to 
predict the response to an arbitrary time-varying stimulus, the restriction to 
stimuli of  the form 5f(x,  t) = 5P(x - v t ) ,  where 5r is some spatial pat tern of  
il lumination, and v is the drif t  velocity, greatly facilitates the calculation of  the 
necessary Fourier  transforms.  Such stimuli, with 5r arbitrary, and v at our  
disposal, are sufficiently general to provide a rigorous test of  the adequacy of  
our  characterization of  the response of  the eye. 

This characterization is given in terms of  a spatiotemporal t ransfer  function,  
which generalizes the temporal  t ransfer  function of  Eq. 7, above. We consider 
the response as a function of  space and time, ~ = ~(x, t), and ask what is the 
response to a traveling spatial sinusoid 5r t) = e l~tx+~ We may put  this 
expression in the form 5~(x - vt) by writing 

e,,ex+,o,) = ~(x+ ~t) = e~,X_~t), 

to 
where v -- - ~-; this is the equation of  a sinusoid of  spatial frequency ~: moving 

with velocity v -- to/~. In addition to our  previous assumptions, we now assume 
that the response of  the eye is invariant unde r  translation (change of  origin). 
This is the analogue for space of  the stationarity assumption in time. With this 
assumption,  an a rgument  strictly analagous to that given above implies that  the 
response ~(x, t) to a sinusoidal input ~(x, t) = e tr is again a sinusoidal 
function of  space and time, with the same spatial frequency ~: and the same 
temporal  frequency to. In other words, we have the input-output  relation: 

5f(x,  t) = e t<eae+~t) implies ~(x, t) = ~'(~:, to).e t~gx+~~ (11) 

where 

~(~, to) = f f e-"~x+~ t)dx dt (12) 

is a (complex) number  depending  on s r and to, given by the spatiotemporal 
Fourier  t ransform of  5(x, t), the response of  the system to a spatiotemporal 
impulse (a vertical line at x = 0 flashed at the instant t = 0). 

We now fit the pieces together to calculate the response of  the system to an 
arbitrary moving pattern.  We first obtain the Fourier  t ransform of  the spatial 
pat tern o f  the stimulus 5f(x,  t) = 5P(x - vt): 

5e(~) = f e-~XS~(x) dx .  (1~) 

We also note the corresponding inversion formula: 

' f  5~(u) = ~ e+e'S~(~)d~ :. (14) 
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Taking u = x - v t ,  we obtain a Fourier representation for the stimulus: 

if ~ ( x  - vt) = ~ ei(~-e~t)o~(~:)d~: = ~ ei~*+~t~(~:)d~ :, (15) 

where co = ~o(~) = - ~ .  
Applying Eq. 3' to Eqs. 11 and 15 gives the final input-output relation: 

I f  5P(x - vt)  ~ ~ ( x ,  t) = - ~  e~{ex+'~t).~(~j, oJ).~(~:)d~: 

= 12rr de. (16) 

Eqs. 11, 13, and 16 give a complete scheme for the characterization of  our 
system: the transfer function ~(~:, w) may be obtained by measurement of the 
responses of the system to sinusoidal stimuli. Given ~(s r to), the response to an 
arbitrary moving stimulus ~ ( x  - v t )  may be obtained by taking the Fourier 
transform of  the stimulus spatial pattern, multiplying by the transfer function, 
and taking the inverse Fourier transform. In this way, knowledge of  the transfer 
function ~(~:, to) serves to completely characterize the system. 

It is useful to assume that, in addition to being homogeneous (spatially 
invariant), the eye under study is isotropic, in the sense that the eye is 
indifferent to reflections about the test ommatidium (x = 0). Equivalently, the 
impulse response function shows the symmetry 5~(-x, t) = ~(x, t). This induces 
certain useful symmetries in ~(~:, to). For example, we have, from Eq. 12 that 

.~(-r w) = f f e-"-'*+~ t)dx dt 

= f f e-"e'-*'+~ t)dx dt 

=ffe-"e"+'~ (17) 

= f f e-"e=+'~176 t)dudt = .~ff, w). 

Now consider 

~(-r 
=ffe-'*+'"~(,,.t)dxdt 

= ~ ( ~ ,  ,~),  

where the horizontal bars indicate complex conjugates, and where we have used 
the fact that ,r t) is real. 
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Toge ther  Eqs. 17 and 18 imply 

Y(Se, -co) = Y(Se, co). (19) 

The  symmetry (Eq. 17) allows an important  experimental  simplification. We 
have: 

et(ex~z) .__> ~((~,  oJ)e i(ex~t) 

ei(-e x+~t) _.) ,~(-se, to )ei(-e x ~  t) = ~ ( se , to )e i(-e x ~  t). 

Adding,  and dividing by 2, we obtain (using Eq. 2') 

5f(x,  t) = e ~ t .  cos sex ---) ,~(se, to)e ~ t  cos sex = ~(x, t). (20) 

Examining the ou tpu t  atx = 0 (the test ommatidium),  we have 

5f(x, t) = e~~ cos sex ~ ~ ( t )  =- ~ ( 0 ,  t) = ~;(se, to)e ~t.  (11') 

The  implication of  this equation is that we may determine the transfer function 
ff(se, co) by examining the response of  the eye to the stationary counterphase 
grating stimulus e ~"t. cos ~ ,  instead of  the drif t ing sinusoidal grating stimulus 
e ite~+~t). The counterphase stimulus, which consists of  a spatial sinusoidal 
grating, placed with a peak centered over the test ommat id ium,  modula ted by 
multiplication by a time-varying sinusoidal signal, is especially well suited for 
experimental  use (see below). 

Again, by restricting our  attention to the output  at the test ommat id ium,  we 
obtain an analaogous version of  Eq. 16: 

5f(x,  vt)  ~ ~ ( t )  =-- ~ ( 0 ,  t) = ~ e~t~(se,  to)~(se)dse. 

(16') 

1 fe_UV,~(se ,  -sev),~(se) dse.) 
2~" 

The  assumption of  linearity is also useful for reasons of  experimental  
convenience. For example,  it is unnecessary to present the stimuli of  Eq. 11' one 
at a time. Instead, we may form the linear combination stimulus 

5f(x,  t) = X c ,e  ~'"t cos sex, 
n 

where the cn are constants at our  disposal and the (0n are the temporal  
frequencies at which ~:(~:, to) is sought.  By Eq. 2', we have, for this stimulus, 

5f(x,  t) = (~, cne ~'"t) "cos sex ---) 9~(t) = ~ c,o%(se, r ~'.t. (21) 
n rt 

For the fixed spatial frequency se, the transfer function can easily be recovered 
f rom this composite response with the aid of  Fourier methods (see below). 
Indeed,  the frequencies ton can be so chosen that all the second harmonics are 
distinct f rom the input frequencies. With such a choice of  the ton, the (presum- 
ably negligible) response detected at second harmonic frequencies can be used 
as a simple monitor  of  the linearity of  the system (Victor et al., 1977). Such a 
choice o f  test stimulus has two advantages in the present  situation. First, it 
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subs tan t i a l ly  r e d u c e s  t he  d a t a  acqu i s i t i on  t ime  neces sa ry  to c h a r a c t e r i z e  t he  
sys tem r e s p o n s e  o v e r  the  g r id  o f  s p a t i o t e m p o r a l  f r e q u e n c y  po in t s .  S e c o n d ,  
b e c a u s e  such  a s t imu lus  c o n t a i n s  m o d u l a t i o n  ove r  a subs tan t i a l  r a n g e  o f  
t e m p o r a l  f r e q u e n c i e s ,  it p r e v e n t s  the  o c c u r r e n c e  o f " p h a s e  l ock ing , "  a d i s t inc t ly  
n o n l i n e a r  p h e n o m e n o n  which  af fec ts  m a n y  n e u r a l  e n c o d e r s  d r i v e n  p r e d o m i -  
n a n t l y  at  a s ingle  f r e q u e n c y  ( K n i g h t ,  1972 a) .  By c h o o s i n g  the  w e i g h t i n g  
coef f i c ien t s  Cn r o u g h l y  r e c i p r o c a l  to t he  a n t i c i p a t e d  m a g n i t u d e  I~(~ r w,)l o f  the  
t r a n s f e r  f u n c t i o n  at  each  f r e q u e n c y  c0,, o n e  p r o d u c e s  a r e s p o n s e  wi th  r o u g h l y  
e q u a l  o u t p u t  p o w e r  at  each  f r e q u e n c y  0~,. U n d e r  such  c i r c u m s t a n c e s ,  p h a s e  
l o c k i n g  b e c o m e s  e x c e e d i n g l y  un l ike ly .  F u r t h e r m o r e ,  this  p r o c e d u r e  o p t i m i z e s  
t he  s igna l - to -no i se  r a t io  at  each  f r e q u e n c y .  

In the preceding analysis, we have described the predict ion of  a response, ~(t) from 
the knowledge of  the stimulus SO(x, t) and a spatiotemporal  transfer  function ~r(~:, co), 
which may be de te rmined  by measuring the response to part icular stimuli. For such 
analysis, the output  function ~(t) is in general  a continuous function of  time, and the 
input  is is a continuous function of  space and time. In our  experimental  situation, the 
input  variable is s traightforward.  5r t) specifies the il lumination incident on the eye at 
the position x, and time t. The  output  variable is more problematical.  As described 
above, we limit our  attention to the response of  a single "test ommatidium,"  whose 
electrical activity is moni tored as a train of  discrete action potentials. In o rder  to in terpre t  
this sequence of  discrete events as a continuous function of  time, we invoke a notion of  
"mean impulse density." To frame the definition of  this output  variable, we consider an 
ensemble of  N statistically independent  replicas of  the test ommat id ium,  each presented 
with the same stimulus. Over any br ief  time interval (t, t + dt), we can determine  the 
number ,  m ~ t ,  t + dt),  of  impulses occuring in the entire ensemble of  N elements. As N 
increases, we expect to find at least a few impulses over even very short time intervals, at 
least in the absence of  phase-locking. We define the mean impulse density r(t) as a 
normalized limit of  such impulse counts: 

r(t) dt  =- l i m  1 raN(t, t + d t ) .  (22) 

Under  our  assumptions that the eye is dynamically homogeneous,  the mean impulse 
density can be identified with the "populat ion firing rate" (Knight, 1972 a). 

In practice, only one specimen of  the test ommat id ium is available, precluding direct 
application of  the definit ion (Eq. 22). We may assume however, that the responses of  this 
single unit to successive presentations of  the same stimulus are statistically independent ,  
and replace the average in Eq. 22 with an average over repetit ions of  the same stimulus. 
Even in this case, however, direct calculation of  r(t) from the definit ion requires a great  
deal of  data, and many procedures have been advocated for its optimization (see 
Appendix  B). Fortunately,  for our  purposes,  an explicit calculation of  r(t) is unnecessary; 
we need only its Four ier  components  at various frequencies. A least-squares method for 
estimating these parameters  directly from the list of  impulse occurrence times is discussed 
in Appendix  B. With this method,  we obtain our  transfer function ~:(~:, co) in terms of  
the transduction from light intensity to mean impulse density. 

For the purpose  of  displaying the measured response to moving patterns,  however, an 
explicit function of  time is needed.  Here ,  we have found an alternative output  variable, 
the "mean instantaneous rate" to be convenient.  We begin by defining,  for any one 
sample of  impulse train data, an "instantaneous rate" function s(t). (This function, which 
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we define for all times t, generalizes the usual definition, which applies only to those 
times at which impulses occur.) At any time t, s(t) is defined as the reciprocal of the 
duration of the interval between impulses in which the time t falls. We have 

1 
s(t) =---~. X~t"'t"+~l(t)" tn+l - tn '  (23) 

where t .  is the time of occurrence of the n ' th impulse, and 

1, a < t < - b  
X~a.bl(t) = O, t <-- a or t > b "  

Note that, for any time t, only one term in the summation in Eq. 23 is non-zero. 
Considering now M presentations of the identical stimulus, and denoting by sm(t) the 
instantaneous rate function observed in response to the m'th stimulus presentation, we 
define or(t), the mean instantaneous rate: 

o'(t) =- (sin(t)) = -M sin(t). (24) 
m ~ l  

Thus,  the mean instantaneous rate at any time t is the average, over all repetitions of the 
stimulus, of the reciprocals of the lengths of the intervals between impulses in which the 
time-point t happens to fall. If  the overall impulse rate, ~,, is very fast compared to the 
time scale of the response under  study, the alternative output  functions r(t) and or(t) will 
be very similar; however, at low impulse rates or high modulation frequencies, the 
functions differ. One may nevertheless compare data given as or(t) with predictions 
derived from a transfer function obtained in terms of r(t) by incorporating a transfer 
function which describes the transduction from one output  variable to the other. 

We now calculate such a transfer function, under  the assumption that the modulation 
is sufficiently small that we may employ a perturbation analysis. It is convenient to break 
the overall transduction r(t) ~ o'(t) into two pieces: first, the transduction from mean 
impulse density to instantaneous rate, and then from instantaneous rate to mean 
instantaneous rate: r(t) ~ s(t) --* or(t). The first transduction, from a population rate to a 
single unit  rate, has been treated in great generality elsewhere (Knight, 1972 a); we 
simply cite the result: if each of an ensemble of identical neurons encodes a continuous 
signal into a sequence of impulses according to a "deterministic" law such that, for any 
given stimulus, t,+l is a monotonic (steadily increasing) function of t,, then the 
transduction from population rate to the instantaneous rate of a single unit  corresponds 
to the transfer function 

1 - e - ~ / r  
B(co, ~) - - - -  (25) 

io~/v 

To analyze the second transduction, from instantaneous rate to a mean instantaneous 
rate, we consider an encoder producing a sequence of impulses with sinusoidally 
modulated instantaneous rate. If  such a device produces an impulse at time t, we have 

s(t) = v + ~e ~'t, (26) 

where v is the mean rate, and ~<<u.  If  an impulse does not occur at the time t ,  s(t) takes 
its value from the following impulse: 

s( t )  = v + Ee ~'t"+l, t .  < t <- G+I.  ( 2 6 ' )  

To obtain or(t), we average Eq. 26' over all those times t.+l, at which an impulse could 
immediately follow the time t. To first order,  we have 
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1 (t+r 
o'(t) = (s(t)) = T i t  (v + ee~t"+l)dt ,+l 

Efo  = v + ~ e~""+')dr (27) 

= v + ee ~~ 1 ( r e ~" d~', 
r g o  

where T =- l / v  is the mean interval between impulses. Subtracting the constant term v 
and dividing by the input e ~t  yields the transfer function from s(t) to or(t): 

1 fo r e ~ r -  1 e ~ -  1 _ B ~ ,  

namely the complex conjugate of  B(co, v), as defined in Eq. 25. 
Now, if we start with a signal of  the form r(t) = A e  ~t ,  where A is any (complex) 

number,  then the corresponding s(t) signal will be given by s(t) = A 'B(oJ ,  v)e ~t ,  and o-(t) 
= A 'B(oJ ,  v) 'B(oo,  v ) e  ~ t  = A ' l B ( r o ,  v)12e ~t .  Taking A to be the spatiotemporal transfer 
function ~(~:, co) which relates stimulus 5r to the output  variable r, we conclude 

5~(x, t) = e t(ex+~ --) r(t) = ~(~, oJ)e ~t implies 
(28) 

5r t) = e i(ex+~ ---> o-(t) = IB(r v)lz~(~, c0)e ~t. 

Thus,  if the transfer function in terms of  r(t) is o~(~ :, r L then the transfer function in 
terms of  ~(t)is simply IB(oJ, v)l 2":~(s r r 1 

For our Limulus  data, the factor [B(r v)l 2 has only a very slight effect on the results 
of  the Fourier synthesis calculations. This is a consequence of  the fact that our  mov- 
ing stimuli contained very little spectral power in the high frequency regime, where 
IB(r v)l 2 differs significantly from unity. In other circumstances, this correction would 
have a more significant effect. 

We note  tha t  this l inear  analysis appl ies ,  strictly speak ing ,  only  to the  
var ia t ions  o f  the var ious  func t ions  abou t  their  m e a n  level (light intensity,  on  
input ;  a n d  impulse  ra te ,  o n  ou tpu t ) .  Th i s  res t r ic t ion is necessary,  in par t ,  
because  o u r  expe r imen ta l  variables do  no t  take on  negat ive  values.  F u r t h e r -  
m o r e ,  w h e n  cons ide red  as a func t ion  o f  absolute  s t imulus  intensity,  the  r e sponse  
o f  mos t  sensory  t r ansduce r s ,  i nc lud ing  the  L i m u l u s  eye,  is dec ided ly  non l inea r ,  
and  exhibits  a near ly  logar i thmic  r e sponse  to t i m e - i n d e p e n d e n t  stimuli which 
vary  over  m a n y  o r d e r s  o f  m a g n i t u d e  (Stevens,  1975). 

Finally,  over  pe r iods  c o m p a r a b l e  to o u r  e x p e r i m e n t a l  trials, m a n y  t rans-  
duce r s ,  i nc lud ing  the  L i m u l u s  eye,  show cons ide rab le  fa t igue  o r  adap ta t ion ,  in 
violat ion o f  o u r  a s s u m p t i o n  o f  s ta t ionari ty .  Such  systems may  be t rea ted  by 
l inear  m e t h o d s  only  in t e rms  o f  their  f luc tua t ions  abou t  a m e a n  o p e r a t i n g  level 
which  has been  ad jus ted  to inc lude  the effects  o f  s h o r t - t e r m  adap ta t ion .  T h u s ,  
in the  p re sen t  s tudy,  to c o m p a r e  r e sponses  with l inear  predic t ions ,  the m e a n  
level a nd  adap t a t i on  ra te  were  m e a s u r e d ,  sub t rac ted  f r o m  the o u t p u t  signal,  

i Our notation here recognizes the fact that in this paper we deal only with real co; more generally, 
for complex co, the transfer function is given by the analytic expression B (~o, v)B (-co, v)~(r oJ). 
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a n d  t h e n  a d d e d  back to the  resul ts  o f  the l i nea r  ca lcula t ion .  We m a d e  no  
a t t e m p t  to p red ic t  these  m e a n  o u t p u t  levels. 2 

M A T E R I A L S  AND M E T H O D S  

Stimulus 

Patterns of light, varying in space and time, were formed on the screen of a large 
oscilloscope (Hewlett-Packard model 1321A High Speed Graphic Display, Hewlett- 
Packard Co., Palo Alto, Calif.) using analog voltages produced by a system of circuits 
designed for this purpose (Shapley and Rossetto, 1976), and digital-to-analog converters 
(DAC) controlled by a PDP 11/45 computer  (Digital Equipment  Corps., Maynard, Mass.). 
This time-varying pattern was then imaged by a high-quality camera lens (Nikon Nikkor 
f/1.2, focal length 55 mm, Nikon, Garden City, N. Y.) onto the flat surface of a fiber- 
optic taper, which was glued to the cornea of a Limulus eye. This fiber-optic device, 
supplied according to our  specifications by Walter P. Siegmund of the American Optical 
Corp., Southbridge, Mass., conveyed the visual stimulus to the curved array of  Limulus 
photoreceptors. The  details of the optical system are discussed in Appendix A. The 
overall effect of this optical system was to convert a pattern 15 cm wide and 2 cm high on 
the oscilloscope face to a stimulus 1 cm wide and 0.13 cm high on the corneal surface. 
The  height of the image, roughly one-fourth of the height of the eye, was chosen as a 
compromise between the theoretically desirable goal of i l luminating the entire eye, and 
the need to illuminate a sufficiently narrow band to get an acceptably high impulse rate. 
(Larger stimuli produce low impulse rates by producing more lateral inhibition, and by 
spreading the same photon flux over a greater number  of ommatidia). 

For all stimuli produced, a high-frequency triangle-wave was applied to the Y-input of 
the display oscilloscope; the X-input was driven with a sawtooth waveform generated by 
the computer,  and the Z-input (intensity) was driven by computer-generated signals 
synchronized to the X-input sawtooth. This ar rangement  produced a rectangle of light 
on the screen, whose intensity varied with horizontal position and time, but whose 
intensity was independent  of vertical position. Three types of stimuli were used: a 
"setup" stimulus to align the stimulus coordinates with the test ommatidium; an "analysis" 
stimulus for measuring the spatiotemporal transfer function; and a "synthesis" stimulus 
which consisted of a uniformly drifting pattern of illumination. 

The "setup" stimulus consisted of a single bright vertical line at x = 0 surrounded by a 
uniform dim background; this stimulus did not vary with time. This pattern was 
manually moved across the face of the oscilloscope until the bright line was centered on 
the test ommatidium, as indicated by monitoring its impulse-train discharge. This 
adjustment was generally reproducible to within - 0.004 eyewidths, n and proved more 
than adequate for the purposes of these experiments. 

In the Limulus visual system, the use of signals consisting of perturbations about a mean level also 
allows us to ignore in the analysis the phenomenon of inhibitory thresholds (Hartline and Ratliff, 
1957), a decidedly nonlinear effect. See also below. 

In our experimental apparatus, the width of the Limulus eye under study is the most natural unit 
for the horizontal coordinate. For a typical eye, this may be converted as follows: 1.0 eye widths = 
1.0 cm = 40 ommatidial diameters (in the horizontal direction). The conversion to visual angle (in 
the horizontal direction) is somewhat complicated, because even though the ommatidia are rather 
evenly spaced, their optical axes diverge nonuniformly. Thus, in the center of the eye, an 
ommatidium subtends ~ 6 ~ of visual angle, but the whole eye (40 ommatidia in width) covers a total 
visual angle of only ~200 ~ 
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The  "analysis" stimulus was produced  by using for the Z-input of  the display 
oscilloscope a signal which consisted of  a constant offset plus the analog product  of  three 
computer -genera ted  signals: a constant voltage (to control the total contrast); a " temporal  
modulation" signal whose value was changed before each sweep of  the X-input sawtooth 
(each sweep lasted 0.01536 s; this yielded a temporal  sampling rate of  65.1 Hz); and a 
"spatial modulation" signal, a rapid sinusoidal modulat ion synchronized to the X-input  
sawtooth so as to produce  a cos ~x spatial pattern.  (This is shown schematically as a block 
d iagram in Fig. 1.) The  X-sawtooth was obtained by rapidly producing  256 successive 
equally spaced voltage values with a DAC. This provided a spatial sampling mesh of  256 
points/eye width (which corresponds to eight points per  cycle at the highest spatial 
frequency used). The  temporal  modulat ion signal was a sum of  eight sinusoids with 

FROM 
COMPUTER 

X-Sowtooth 

Contrast 

Spotiol 
Moduletion 

Temporal 
Modulation 

Blanking 

. . ~  Raster Generator 

L 

FIGURE 1. Block diagram of  spat iotemporal  stimulus generat ion.  II indicates 
analog multipliers; I~ indicates analog summer.  The  raster  generator  produces  a 
f ree-running 100 KHz triangle wave for the Y-axis. The  at tenuator  is a voltage 
divider set by hand to adjust overall contrast  level. The  offset controller  adds 
analog signals to manually adjusted constant voltages. Three  channels are pro- 
vided: X and Y offset moves the stimulus origin on the oscilloscope face; Z offset 
adjusts mean il lumination level. Two cycles of  computer -genera ted  input  are 
shown at left (a. denotes analysis episodes; s. denotes synthesis episodes). Note 
spatial and temporal  modulat ion are synchronized to X-sawtooth. Constant  "con- 
trast" voltage allows computer  control of  contrast level. "Blanking" signal darkens  
oscilloscope between experimental  episodes.  

frequencies 0.1,0.233, 0.5, 1.033, 2.1,4.233, 8.5, and 17.033 Hz. 4 The  relative ampli tudes 
of  these components  were 60, 50, 45, 30, 15, 10, 20, and 40, respectively. 

The  "systhesis" stimulus was generated in a similar manner ,  by holding the " temporal  
modulat ion" signal constant, and by producing the spatial modulat ion by sending to the 
DAC successive numbers  from a list of  intensities which described the arbitrary spatial 
pat tern,  synchronized to the X-sawtooth. By progressively shifting the phase of  the 
intensity list with respect to the sawtooth, the pat tern was made to drif t  across the screen 
at any desired rate. 

By reversal of  the o rde r  in which the X-sawtooth voltages were read out  by the DAC, 
it was possible to reflect the synthesis stimulus about the test ommat id ium,  in o rde r  to 
verify our assumptions concerning the symmetry of  the eye, and also to check the 
accuracy of  the a l ignment  of  the stimulus origin with the test ommatidium.  For the 

4 ( 2 . . 1  _ 1 ) / 3 0 ,  in  H z .  
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synthesis stimuli, spatial resolution was upgraded to 512 points/eye width, at the expense 
of lowering the sweep rate to 39.1 Hz. (For comparison, the comparable temporal 
resolution for commercial television is 30 Hz in the U.S., 25 Hz in Europe; movies are 
typically shown at a frame rate of 24 Hz.) Spatial patterns were fixed at 2.0 eye widths in 
length, and were presented in a periodic fashion through a "window" one eye width 
wide, so that at high drift velocities, the pattern was seen several times dur ing  the course 
of an experimental episode. 

The response of the display oscilloscope to these analog control signals was calibrated 
with a silicon photocell. At typical mean operating levels, the response was linear up to 
40% contrast; 5 experiments were performed at total contrasts of < 35%. No attempt was 
made to calibrate the absolute intensity of the stimulus, because of the high variability of 
the optical density of the Limulus cornea between specimens. 

The Biological Preparation 

Adult horseshoe crabs, Limulus polyphemus, measuring 15-20 cm across the carapace, were 
obtained from Gulf Specimens Inc., Panacea, Fla. The  animals were kept in fdtered 
artificial seawater at 10 ~ C. They were generally used within 6 wk of delivery, dur ing  
which time they were not fed. Animals selected for use had "clear" eyes, with no 
perceptible abrasion of the cornea, and in an informal "neurological exam" they 
demonstrated brisk, vigorous flexion of the hinge muscle after noxious stimulation of 
the gill. In  general, the speed and strength of the hinge muscle reflex appeared to 
correlate well with the health of the retina. 

Recordings of neural activity were made using an in situ preparation (Corning et al. 
1965; Biederman-Thorson and Thorson,  1971; Adolph, 1971; Kaplan and Barlow, 1975). 
In brief, the animal was secured to a wooden board on top of a manipulator which 
allowed the animal to be rotated and tilted. The  gills were placed on a paper towel 
moistened with the seawater in which the animal had been living. The animals were 
always capable of vigorous motion when removed from the apparatus, often after as 
long as 18 h. A surgical trephine was used to cut a hole 2 cm in diameter in the carapace, 
about 3 cm anterior to the animal's right eye, above the optic nerve. The  nerve was 
transected, dissected free, and pulled into a small recording chamber, which was then 
screwed into the carapace, The chamber was filled with seawater, and the nerve dissected 
with glass needles until a strand which contained a single functioning axon was obtained 
(Hartline and Graham, 1932). This strand was laid on a cotton wick-silver/silver chloride 
electrode. The signal from the electrode was amplified and filtered by a differential 
amplifier, and monitored via oscilloscope and loudspeaker. 

The temperature of the crab was measured by means of a thermistor probe (Yellow 
Springs Ins t rument  Co., Yellow Springs, Ohio) inserted in a hole placed medial to the 
animal's left eye. The animal's temperature was controlled by coupling it to a constant- 
temperature circulator (Lauda Div., Br inkmann Instruments,  Inc. Westbury, N.Y.) with 
a modified ice-bag. Eye temperature was held at 22 ~ C, and typically varied < 0.5 ~ C over 
the course of a 10-h experiment.  This elevated temperature was chosen because it raises 
the mean impulse rate (Adolph, 1973) and enhances the response to flickering light 
(Brodie, 1978). 

Data Acquisition 

The amplified signal from the wick electrode was converted to a train of uniform pulses 
by a discriminator. These pulses served as input  to the PDP 11/45 computer,  which 

5 Contrast = {(peak intensity) - (trough intensity)}/{(peak intensity) + (trough intensity)}. 
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recorded the successive intervals between impulses in a file on magnetic disk for later 
analysis. Resolution was 10 -4 s, and the same clock was used to time impulse arrivals as 
was used to generate the t ime-varying stimuli. The  uniform pulses were also used to 
drive a "hyperbolic sweep" monitor,  which gave a visual indication of  instantaneous rate. 
(This device employed a new digital design by M. Rossetto, and replaced the analog 
circuit of  MacNichol and Jacobs, 1955). 

Protocol 

The exper imental  schedule consisted of  60-s periods of  i l lumination in alternation with 
90-s periods of  darkness.  This episode pat tern was designed to maintain the eye in a 
uniform state o f  light adaptat ion,  over the durat ion of  the exper iment ,  as estimated by 
the total number  of  neural  impulses produced in each episode. Successive episodes 
al ternated between the analysis stimulus (a sinusoidal grat ing in space modulated 
temporal ly by a sum~ signal) and the synthesis stimulus (a pat tern of  light 
drif t ing across the eye at a constant speed).  A stimulus cycle consisted of  16 episodes: 
analysis episodes at each of  eight spatial frequencies (1/10, 1, 2, 4, 8, 16, 20, and 32 cycles/ 
eye width) interleaved with two presentations of  the synthesis stimulus at each of  four  
drif t  velocities, one presentation in each direction. 

These stimulus cycles (which lasted 40 min) were repeated indefinitely until the nerve 
fiber ceased conduct ing impulses. Experiments  typically lasted at least 6 h, and occasion- 
ally as long as 10 h. Nerve conduction failures were as a rule the result of  the drying out 
of  the exposed port ion of  the optic nerve; activity was readily obtained from more 
proximal  port ions of  the nerve. We are thus confident  that the retina did not significantly 
deter iorate  over the course of  an exper iment .  

Computations 

All computations were based on data from the last 50 s of  each 60-s episode,  well after 
the initial on-transient  had decayed. The  spat iotemporal  transfer function ~(~:, w) was 
obtained from the analysis episodes by means of  a least-squares fitting algori thm, as 
described in Appendix  B. This procedure  is equivalent to ordinary discrete Four ier  
analysis of  binned (histogram) data,  with arbitrarily narrow bins; equivalently, it yields 
the spectrum of  the impulse train in terpre ted  as a series of  8-functions. The  algori thm is 
particularly suited to the handl ing of  pooled data from episodes with identical stimuli. 

For each spatial frequency, the algori thm determines  real numbers r ,  so that the 
function f ( t )  = Zr,fn (t) best approximates  the response r(t) (in a certain least-squares 
sense; see Append ix  B), where t h e f ,  are the functions 1, t - t m  (tin is the midpoint  of  the 
data collection period),  sin oJ,d, cos ~Jmt, sin 2w~t, and cos 2OJmt (where the r are the 
input  frequencies). The  coefficient of  the function 1 gives the mean impulse rate over 
the episode; the coefficient of  the function t - t m  (the " ramp slope") describes the slow 
decay of  the impulse rate over the course of  an episode. As described above, these 
parameters  are ignored in the remaining analysis, but  are added  back to the Four ier  
synthesis at the end of  the calculation. The  coefficients of  the sin C0r,r and cos co~ terms 
de te rmined  the value of  ~7(~:,oJm) (where ~: is the spatial frequency of  the stimulus which 
produced the part icular  data being analyzed): the ampli tude of  ~(~:,0Jm) is the square 
root of  the sum of  the squares of  these two coefficients, while the tangent  of  the phase of  
~(~:, (ore) is given by their  quotient.  The  coefficients of  sin 2OJmt and cos 2co,,/ measure 
nonlinearities in the response of  the system. The  entire set of  coefficients was de te rmined  
for the pooled data from all the analysis episodes at each spatial frequency. 

The  phase information for the transfer  function at each spat iotemporal  frequency 
pair  (~m,COm) was obtained,  as described above, by taking the arctangent  of  a quotient; the 
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computer  expressed these results as real numbers between - r r  and ~r. These phase data 
were individually adjusted by a multiple of  2rr so as to obtain continuous phase curves. 
Thus,  values of  ~(sc,to), as amplitude and phase, were obtained at the 64 spatiotemporal 
frequency points corresponding to all the possible combinations of  the eight spatial and 
eight temporal frequencies present in the analysis stimuli. In order  to estimate ~(sc,to) for 
(~:,to) between the points of  the input lattice, a two-dimensional cubic spline was used. 
For this purpose, the transfer function data were expressed in terms of  two separate real 
functions (log amplitude, and phase) of  the variables log s r and log to. The complex. 
transfer function ~(sc,to) was then reconstructed from the amplitude and phase. 

To avoid artifacts due to abrupt frequency cutoffs, the transfer function was 
extrapolated beyond the spatiotemporal frequency lattice at which it had been measured. 
The extrapolation to high spatial frequency extended the observed attenuation of  
amplitude seen at spatial frequencies above 20 cycles/eye width; for each spatial 
frequency, the amplitude was fixed as a small constant multiple of  the amplitude 
observed at the highest spatial frequency where measurements were made. Phases were 
extrapolated by setting them equal to the phases measured at the highest spatial 
frequency used. The Fourier syntheses were insensitive to the details o f  these high- 
frequency extrapolations. It was unnecessary to extrapolate to low spatial frequency, as 
the data extended down to 0.1 cycles/eye width. The high temporal frequency extrapo- 
lations were provided as approximate continuations of  the typical observed high- 
frequency roll-off in amplitude and phase. 

For the extrapolation to low temporal frequencies, the low-frequency transfer-function 
measurements of  Biederman-Thorson and Thorson (1971) were used as a guide. Under  
experimental conditions quite similar to ours, they measured temporal transfer functions 
from 0.4 Hz down to 0.004 Hz. In this regime they found that the transfer function 
could be expressed as ~(to) = K.(ito) v where p is a real exponent between 0.18 and 0.27 
(mean 0.23), and K is a real constant of  proportionality. For simplicity we adopted the 
exponent p = 0.25, and extrapolated the transfer functions accordingly, fixing the 
proportionality constant by the amplitude observed at the lowest frequency where 
measurements were available (0.1 Hz), and extrapolating the phase to the low-frequency 
phase lead of  Ir/8 radians implied by the exponent p = 1/4. Although the very low 
frequency features of  the Fourier syntheses were not insensitive to the details of  the low 
temporal frequency extrapolation, this parameter-free procedure produced no sys- 
tematic discrepancies between experiment and prediction in the very low frequency 
range. 

The synthesis episodes were treated differently. The data from episodes with identical 
stimuli were averaged together by computing the instantaneous rate function s(t) for 
each episode, and then averaging these functions on a mesh of  1,024 equally spaced 
points covering the 50-s episode length. The resultant averaged response function, tr(t), 
was plotted on a digital plotter (CalComp 565, California Computer  Products, Inc., 
Anaheim, Calif.) for later comparison with the Fourier syntheses. 

The synthesis stimuli were presented in two directions at each velocity. As these pairs 
of  stimuli consisted of  reflections of  each other about the test ommatidium, they served 
to verify our  assumptions about the symmetry of  the inhibitory fields, and to verify the 
accurate placement of  the stimulus origin so as to coincide with the test ommatidium. In 
all cases but one, the responses to the two mirror-image stimuli appeared nearly identical 
(see Results, below). This observation permitted us to further increase the signal-to-noise 
ratio by averaging together all the synthesis episodes at each velocity, thus combining the 
response to each synthesis stimulus with the response to its mirror image. 

The Fourier synthesis computations were done in Fortran complex arithmetic with the 
Fast Fourier Transform algorithm (FFT) on a mesh of  1,024 equally spaced points 
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covering the response to one full period of the periodic synthesis stimulus. (Thus, for 
rapidly drifting patterns, each experimental record provided several repetitions of the 
response to the moving stimulus. Except for the slow drift in mean impulse rate, these 
repetitions should, in principle, be identical.) The translation of the synthesis formula 
(Eq. 16') (derived above in terms of Fourier integrals) into a form suitable for use with 
the (discrete) FFT is essentially straightforward. The computation consisted of filling an 
array with the transform of the stimulus pattern (obtained either analytically or by FFT), 
multiplying by the transfer function, and inverting by FFT. 6 The time-stationary 
(periodic) portion of the response was then available as the real part of this result. The 
mean impulse rate and "ramp" (describing the slow drift of the impulse rate over the 
course of an episode) were added to the periodic response, and the sum was plotted in a 
form compatible with the plots of the averaged synthesis episodes for direct visual 
comparison. This calculation was repeated for each stimulus drift velocity. 

We wish to emphasize that this entire calculation, from the measurements of the 
transfer function to the calculation of the Fourier synthesis prediction, allowed no 
adjustment of  free parameters. The prediction is explicitly and unambiguously deter- 
mined by the measured transfer function, mean impulse rate, and ramp slope. 

R E S U L T S  

T h e  ou tcome  o f  the analysis por t ion  o f  the protocol  is depic ted  in Figs. 2 and  3. 
Fig. 2 shows the average  ins tantaneous  ra te  funct ion tr(t) for  the response  to a 
typical analysis episode.  I t  is impor t an t  to note that ,  con t ra ry  to its noisy 
appea rance ,  such a record  is in fact a defini te response  to a fixed t empora l  
signal, albeit a harmonica l ly  rich signal. In  Fig. 3, the m a r k e d  d e p e n d e n c e  of  
the response  on the spatial f requency  of  the analysis stimulus is i l lustrated. At 
low spatial f requencies ,  a m ode ra t e  response  to the terr, poral  modula t ion  o f  the 
st imulus is observed.  As the spatial f requency  is increased,  an increase in the 
response  to flicker is appa ren t .  T h e  peak  sensitivity is a round  four  cycles/eye 
width. At high spatial f requencies ,  the response  decreases,  until, at 32 cycles/eye 
width it is essentially undetectable .  It  may be noted  that,  as all the analysis 
episodes share a c o m m o n  t empora l  modula t ion  signal, the records  at d i f fe ren t  
spatial f requencies  show co r r e spond ing  features  at co r r e spond ing  t ime points.  

These  effects are  specified quanti tat ively in Fig. 4, which shows the full 
spa t io tempora l  t r ans fe r  funct ion der ived f rom the same p repa ra t ion  as in Fig. 
3. T h o u g h  the genera l  t rend  of  the curves agrees  with the descript ion above,  
the following fea tures  may be noted.  T h e  relative sensitivity o f  the eye to sine- 
wave grat ings o f  d i f fe r ing  spatial f r equency  depends  strongly on t empora l  
f requency.  T h u s ,  at low tempora l  f requency ,  the response  is greatest  at 
in te rmedia te  spatial f requency falling o f f  gently at low spatial f requency,  and  
sharply  at high spatial f requency.  At in te rmedia te  t empora l  f requency,  the eye 

6 Because of the phenomenon of "aliasing," the FFT may be interpreted equivalently as operating 
either on the array of frequencies 0, r 2~: . . . . .  (2 rr - 1)~:, or on the array 0, ~:, 2~: . . . . .  2N-1r 
--(2 tr --1)r --(2N-1--2)r . . . . .  --2~:, --r For our purposes, the second interpretation is the correct 
one, because the power in the negative-frequency components greatly exceeds that in the positive 
high-frequency components, due to the high-frequency cutoff of both the stimulus #(r and the 
transfer function ~(~:, -~:v). The transfer function for negative frequencies is obtained from the 
symmetry relations (Eqs. 17-19). 
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FIGURE 2. Response of  test o m m a t i d i u m  to temporal ly  modula ted  sine-wave 
grat ing.  T h e  bot tom record shows the sum-of-s inusoids  tempora l  signal used to 
modula te  a s inusoidal  gra t ing  s t imulus  over each 60-s episode.  T h e  top record 
shows the average ins tan taneous  rate response  ~(t) f rom 14 repet i t ions of  such an  
analysis s t imulus ,  with a spatial f requency  o f  4 cycles/eye width.  T h e  data  f rom the 
first 10 s o f  each episode were discarded to avoid the effect of  the initial on-  
t ransient .  Scale marker :  10 impulses/s .  

o J  

o 

R 
E 

2O 

10  . 1 ,1 . ._  ~F .  , , r ~ .  ~ -+~  ~ - -  ,~s l  ~ r . , , , . , - r ~ - .  

0 t I I i I 

n k ++xjlJ ~I,~I+I,~,LIb,,L-q,,..LJ....,.+J. 

0 i I I I 

o 

0 _  

0 

0 t i I i 

0 i i I t 
t.~ . ~ + I I ~ -  J ,  + . i  .J+ t ~ .  - L , ~ i ,  t ,  j 

I U  [ - m  . . -  . . . .  + . . . . .  ~ . ~ a  . ' - " - l l . . ' . ~ - - ~ u  1 ' L ' . ' _ + +  t 

(31 I I L L 
0 

0.1 

I 
I 

16 
1 

2O 
I 

32 
i 

I0 20 30 40 50 

Time (seconds) 

FIGURE 3. Effect o f  spatial f requency  on  response to temporal ly  modu la t ed  sine- 
wave grat ings.  Each record is the average of  14 episodes.  T h e  s t imulus consisted of  
a s inusoidal  g ra t ing  (spatial f requencies  shown at right) placed with a peak cen te red  
over  the test o m m a t i d i u m ,  modu la t ed  according to the tempora l  signal shown in 
Fig. 2. 
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FIGURE 4. Spatiotemporal transfer functions for the preparation of Fig. 3. (A) 
Bode plots (log amplitude vs. log frequency) of the fractional modulation of the 
mean impulse density r(t) for each spatial frequency. The points indicated (O) were 
obtained from experimental measurements; the remaining portions of the curves 
were extrapolated as described in the text. (This preparation produced no 
detectable response at 32 cycles/eye width (see Fig. 2). As a curve for this spatial 
frequency was needed for computational purposes, it was extrapolated by setting 
the amplitude at 32 cycles/eye width equal to 10% of the amplitude measured at 20 
cycles/eye width.) (B) Phase vs. log frequency is indicated (modulo 2~r) on a 
separate axis for each spatial frequency. The curves were extrapolated in the same 
regions as the amplitudes, above. (C) The transfer function amplitudes for the 
same preparation, in terms of the mean instantaneous rate function o-q), obtained 
by multiplying the transfer function in (A) by the transfer function IB(tn, v)l = (see 
text). The small undulations of the amplitude curves (A) and (C) at low frequency 
are artifacts of the extrapolation procedure. 

is most  responsive at low spatial f requency ,  with response  decreasing mono ton -  
ically with increasing spatial f requency.  At high t empora l  f requency,  there  is 
little d e p e n d e n c e  on spatial f requency,  except  for  the ul t imate h igh- f requency  
cutoff .  These  f indings may be cons idered  the analog,  with sine-wave grat ings,  
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o f  the more  familiar "small spot/ large spot" exper iments  (Ratliff et al., 1967; 
Ratliff  et al., 1969; Knight  et al., 1970). 

T h e  spatial dependence  o f  the phase of  the t ransfer  funct ion is more  subtle, 
with detail concent ra ted  at the lower tempora l  frequencies.  T h e  low-frequency 
phase lead is slightly greater  at low spatial f requencies  and persists to h igher  
tempora l  frequencies.  Once it starts, however ,  the rate o f  increase of  the phase 
lag with tempora l  f requency  is grea ter  at low spatial f requency,  so that  there  is 
little d i f ference  in the phase lags seen at all spatial frequencies at high tempora l  
f requency.  T h e  full implications o f  the t ransfer  funct ion measurements  are 
discussed at grea ter  length in the following article (Brodie et al., 1978). 

As was discussed above, the Four ier  syntheses were compu ted  in terms o f  the 
mean  instantaneous rate ou tpu t  variable o'(t). For  this purpose ,  the t ransfer  
funct ion ampli tudes,  measured  in terms o f  the mean impulse density, r( t ) ,  were 
multiplied by the correct ion factor I B(0J, v)l 2. T h e  correc ted  ampli tudes are 
shown in Fig. 4 C. T h e  effect  o f  the correct ion is mainly to a t tenuate  the 
response at f requencies  above the mean  impulse rate.  T h e  phases are,  o f  course,  
unchanged .  

Typical  averaged responses f rom the synthesis por t ion o f  the protocol  are 
shown at the top o f  Fig. 5. For  the expe r imen t  shown, the synthesis stimulus 
consisted o f  a square wave o f  spatial f requency  0.5 cycles/eye width, which was 
moved slowly across the eye. Because the stimulus was viewed by the animal 
th rough  an effective "window" one eye width across, the stimulus had the 
appearance  o f  a "step" of  light intensity advancing across the screen. As the 
records f rom such mirror- image presentat ion o f  the stimulus are,  in general ,  
nearly identical, we have deemed  it appropr ia te  to average together  all such 
responses.  Such an averaged response is shown in the bot tom of  Fig. 5; the 
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Comparison of the response to mirror-image stimuli. The top two 
records show the average instantaneous rate response o'(t) obtained from 14 
presentations of a drifting edge stimulus moving with drift velocity (A) +0.06 eye 
widths/s or (B) -0.06 eye widths/s. The record (C) is the averaged response of all 
28 episodes. The preparation is the same as used in Figs. 3 and 4. 
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i m p r o v e m e n t  in signal-to-noise ratio is evident .  T h e  features  seen in this record ,  
while to some extent  d e p e n d e n t  on the dr if t  velocity o f  the stimulus (here,  0.06 
eye widths/s), are c o m m o n  to such s tep-responses  (see below). O f  par t icular  
interest  are  the ant ic ipatory "Mach bands  ''~ o f  excitation or  inhibition that 
p recede  the crossing o f  the test o m m a t i d i u m  by the moving  edge.  T h e  crossing 
itself is seen as a clear on- or  off- t ransient ,  which then  decays, somet imes  with a 
small overshoot ,  as here .  In  the intervals between the step transients ,  the 
impulse  rate settles to a steady-state value. This  value is nearly the same,  
regardless  o f  whe the r  the steady state is a response  to the br ight  or  d im region 
o f  the s tep-pa t te rn  stimulus.  

An example  o f  the effect  o f  an asymmetr ica l  inhibi tory field on such records  
is seen in Fig. 6. In  this p repara t ion ,  the test o m m a t i d i u m  was located within 2 
m m  of  an edge  o f  the eye, and  thus received manifest ly asymmetr ica l  input  
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FIGURE 6. Step-transient responses of an ommatidium with an asymmetric inhib- 
itory field. The test ommatidium in this preparation was located within a few 
ommatidia of the posterior edge of the eye. The anticipatory Mach bands were 
much more pronounced when the step stimulus moved toward that edge of the eye 
(top record) than when the stimulus moved away from the edge (bottom record). 

f rom the rest  o f  the retina.  Thus ,  a Mach band  typical o f  the dr if t  velocity (0.06 
eye widths/s) is seen when the steps dr if t  toward the edge  o f  the eye, while steps 
dr i f t ing  away f r o m  the edge  can affect  very few ommat id ia  before  encoun te r ing  
the test o m m a t i d i u m ,  and  thus they are scarcely anticipated.  Such ommat id ia  
were scrupulously avoided in the rest  o f  the study. Hence ,  all f u r the r  f igures 
depic t ing responses  to moving  stimuli display the average  o f  responses  to 
mi r ro r - image  stimuli without  fu r the r  c o m m e n t .  

T h e  records  f rom synthesis episodes at four  d i f ferent  drif t  velocities are 
shown in Fig. 7. T h e  responses  show a m a r k e d  d e p e n d e n c e  on the dr if t  velocity 

7 Strictly speaking, the term "Mach bands" refers to the maxima and minima seen in a static stimulus 
pat tern consisting o f  a gradient  of  intensity between two un i form areas of  different intensity (see 
Ratliff, 1965). We use the term loosely here to include the maxima and minima in neural responses 
to stepwise changes in intensity. 
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o f  the st imulus.  At very low speeds  the step in light intensity takes a significant 
t ime to cross the test o m m a t i d i u m ,  and  there  is only a modes t  t ransient  response  
to the step st imulus.  This  t ransient  decays monotonical ly  to a steady response .  
As the velocity is increased,  the t ransient  responses  increase dramatical ly ,  
momenta r i ly  dr iv ing the unit at over  th ree  times its average  impulse  rate.  T h e  
inhibi tory p recursors  are somewhat  s t r eng thened ,  but,  o f  course,  occupy a 
shor te r  interval  o f  t ime.  Immed ia t e ly  a f te r  the on- t rans ien t  responses ,  the 
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FmURE 7. Fourier synthesis of step-transient responses. The figure shows the 
observed averaged response ~(t) to drifting steps of light intensity (same prepara- 
tion as Figs. 3, 4, and 5). Drift velocities were (A) 0.03, (B) 0.06, (C) 0.12, and (D) 
0.24 eye widths/s. The episodes at the slowest speed provided only one on- 
transient; the others provided at least one full cycle of the stimulus. The curves 
offset immediately above the observed records are the predictions, for one cycle of  
the stimulus, of  the Fourier synthesis procedure described in the text, applied to 
the spatiotemporal transfer function shown in Fig. 4. The intensity of  the stimulus 
at the test ommatidium is shown for one stimulus cycle in (B). 

impulse  rate falls rapidly,  overshoo t ing  the subsequent  s teady response  to the 
br ight  por t ion  o f  the step. At high velocity, the off- t ransients ,  which would  have 
to ex tend  to "negat ive"  impulse  rates to m i r ro r  the observed on- t ransients ,  are  
severely t runca ted .  

T h e  predic t ions  o f  the Four ier  synthesis p r o c e d u r e  (using the t ransfer -  
funct ion da ta  f r o m  Fig. 4 B and C) a re  shown above the expe r imen ta l  records .  
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The agreement between the Fourier predictions and the experimental records 
is, on the whole, excellent. The linear theory successfully predicts the form and 
height of the step transients (a sensitive function of drift velocity), and the width 
and strength of the Mach bands. The limited dependence of the "steady state" 
response on the intensity of the illumination between step transients is also 
correctly predicted by the Fourier synthesis calculation. 

The synthesis shows only a few systematic discrepancies from the actual 
responses. The slight overshoot of the response at intermediate velocities is 
somewhat underestimated, and the sculpturing of the on-transient at the lowest 
velocity is slightly distorted. The biggest discrepancy is the truncation of the off- 
transients at high drift rates. This highly nonlinear phenomenon is beyond the 
scope of our linear theory. The truncation also produces secondary effects, such 
as the absence of overshoot after high-speed off-transients, which likewise are 
not predicted by the Fourier synthesis. 

We have obtained results comparable to those shown above on several other 
preparations. Further evidence of the extent to which our transfer function 
measurements characterize the response of a Limulus eye to moving stimuli was 
also obtained. 

Figs. 8 and 9 show the results of an analysis-synthesis experiment performed 
on a Limulus with weak and sluggish reflexes; this specimen would not have 
been used had a healthier one been available. The transfer function shows 
better optical resolution than that of Fig. 4, with a readily measurable response 
at 32 cycles/eye width, but very little dependence on spatial frequency. This 
apparent lack of lateral inhibition is confirmed by the synthesis records, which 
show virtually no Mach band effects at all. Nonetheless, the agreement between 
the Fourier synthesis and the experimental records is striking, at velocities 
ranging over an order of magnitude. It thus appears that our transfer function 
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FIGURE 8. Transfer function for a "sick" Limulus. Bode plots of measured 
spatiotemporal transfer function, plotted as in Fig. 4. At the peak, amplitudes 
decrease monotonically with increasing spatial frequency. 
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measurements  accurately describe the dynamics o f  even a somewhat  pathologi- 
cal eye. 

We have also p e r f o r m e d  syntheses o f  the response to dr i f t ing pat terns o the r  
than steps. Figs. 10 and 11 show the results o f  a synthesis o f  the response to the 
"step complement"  stimulus o f  Ratliff  and Sirovich (1978). This  stimulus, which 
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FIGVRE 9. Fourier synthesis for "sick" Limulus (same preparation as Fig. 8). 
Predicted and measured responses (averages of eight episodes) to drifting step 
stimuli are plotted as in Fig. 7. Drift velocities were (A) 0.03, (B) 0.06, (C) 0.18, and 
(D) 0.36 eye widths/s. 
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FIOURE 10. Transfer function for experiment of Fig. 11. At peak, amplitudes 
decrease monotonically with increasing spatial frequency. 

is composed  o f  a sinusoid o f  the lowest possible f requency  (0.5 cycles/eye width) 
plus a fast exponent ia l  decay superposed  on a step, is designed to resemble the 
step stimulus as little as possible, yet p roduce  similar visual responses.  Even 
though  the stimulus possesses no sharp  dicontinuities,  the response clearly 
resembles the typical response to t rue  dr i f t ing steps, especially at low velocities. 
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At h igher  speeds,  the eye readily perceives the 0.5 cycles/eye-width sinusoid. All 
o f  these responses ,  up  to a velocity o f  0.8 eye widths/s, are well predic ted  by the 
Four ier  synthesis.  With the measu red  spa t io tempora l  t ransfer  funct ion,  we can 
p e r f o r m  a Four ier  synthesis to predict  the response  o f  this p repa ra t ion  to a t rue  
step st imulus,  such as the one used for  the expe r imen t s  o f  Figs. 7 and  9. These  
predict ions are shown in Fig. 12, for  compar i son  with the response  to the step- 
c o m p l e m e n t  st imulus.  
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FIGURE l ] .  Predicted and measured responses to moving "step complement" 
stimulus. One cycle of the stimulus is reproduced as the bottom record in (A). Drift 
velocities were (A) 0.06, (B) 0.20, (C) 0.40, and (D) 0.80 eye widths/s. Measured 
responses are the average of 12 episodes. 

I 
FIGURE 12. Predicted step responses for preparation of Figs. 10 and 11. Drift 
velocities, from left to right: 0.06, 0.20, 0.40, 0.80 eye widths/s. Scale marker: 
horizontal, 10 s; vertical, 10 impulses/s. 

As a final test o f  the ability o f  ou r  p r o c e d u r e  to handle  "arbi t rary"  stimuli,  we 
p roduced  a visual st imulus whose light-intensity profi le  resembles  a row o f  
buildings.  T h e  results o f  an e x p e r i m e n t  using this st imulus are shown in Figs. 
13 and  14. T h e  a g r e e m e n t  between the predic ted  and  measu red  responses  is 
again excellent.  
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Transfer function for experiment of Fig. 14. 
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FIGURE 14. Predicted and measured responses to moving "arbitrary" stimulus. 
One cycle of the stimulus is reproduced as bottom record in (B). Drift velocities 
were (A) 0.03, (B) 0.06, (C) 0.12, and (D) 0.24 eye widths/s. Measured responses are 
the average of 22 episodes. 

D I S C U S S I O N  

T h e  extensive a g r e e m e n t  between the measu red  responses  to moving  stimuli 
and  the predict ions o f  ou r  Four ier-synthet ic  calculations demons t ra t e s  the 
essential validity o f  o u r  p r o g r a m  o f  l inear  systems analysis. T h o u g h  the major  
assumpt ion  o f  l inearity is known to hold for  many  aspects o f  the Limulus visual 
t ransduct ion ,  especially in the vicinity o f  a fixed ope ra t ing  point ,  there  are 
impor t an t  known except ions,  such as the d e p e n d e n c e  o f  inhibi tory coupl ing  on 
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excitation levels, and  the p h e n o m e n o n  o f  inhibi tory thresholds .  O u r  results 
conf i rm that,  in spite o f  these potent ial  complicat ions,  the Limulus system 
responds  with l inear  behavior  well beyond  the range  of  small per turba t ions .  

T h e  only striking nonl inear  effect  demons t r a t ed  in our  study is the t runcat ion 
o f  off- t ransients  co r r e spond ing  to the l imitation of  the pulse-coding scheme.  
O u r  data a p p e a r  to be consistent with the hypothesis  that,  u n d e r  the condit ions 
o f  widespread i l lumination and mode ra t e  impulse  rate,  the effective threshold  
for  lateral inhibit ion (at least for  inhibi tory transients) is the absolute threshold:  
the absence o f  impulses  in the inhibit ing units. This  may be a small l imitation in 
practice: those stimuli in which features  which greatly exceed the intensity o f  
the mean  i l lumination are br ie f  and well separa ted  f rom each o ther  (such as the 
stimulus of  Fig. 14) p roduce  little or  none  o f  this t runcat ion  effect,  especially at 
low stimulus velocities. 

This  study provides  verification of  the behavior  o f  large number s  o f  interact-  
ing neurons  in the dynamic  situation. We conf i rm the presence  of  Mach bands  
which p recede  waves o f  excitation moving  across the eye. T h e  relative insensitiv- 
ity of  the Limulus ret ina to slowly changing,  or  slowly moving ,  stimuli has been  
definitively demons t r a t ed .  As has of ten been stated elsewhere,  such response  
characteristics have the effect  o f  accentuat ing contours  and  movemen t s  in the 
in format ion  passed by the eye to the brain.  On the o ther  hand ,  it should be 
pointed  out  that  for  modera te ly  rich stimuli, the Limulus eccentric cell provides  
a fairly accurate  depict ion of  the st imulus at even ra the r  leisurely dr if t  velocities. 

We thus conclude that the spa t io tempora l  t ransfer  functions,  as measu red  
above,  in fact serve as concise comple te  character izat ions of  the Limulus visual 
system in the reg ime studied,  and the re fo re  that  the proper t ies  o f  a Limulus 
ret ina are well specified by the retina 's  response  to sinusoidal grat ings modu-  
lated sinusoidally in time. In principle,  then,  the task o f  the Limulus visual 
physiologist may be reduced ,  to a large extent ,  to predic t ing and  expla ining the 
various fea tures  of  the measured  t ransfer  functions.  

A P P E N D I X  A 

A F i b e r - O p t i c  " C o n t a c t  L e n s "  f o r  t h e  Limulus  L a t e r a l  Eye  

The ommatidia of the Limulus lateral eye, which have an acceptance angle of <6 ~ 
diverge greatly, covering roughly a hemisphere of solid angle. A consequence of this 
geometry is that a stimulus consisting of parallel rays of incident light will excite only a 
small patch of ommatidia (corresponding to the pseudopupil seen from the direction 
from which the light comes). This has proved to be a scant impediment in studies 
involving only a few (or a few groups of), nearby ommatidia, where fiber-optic light 
guides less than a few millimeters in diameter have provided adequate stimuli. On the 
other hand, it has been very difficult to provide carefully controlled illumination to a 
large population of ommatidia. One approach to this problem is to place a naked Limulus 
eye close to a display oscilloscope. 8 Although this method has the advantage of great 
simplicity, it is capable of illuminating only about one-third of the horizontal extent of 
the eye. The resolution of the "natural optics" is also somewhat limited. Much better 
resolution can be obtained by imaging a stimulus directly onto the Limulus cornea with a 

8 Dodge, F., and E. Kaplan. Personal communication. 
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system of lenses. Unfortunately,  this successfully illuminates only a small cluster of 
ommatidia. What is needed is an ar rangement  of light guides arranged along a curved 
surface resembling the Limulus cornea, whose optic axes converge in a manner  corre- 
sponding to the divergence of the ommatidial axes. 

To approximate such an optical array, we have turned to the technology of fiber-optic 
tapers. Such a taper consists of a frustum-like portion of a "coherent" lattice of glass 
fibers embedded in a glass matrix of lower refractive index, which has been heated and 
drawn into a conical shape. Ordinarily, the two end surfaces of such a taper are polished 
into parallel planes. The taper then maps each point of one surface to one point of the 
other surface, so that an image formed on one surface is reproduced on the other. Such 
tapers are routinely used as magnifiers or "condensers" (image reducers) (see Fig. A1 A) 
(Kapany, 1967). Unfortunately,  if the narrow end of such a taper is simply ground to 
form a concave spherical surface conformable to the Limulus cornea, the optic axes of the 
fibers in the taper remain parallel to the axis of the cone, and to each other; they are 
thus poorly oriented to illuminate the divergent ommatidia in a Limulus eye. 

Recently, we have obtained (courtesy of Walter P. Siegmund, Fiber-Optics Division, 
American Optical Corp.,  Southbridge, Mass.) fiber-optic tapers with concave spherical 

A B 

FIGURE A1. Schematic indication of the fiber orientation in two kinds of fiber- 
optic taper. (A) Standard magnifier/condenser:  fibers perpendicular to two flat 
surfaces. (B) Fiber-optic taper used for these studies. Note how fibers are 
approximately normal to curved surface. 

small ends (and flat large ends) fabricated so that the optic fibers are approximately 
perpendicular  to the polished spherical surface (Fig. A1 B). Although such an array of 
fibers diverges somewhat less than the array ofLimulus omrnatidia, we have found that it 
satisfactorily illuminates virtually the entire Limulus eye. Inasmuch as these tapers 
provide the crucial link in the production of our  visual stimulus, we describe them below 
in considerable detail. 

The tapers (Fig. A2) are 2.8 cm in maximum diameter and 1.8 cm in height. The  
narrow ends are ground to spherical surfaces of different curvatures to accommodate 
eyes of various sizes. One taper was used for almost all the experiments,  and is well 
suited to the eyes of most crabs of diameter 15-20 cm; it bears a spherical surface 1.2 cm 
wide and 0.25 cm deep, with a radius of curvature of about 0.85 cm. A second taper was 
used for a few crabs with large, flat eyes. Its spherical surface is 1.4 cm wide, 0.2 cm 
deep, with a radius of curvature of 1.3 cm. A third taper, designed for small eyes 
(spherical surface 1.0 cm wide, 0.3 cm deep, radius of curvature 0.57 cm), was not used. 

The optical fibers of the tapers are roughly square in cross section. At the flat surface 
of each taper, they are 10 tzm square; on the spherical surface, they are roughly 5 /zm 
square (Fig. A3). As each ommatidium presents a corneal aperture approximately 200 
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/zm in diameter, it is clear that in no significant way do the discrete fibers of the fiber- 
optic taper degrade the visual stimulus. 

A more serious source of distortion stems from the geometric consequences of 
mapping a plane surface continuously onto a portion of a sphere. In any such mapping,  
some distortion is inevitable (Gauss, 1828). In our tapers, the distortion is modest and 
continuous (see Fig. A4), and was ignored in the experimental work, without apparent  
difficulty.~ 

The fiber-optic tapers were coupled to the Limulus eyes, both optically and mechani- 
cally, by gluing them directly to the cornea with a quick-setting, t ransparent  cyanoacrylate 
glue (Krazy Glue, Chicago, Ill.). This provided an extremely stable linkage, with 
excellent optical properties (see below). Before the dissection was performed, projecting 
ridges on the Limulus carapace were removed with a rapidly rotating burr ,  and the 

FIGURE A2. Three fiber-optic tapers obtained for this study; from left to right 
for large, medium, and small eyes, respectively. 

appropriate size fiber-optic taper was selected. After the dissection, two drops of glue 
were placed on the concave surface of the taper, which was then immediately applied to 
the cornea, and held there by hand for 1 min. Once the taper was secured in this 
manner ,  the lattice of ommatidia was clearly visible on the fiat surface of the cone (Fig. 
A5), and the neural response to test lamps was typically as vigorous as before the taper 
had been applied. 

If we regard the linear system under study as the fiber-optic cone followed by the Limulus retina, 
it is clear that the optical distortion does not invalidate the linear synthesis of the response of one 
test ommatidium. If severe, such distortion could, however, complicate the physiological interpre- 
tation of the measured transfer function; in the present study, we believe this effect to be 
unimportant. 
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Even though all experimental  test ommatidia were chosen from the central region of  
the eye, it was evident that the fiber-optic taper was easily able to stimulate even very 
peripheral  ommatidia,  including those which ordinarily look along the carapace. We are 
thus confident that our stimulus effectively excited ommatidia across the entire width of  
the eye. 

FIGURE A3. Top:  photomicrograph of  the fiber array at the flat surface of  fiber- 
optic taper. The  transmitting fibers are light, the matrix appears dark. Bottom: 
photomicrograph of  the fiber array at the spherical surface of  fiber-optic taper. 
Each fiber occupies roughly one-fourth of  its previous area. Scale markers = 100 
/u,m. 

The  image of  the pattern produced on the display oscilloscope was focussed onto the 
flat surface of  the fiber optic taper by a suitably mounted camera lens (Nikon Nikkor, 
f/1.2, 55 mm focal length). The  overall effect of  the combined optical system was to 
convert  a pattern 15 cm wide and 2 cm high on the oscilloscope face to an image one eye- 
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width ( -1  cm) wide and 0.13 eye-widths high (approximately five ommatidial diameters, 
or one-fourth of the height of the eye) on the Limulus cornea. 

To evaluate the optical performance of this system, we examined its "point spread" 
characteristic, that is, the size of the image of a point light source. Of course, the ultimate 
performance of this system is limited by the discrete nature of the Limulus eye: the image 
of a point can be no smaller than a single ommatidium. To see if the image was any 
larger, we employed two methods. One method consisted of carefully removing the 
tissue behind the corneas of excised Limulus eyes, exposing the array of crystalline cones, 

FIGURE A4. Continuous distortion produced by fiber-optic taper mapping from 
flat surface to spherical surface. The medium-radius taper, used in most experi- 
ments, is seen from above, resting on uniform graph paper. The distortion at the 
edges of the cone is slightly exaggerated by photographic foreshortening of the 
spherical surface. Scale marker = 1.0 cm. 

and visually examining the image presented to the light-sensitive cells. The  second 
method employed the comparison of transfer functions (light-to-impulse rate) for single 
ommatidia illuminated first by a small fiber-optic light guide and then by the smallest 
spot obtainable with our oscilloscope-lens-fiber-optic taper system. These experiments 
are described below. 

To expose the crystalline cones, a Limulus eye was removed from the animal along 
with a rectangular section of the sur rounding  carapace, and placed in a vice. A rapidly 
rotating burr  was used to remove most of the hard materials behind the eye; the 
remaining covering was removed with forceps. The  soft tissues behind the cornea were 
then wiped away with a cotton-tipped applicator, leaving the array of crystalline cones 



BRODIE ET AL. Response of the Limulus Retina to Moving Stimuli 159 

exposed. The eye was then glued to the fiber-optic taper in the usual way, and studied 
from behind with a stereoscopic dissecting microscope. 

The simplest way to describe the point spread characteristic is to observe the image of 
a point source. When such a source was positioned at the center of an ommatidium, that 
crystalline cone was observed to glow brightly. A faint glow was seen in the six nearest- 
neighbor crystalline cones, and in no others. Unfortunately,  this pattern proved 
unsuitable for photography. A more dramatic illustration of this same effect can be seen 
by examining the image of an edge; such an image is shown in Fig. A6. Though  
interpretation is hampered somewhat by the irregularity of the ommatidial array, the 

FIGURE A5. Lattice of ommatidia as seen through the fiber-optic taper. The 
meniscus at the top of the eye is the upper  limit of the glue which couples the taper 
to the corneal surface. Test ommatidia were selected only from the central region 
of the eye, where the optical resolution was best. 

figure clearly demonstrates that the edge is spread over no more than one ornmatidial 
diameter. Fig. A7 shows a Limulus-eye view of a sinusoidal grating of ~4 cycles/eye. The 
physiological observation that even peripheral ommatidia are well illuminated is clearly 
demonstrated. Fig. A8 shows the image of a grating of roughly 10 cycles/eye. It is well 
resolved by the ommatidial array. Gratings at higher spatial frequencies were also 
observed, and were resolved up to 16 or 20 cycles/eye. These gratings were often difficult 
to see as static patterns, but drifting or counterphase modulation readily demonstrated 
their presence to the human  observer. Beyond 20 cycles/eye, the Nyquist cutoff effect 
became prominent ,  and drifting gratings began to "beat" against the ommatidial lattice. 
(Recall that the eye is only 40 ommatidia wide.) These observations confirm our claim 
that the optical performance of this system is close to the limit imposed by the discrete 
nature of the eye itself. 
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FIGURE A6. "Limulus-eye view" of  an edge stimulus. The  photograph  shows the 
interior surface of  the array of  crystalline cones, i l luminated from the corneal 
surface by the optical system described in the text. The  sharp edge is degraded  by 
no more than the width of  a single ommat id ium.  The  entire eye is - t  cm wide. 

FIGURE A7. Crystalline cone image of  sinusoidal grating, 4 cycles/eye width. 
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Our  second method of  checking the point  spread of  the optics was more physiological 
than the first. We pe r fo rmed ,  in essence, a "small spot/large spot" exper iment  (Ratliff et 
al., 1967), reasoning that if our  optical system significantly degraded  the image o f  a point  
into a spot i l luminating the ommatidia  sur rounding  the test ommat id ium,  then the light- 
to-impulse rate t ransfer  function for this optical system should show a "tuning" effect, as 
compared  to the t ransfer  function produced  by true point-source il lumination (Ratliff et 
al. ,  1969), as provided by a fiber-optic light-pipe (Bariow, 1967). We therefore  measured  
the transfer  function of  a test ommat id ium il luminated by a 76 g,m diameter  l ight-pipe 
placed on the cornea.  The  light source was a glow-modulator  tube, opera ted  as described 
elsewhere (Knight et al., 1970), and driven by a computer -genera ted  sum-of-sinusoids 
signal. After  this measurement ,  a fiber optic taper  was glued to the cornea.  The  same 

FIGURE A8. Crystalline cone image of  sinusoidal grat ing,  10 cycles/eye width. 

computer -genera ted  signal used above was used to drive the oscilloscope, and the 
transfer  function of  the same test ommat id ium,  now il luminated with our  fiber-optic 
taper  optical system was measured.  The  f-stop d iaphragm of  the camera lens was used to 
adjust the mean impulse rate to approximate ly  equal that obtained with l ight-pipe 
i lumination.  

Typical  data are shown in Fig. A9. The  curves for both ampl i tude  and phase agree to 
well within the tolerance required by the slight drif t  of  the prepara t ion  over the dura t ion 
of  the exper iment  (in this case, -2�89 h). We conclude that the fiber-optic taper  optical 
system does not significantly degrade  the point  spread characteristic of  the intrinsic 
Limulus optics. 

A more quantitative approach to the measurement  o f  the Limulus optical point spread 
characteristic is described in the following paper  (Brodie et al., 1978). 
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FIGURE A9. Comparison of light-to-impulse rate transfer functions: 76-/.~m di- 
ameter fiber-optic light pipe vs. oscilloscope-lens-fiber-optic taper optical system. 
The two transfer functions were obtained from the same test ommatidium: (�9 
light pipe, (A) fiber-optic taper. Mean impulse rates: light-pipe, 19.4 impulses/s; 
fiber-optic taper, 17.0 impulses/s. The figures show Bode plots (log amplitude vs. 
log frequency; phase vs. log frequency) of relative fractional modulation of output, 
taken as mean impulse density r(t). Each curve is derived from pooled data from 12 
presentations of the identical sum-of-sinusoids stimulus. (Frequencies were: 0.56, 
1.00, 2.33, 5.15, 11.81, and 20.70 Hz.) 

A P P E N D I X  B 

O n  t h e  C h o i c e  o f  O u t p u t  V a r i a b l e  f o r  t he  F o u r i e r  Ana lys i s  of" 

I m p u l s e  T r a i n  D a t a  

T h e  m e a s u r e m e n t  o f  the ha rmonic  content  o f  various ou tpu t  variables has 
p roved  to be one of  the most  useful  techniques for  s tudying the dynamics o f  
biological systems. When  the ou tpu t  variable is a con t inuous  funct ion o f  t ime, 
such as muscle tension or  an intracel lular  "slow potential ,"  the appl icat ion of  
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these Fourier methods is straightforward. On the other hand, when the output  
is a train of  neural impulses, the information carried by the signal is presumably 
contained in the impulse occurrence times. In this case no function of  continu- 
ous time is directly available for Fourier analysis. Several procedures for 
obtaining such a function have been proposed in the past (for example, French 
and Holden, 1971; Knight, 1972 b; Fohlmeister et al., 1977). We have recently 
adopted a procedure which determines the Fourier coefficients directly from 
the impulse occurrence times, without the intermediate calculation of  a contin- 
uous time function. The  method is equivalent to the use of post-stimulus-time 
histograms ("binning") with arbitrarily narrow bins. This procedure,  its advan- 
tages, and its weaknesses, are discussed below. 

In general, all calculations of  Fourier coefficients may be interpreted as the 
result of a "least-squares" best-fitting procedure.  Such a procedure determines 
those coefficients cn that minimize a quadratic error  estimator of  the form: 

A = f {f(t) - ~  cnfn(t)}~dt, (B1) 
J n 

where thefn are the functions with which we are attempting to approximate the 
da taf ( t ) .  (Here,  for simplicity, we suppress the limits of  integration and the 
corresponding division by the length of  the interval of  integration.) I f  thefn are 
sines and cosines, the cn are the usual Fourier coefficients, but other choices for 
fn are equally suitable. In this context, the various procedures for Fourier 
analyzing impulse-train data amount  to different explicit choices of  the algo- 
rithm for obtainingf(t),  a function of  a continuous variable, from the sequence 
of impulse occurrence times. 

Once such a choice has been made, one may readily differentiate Eq. B 1 with 
respect to the cn; setting the partial derivatives 0A/0cm equal to zero yields a 
system of  simultaneous equations for the cn: 

f i.(,)d,= f i.(,) i.(,)d,, m:  
If  the fn are orthogonal (as are the sines and cosines, if integrated over an 
integral number  of  periods), the correlation matrix fin(t) "fm(t)dt reduces to fin,m, 
and we retrieve the usual formula for the coefficients Cn. 

The system of  Eqs. B2 makes perfectly good sense if we allowf(t) to be any 
suitably integrable function, even a sequence of  Dirac delta-functions, 

f ( t )  = E 8 ( t -  tk), 
k 

where tk is the time of  occurrence of  the k th impulse. For this choice o f f ,  we 
obtain the form: 

Efm(t~) = • c , ' (  fn(t)'fm(t)dt, m = 1, 2,---. (B3) 
k n J 

Unfortunately, such a n f  is not admissible in Eq. B1, because the 8-function is 
not square-integrable. Nonetheless, a careful limiting argument (in which one 
approximates the 8-function by a sequence of  increasingly taller and narrower 
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rectangular pulses) demonstrates that Eq. B3 correctly calculates the spectral 
components associated with the impulse shape-independent structure of the 
impulse train. Under the assumption that only the impulse occurrence times 
convey information of interest, this is no limitation. We will refer to the set of 
Fourier components cn obtained from Eq. B3 as the "delta-function spectrum." 

This calculation of the delta-function spectrum has several computational 
advantages. First the correlation matrix f f , ( t y , , ( t ) d t  can be calculated in ad- 
vance; it depends only on the funct ionsf ,  and the interval over which data are 
collected. Second, the calculation is linear in the data; thus, if data from several 
episodes with identical stimuli are to be pooled, one may simply add together 
the function valuesf~(tk) from all episodes. Third, the algorithm is well suited 
to on-line data acquisition: if tables of the functionsfn are stored in memory, a 
pointer incremented in real time can provide rapid access to the function value 

f n ( t k ) ,  so that whenever an impulse occurs, the current function value is 
immediately available for addition to a running total. The same function table 
may even serve to provide a list of successive stimulus values. Such a scheme has 
recently been implemented with a microprocessor-driven device in our labora- 
tory (Milkman et al., 1978). 

Because the delta function spectrum calculation is linear, as described above, 
it follows immediately that, as the number of pooled impulse trains grows large, 
the Eqs. B3 approach the continuous system (Eqs. B2), if we make the choicef(t) 
= r ( t ) ,  where r ( t )  is the mean impulse density function as defined in Eq. 22, 
above. 

Another important feature of the formulation above is the provision for 
nonorthogonal functionsfn. In general, a "ramp" functionf~(t) = t - to will not 
be orthogonal to both a sine and cosine function over any time interval. 
Similarly, sinusoids of incommensurate periods fail to be orthogonal, as do 
commensurate sinsuoids except over carefully selected time intervals. The 
flexibility of the system (Eqs. B3) in dealing with such functions greatly facilitates 
the selection of episode lengths. 

The various alternative choices for the functionf(t)  generally fall into two 
classes. "Binning" methods are particularly simple to apply. They divide the 
episode into short successive equal time periods ("bins"), and assign to each such 
period the number of impulses which occur within it. "Instantaneous rate" 
methods, which are often useful for impulse trains with few impulses, assign 
function values equal to the reciprocals of the time intervals between impulses. 
It is also possible to combine these approaches. For impulse trains varying about 
a mean carrier rate, all of these functions convey the same information and are 
simply related by transfer functions, such as that calculated in Eqs. 25-28. 
Nonetheless, the delta-function procedure outline above has several relative 
advantages in experimental situations. 

First, the delta-function spectrum is highly insensitive to discrimination 
errors, which may result in erroneously short intervals between impulses. These 
experimental artifacts greatly distort calculations based on reciprocal intervals, 
but scarcely perturb the running sums from which the delta-function spectrum 
is calculated. Indeed, any number of spurious impulses uncorrelated with the 
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periodic stimulus have no systematic effect on the computed  spectrum. Second,  
unlike the results o f  binning procedures ,  the delta-function spectrum contains 
no nulls due to the interaction o f  a modula t ion f requency componen t  with the 
bin width (a parameter  which is entirely external to the system u n d e r  study). 
Finally, both b inning and reciprocal interval methods suffer f rom phase errors ,  
because the procedures  which produce  the func t ionf ( t )  somewhat  distort the 
time at which an impulse is reflected in the spectral estimation; in contrast ,  the 
delta-function procedure  accurately reflects each impulse at the time when it 
actually occurs. 

In summary ,  the delta-function spectrum,  as de termined  by the system of  
Eqs. B3, provides an excellent and easily computed  characterization o f  the 
harmonic  content  o f  impulse train data. The  procedure  is free f rom many o f  
the artifacts which affect o ther  methods  when applied to laboratory data, and it 
imposes no arbitrary structure o f  its own on the data. 
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