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ABSTRACT A large part of the branching vasculature of the mammalian 
circulatory and respiratory systems obeys Murray's law, which states that the 
cube of the radius of a parent vessel equals the sum of the cubes of the radii of 
the daughters. Where this law is obeyed, a functional relationship exists between 
vessel radius and volumetric flow, average linear velocity of flow, velocity profile, 
vessel-wall shear stress, Reynolds number, and pressure gradient in individual 
vessels. In homogeneous, full-flow sets of vessels, a relation is also established 
between vessel radius and the conductance, resistance, and cross-sectional area 
of a full-flow set. 

I N T R O D U C T I O N  

The arrangement of vessels in the organism is influenced by general physical 
laws as well as by specific physiological requirements. In the physics of 
transport, dimension is of  great importance, as is portrayed in the equations 
for steady-state flow and diffusion in tubes. If  a given vascular volume within 
a given tissue space is divided into a small number  of large vessels or a large 
number  of small vessels (all in parallel along a given length), steady-state flow 
and diffusion are affected in opposite ways. For a given pressure difference 
along the tubes and a given concentration difference between the wails of the 
tubes and the spaces around them, the flow along the tubes and diffusion 
from the tubes are both dependent upon the second power of the tube radii, 
r, but oppositely so: flow is directly proportional to r 2, whereas diffusion is 
inversely so. For a fluid transport system involving both translational flow 
and transmural diffusion, a compromise must be found between large and 
small vessels. In animals this has been done through arrangements of large 
and small vessels in series, the former to minimize the costs of bulk flow across 
relatively large distances, the latter to minimize diffusion distances and 
maximize diffusion surfaces. 

For over a century now the physiologist has been working with the laws of 
Poiseuille and Fick, which have served him well at any particular level of a 
branching system of vessels. The pattern of the whole, however, has been more 
difficult to understand. How should large and small vessels be connected to 
one another? Refuge from such a general question can be taken in the great 
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diversity of  anatomical structures and physiological functions. But the suspi- 
cion remains that in the "ideal" tissue there should be an opt imum way to 
connect large and small vessels together to achieve the fastest transport for the 
least amount  of work. If  there is a general rule for such connections, even if 
imperfectly followed by "nonideal" tissues, the physiologist should know about 
it, for it would enable him to estimate such important variables as flow 
conductance and surface area at different stages of  a branching system. 

Such a problem was posed by Thomas Young in his Croonian Lecture in 
1808 (Young, 1809) when he wished to estimate the resistance of an arterial 
system: "In order to calculate the magnitude of  the resistance, it is necessary 
to determine the dimensions of the arterial system, and the velocity of the 
blood which flows through it." Starting with assumed dimensions for the aorta 
and for the capillaries, Young had to decide upon a probable branching 
pattern which would connect the one with the other. He chose a symmetrical, 
dichotomous system in which the diameter of each branch was "about  4/5 of 
that of  the trunk, or more accurately 1:1.26." By assuming this geometric 
ratio between the diameters of daughter and parent vessels, Young calculated 
that twenty-nine bifurcations were necessary to diminish the aorta to the size 
of  the capillaries. From estimates of the lengths of the aorta and capillaries, he 
constructed another geometric series for lengths of the thirty generations of  
vessels, and went on to calculate blood volumes, velocities of flow, and 
resistances in the different stages of  the system. Young does not say why he 
chose a ratio of  1.26:1 for the relative diameters of parent and daughter 
vessels, nor does he remark upon its being 21/3: 1, but it seems certain that he 
was familiar with a rule--ei ther  empirical or theoret ical--which favored this 
choice. 

Young's rule can be expressed in terms either of  a ratio of  radii or of a ratio 
of  areas, for if one vessel divides into two equal daughters, and if the radii (or 
diameters) of parent and daughters are related as 21/a: 1, the total cross- 
sectional areas of  parent and daughter vessels are related as 1 : 21/3: 

Parent Daughters Parent :daughters  ratio 
Radius 21/3 1 21/3:1 
Area 2~/%r 2~r 22/3 : 2 = 1 : 21/3 

That  is, as the radii get smaller, the cross-sectional areas get bigger by the 
same geometric factor. 

Expressed either as a ratio of radii or of  areas, Young's rule has appeared 
many times in this century but, as Zamir (1977) has remarked, it has usually 
been "surrounded by an air of  mystery," with little explanation of its basis. 
Weibel (1964) attributes the rule to D'Arcy Thompson,  but Thompson (1942) 
says only that it is a principle "familiar to students of  hydrodynamics."  
McDonald  (1974) attributes the rule to Blum (1919), who in turn refers us to 
Hess (1917). Hess did in fact at tempt to establish the rule by a theoretical 
argument. But the clearest and most general approach to the problem was 
made by Cecil D. Murray (1926a). Murray derived a relation, hereafter 
referred to as Murray's  law, which applied to asymmetrical as well as 
symmetrical branching systems. For symmetrical, dichotomous systems such 
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as those of Young and Hess, Murray's  law reduces to their 21/3 rule. 
Murray's  law for connecting large vessels to small is as memorable as 

Pythagoras'  edict on right triangles, for Murray  states that the cube of the 
radius of a parent  vessel should equal the sum of the cubes of the radii of  the 
daughter  vessels. An alternative statement (employed here) is that an opt imum 
vascular system must have its vessels connected in such a way that the total 
flow of the system, wherever that flow is intercepted, is carried by a set of 
vessels whose radii cubed sum to a constant value. Murray  derived his law 
using a biological consideration, but it can be derived for non-living opt imum 
systems as well. Like the laws of Poiseuille and Fick, which also arose within 
a biological context, Murray's  law is a general physical principle of great 
utility in the description of biological bulk transport systems. 

Murray's  ideas went almost unnoticed for nearly half a century. They  have 
been rediscovered recently by many workers (Rosen, 1967; Kamiya and 
Togawa, 1972; Milsum and Roberge, 1973; Rashevsky, 1973; Kamiya  et al., 
1974; Hutchins et al., 1976; Zamir, 1976a and b, 1977, and 1978; Hooper, 
1977; Uylings, 1977). The purpose of this paper is to show that Murray's law 
can be derived for nonliving as well as living systems; that it is validated by 
considerable biological data, including the classical data of Mall which has 
been frequently tabulated (in altered form) in physiology textbooks; that it 
has great utility in predicting physiological parameters in the circulation; and 
that it is related in interesting ways to the growth of organisms and to the 
scaling of vascular systems in animals of different size. 

D E R I V A T I O N  O F  M U R R A Y ' S  L A W  

Murray supposed that physiological vascular systems, subjected through 
evolution to natural selection, must have achieved an opt imum arrangement 
such that in every segment of vessel, flow is achieved with the least possible 
biological work. He assumed that two energy terms contribute to the cost of  
maintaining blood flow in any section of any vessel: (a) the energy required to 
overcome viscous drag in a fluid obeying Poiseuille's law, and (b) the energy 
metabolically required to maintain the volume of blood and vessel tissue 
involved in the flow. These energy terms are related to the radius of the vessel, 
but in opposite ways: the larger the radius, the smaller is the power, Pf, 
required for flow, but the larger is the power, Pro, required for metabolic 
maintenance of the blood and vessel wall tissue. The vessel can be neither too 
large nor too small if the total power, Pt = Pf + Pm, is to be minimized. 

If  gravitational and kinetic energy terms can be neglected, a Newtonian 
fluid exhibits a volumetric flow rate, f, which is linearly proportional to the 
pressure difference, p, to which it is subjected: 

f = cp, 

where c is a conductance coefficient. In cylindrical tubes, the conductance is 
porportional (from Poiseuille's law) to r 4, the fourth power of the radius of the 
tube: 

q,Fr 4 

c 
87/l' 
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where 7/is the viscosity of  the fluid and  l is the length o f  the tube. For a tube 
of  unit  length, and  let t ing a = 8~//~r, 

a f  -= pr  4 

p = @-4. 

The  power required to ma in ta in  flow is 

Pf = p f  = af2r -4. 

Hence,  the power required to ma in ta in  a given flow is d ramat ica l ly  reduced 
by small increases in the radius of  a vessel. Offset t ing this, however, is a 
metabol ic  power requirement ,  Pro, which increases linearly wi th  the volume 
of  the blood and  vessel 

Pm ---- m �9 volume----mr2l, 

where rn is a metabol ic  coefficient. For unit  length of  vessel, and  let t ing b -- 
' B ' m  ; 

Pm = br 2. 

The  total power required is then 

Pt = Pf + P m  = af2r -a + br 2. 

O f  the two coefficients in this expression, a depends upon the viscosity o f  
the flowing fluid, and  b upon the metabol ism of  blood and  vessel tissue. For 
given values of  a and  b, the power required for flow in a unit  segment  of  vessel 
depends only upon f ,  the flow, and  r, the radius of  the vessel. For a specified 
value of  f ,  the power, Pt, depends only upon r, and  Pt as a funct ion of  r will 
be minimized  by that  value of  r where d P t / d r  = 0 and  d 2 p t / d r  2 > O. To  find 
this o p t i m u m  value of  r: 

dPt _ d(af2r -4 + br 2) -= _4a f2r_  5 + 2br = 0 
dr dr 

d2pt___ d ( - 4 a f 2 r  -5 + 2br) = 20af2r -6 + 2b. 
dr 2 dr 

Since a, b, f ,  and  r are always positive, d 2 p t / d r  2 = 20af2r -6 + 2b is positive, 
and  any  point  for which d P t / d r  -- 0 is a m i n i m u m  (rather than  a max imum) .  
Hence  a m i n i m u m  for Pt exists where 

- 4 a f 2 r  -5 + 2br = 0 

2af2r -5 = br 

f 2  = b r 6  
2a 

f = kr3; 

b ~ i/2 
(I) 
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The new coefficient k depends only upon a and b (which, in turn, depend only 
upon viscosity and metabolic rate), so that if viscosity of  the fluid and the 
metabolism of the blood and vessel tissue remain constant throughout all 
parts of a vascular system, k remains constant as well. Then Eq. 1 expresses, 
for any vessel that is minimizing energy requirements, a constant relation 
between flow and vessel radius. As Murray  put it, "We see one of  the simplest 
requirements for maximum efficiency in the ci rculat ion--namely that the 
flow of blood past any section shall everywhere bear the same relation to the 
cube of  the radius of  the vessel at that point." 

I fEq .  1 applies to every vessel in a branching system (e.g., to all the arterial 
vessels of an organ), then it can be applied to a sum of such vessels. We have 
only to add the flows on one side and the cubes of  the radii on the other side. 
In general, 

X f = Z k r  s -- kZr  3. 

In particular, if we add together a group of  vessels whose flows add up to the 
total flow, j~, through the organ, we have 

= k ( X r 3 ) t  

( X r 3 ) ,  - -  k -- a constant, (2) 

where (Zr3)t is the sum of the cubes of  the radii of  any set of  vessels which 
carry' the full flow of fluid. For any such set (hereafter referred to as a full-flow 
set), the cubes of  the radii add up to f t / k ,  and hence the sums of  the cubes of 
the radii for all such sets are equal. 

Murray  himself concentrated upon the application of  his equation (Eq. 1) 
to individual branchings of  parent to daughter vessels. Because flow is 
conserved at any branching, j~ = f l  + ~ ,  where f0 is the flow in the parent 
vessel and f l  and J~ are the flows in the daughters, hence 

kro 3 .= krl 3 + kr23 

r03 -- rl 3 + r23, (3) 

where r0 is the radius of  the parent vessel and rl and r2 are the radii of  the 
daughters. Eq. 3 was used by Murray (1926b) to derive expressions for the 
opt imum branching angles of  vessels of  different size. But if Eq. 3 applies to 
every branching, it can be applied to a series of  branching, with the result 
that every set of  subsequent daughter vessels that accommodates without 
duplication the full flow of the original parent vessel has a (Zr3)t equal to r03 
= f t / k  (Eq. 2). 

Eqs. 1-3 are alternative expressions of  Murray's  law. Eq. 2, which does not 
seem to have been used previously, will be employed below in the empirical 
testing of  Murray's  law, and in the discussion of its significance. 

Murray  derived his law without any assumptions regarding the form of the 
branching system: whether it was symmetrical or not, dichotomous or not. It 
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is therefore a general law which, within the confines of  its assumptions,  applies 
to b ranch ing  systems of  all forms. Applied to symmetr ical  d ichotomous 
systems, it reduces to Young's  21/3 rule: 

7.03 ~ 7"13 ~ ~'23 ~ 27"13 ' 

when rl -- r2, so that  

ro = 21/ari  or r l  ---- 2-X/ar0. 

For repeated bifurcations within a symmetr ical  system 

rz = 2-Z/aro ,  

where r, is the radius of  a vessel which is z bifurcations removed from a parent  
vessel of  radius r0. (Weibel [1964], taking Young's  rule from Thompson ,  tested 
his da t a  on the airways of  the lung against equat ions of  this form.) Since the 
number  of  daugh te r  vessels after z bifurcations is 2 *, the sum of  the cubes of  
their  radii is ~rz 3 = 2~7"~ 3 - 2~(2-~/ar0) 3 ---- 2z(2-~ro 3) = r03, which is Murray ' s  
law expressed as Eq. 2. 

In the derivat ion of  Murray ' s  law, a question arises about  the vessel radius, 
r. The  power required for laminar  flow depends upon the internal  radius only, 
whereas the metabolic  requirement  depends more nearly upon the external 
radius (because it depends upon the volume of  vessel as well as the volume of  
conta ined  fluid). In the expressions above, the same radius has been used in 
both  terms, which suggests tha t  the derived law is appropr ia te  only for thin 
vessels whose internal  and  external radii are nearly the same. However,  the 
thickness of  a vessel wall tends to be a linear function of  internal  r ad ius - -  
because of  Laplace 's  relation that  states that  for a given t ransmura l  pressure, 
the tension in the wall is proport ional  to r - - so  that  wall thickness increases 
with r to counteract  tha t  tension. I f  wall thickness is wr, where w is a constant  
and  r is internal  radius, the external radius of  the vessel, R, is also a linear 
funct ion o f r ,  s i nceR  = r + w r - -  (1 + w)r. For a unit  length of  vessel, the 
volume of  the conta ined  fluid is ~rr 2 and  that  of  the vessel tissue is ~rR 2 - r  z 

---- 7r(l + w)2r 2 -- ~rr 2 = 7rrZ(2w + w2), so that  the volume of  vessel wall is 
proport ional  t o  r 2, as is the volume of  conta ined fluid. I f  vessel and  conta ined  
fluid have the same metabolic  energy cost, they can be jo ined as a single term, z 
with volume ~rR 2 and  energy requirement  rn~rR 2 ffi b R  2 = brZ(1 + w) = b r , 
where b' = b(l + w) z. Unde r  these conditions, only the coefficient b changes 
by inclusion of  the vessel wall; the overall derivation remains the same, and  
Murray ' s  law still holds. In addi t ion,  the law can be expressed for external as 
well as internal  radii,  because ifro 3 = rl a + r~ 3, then roa(1 + w) 3 ---- r13(1 + w) 3 
+ r23(1 + w) 3 and  Ro a = R13 + R2 a. This, of  course, is not to claim tha t  vessel 
walls are invariably proport ional  to internal  radius: as t ransmura l  pressures 
decrease in the circulatory system, the walls tend to become thinner,  as they 
need to sustain less tension (witness the difference between arteries and  veins). 
Further ,  changes in vessel muscle tone (vasoconstriction and  dilation) cause 
changes in internal  radius wi thout  a corresponding change in wall thickness. 
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Murray's  law will not always hold exactly, but  it is far less approximate than 
might, at first sight, seem to be the case. 

If  the volume of vessel tissue is proportional to the square of the internal 
radius (as when wall thickness is proportional to r), then Murray's  derivation 
can hold for a biological vasculature even when the flowing fluid itself is inert 
and nonliving, as in the airways of the lungs, where the vessels are filled with 
air (of no metabolic cost) rather than with blood. For Murray's  law derives 
from the assumption that the total power requirement of the system is the 
sum of two factors, which are proportional to f2r-4 and to r 2, respectively. A 
factor proportional to r 2 can be given by the volume (per unit length of tube) 
of (a) the flowing fluid alone, if the vessels are very thin-walled; (b) the vessels 
alone, if the fluid has no power cost associated with its maintenance; or (c) the 
fluid and vessel combined. 

The derivation of Murray's  law involves two assumptions of a biological 
nature: (a) that optimality (a minimum energy condition) is sought, as by the 
action of natural selection, and (b) that a maintenance energy term is required 
for the volume of some material involved. The derivation could of  course be 
applied also to nonliving opt imum vasculatures formed from a material that 
had an initial power cost associated with it, a cost to be amortized over a 
given period of operation even if no further maintenance was to be required. 
Thus Murray's  law would hold for civil engineering projects involving pipes 
of  iron or concrete as well as for vasculatures of  living tissue. Thus D'Arcy 
Thompson 's  "students of  hydrodynamics" may well have derived the 21/a rule 
from assumptions similar to Murray's,  but  Murray seems in any case to have 
been the first to derive it for asymmetrical as well as symmetrical systems. 

In Murray's  opt imum system, flow and vessel radius are functionally 
related: an opt imum radius is found for a given flow. For a given metabolic 
coefficient, m, the volume of a vascular system in an organ or organism will 
depend upon the flow required of it: an opt imum vasculature for high flows 
will have larger vessels than one for low flows, the cubes of  the vessel radii 
being proportional to the flows required. 

An interesting alternative system is one that is to be opt imum within the 
confines of a given total volume of vascular tissue. If, for example, an organism 
has grown to a fixed adult size, with a vasculature that is opt imum for some 
average flow that is required of it, does that vasculature remain for its volume 
the opt imum one for other flows as well, or would some other arrangement be 
better for conditions of increased or decreased flow? Considering the great 
changes in flow required in an organism of fixed size moving from rest to 
maximum activity, etc., such a question is an important one. The answer (as 
shown below) is that the system obeying Murray's  law is the opt imum one, 
for its volume, at all levels of total flow. 

One way to demonstrate that this is so is to characterize a branching system 
that has, for a given total volume, the least resistance to flow. If  the resistance 
is minimum at one rate of  flow, it will be so at all flow rates, and so too will 
be the power required for any given flow. We seek then a rule for branching 
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in a system of  given volume of  material ,  M, such tha t  the resistance to flow 
will be minimal .  Such a system has been studied in detail by Cohn  (1954 and  
1955), by Rashevsky (1960), and  by Horsfield and  C u m m i n g  (1967), but  only 
for symmetr ical  branchings.  A simple demonst ra t ion  is given here that  applies 
to asymmetr ical  branchings as well. 

Let us look at any  b ranch ing  in a system of  fixed volume. We will neglect 
the precise geometric form of  the junc t ion  itself and  consider unit  lengths of  
a parent  vessel and  two daughters ,  wi thout  s t ipulat ing whether  the daughters  
are of  equal  radii or not, where 

radius of  parent  vessel 
radius of  daugh te r  vessel 1 
radius of  daugh te r  vessel 2 
volume of  the system (where "sys tem" denotes the sum of  unit  lengths of  
parent  and  daugh te r  vessels, neglect ing the region of  junc t ion  itself) 
resistance to flow in the parent  vessel 
resistance to flow in the parallel daughte r  vessels 
total resistance of  the system (parent and  daughters).  

R1 - -  87/ 1 a - 4  

where a -- 8~/~r 

R2 _ (8_~) (  1 ) a arl-4r2 -4 
r l  4 ..[_ r2 4" ---- - -  --4 r l  4 + r2 4 r 1 - 4  + r2 

R - -  a to -*  + rx-  4 + r z _ 4 ]  = a x +  = a y+z yYz 

where x = r0 -4, y -- r1-4, z - -  r2 - 4 .  Also 

M = rr(r0 z + rl 2 + r2 2) -- "/r (x -1/2 + y-1/z + z-1/2). 

Since a and  ~r are constants,  for convenience we seek to minimize a normal ized 
resistance R'  = R / a  = (xy + xz + yz) / (y  + z) subject to the condi t ion that  a 
normal ized a m o u n t  of  material  M '  = M/~r is fixed and  is equal  to x -1/2 + 

- -1/2 .4_ z - l / 2 .  
Y 

Using the me thod  of  Lagrang ian  multipliers,  we seek to minimize  

(F) xy + xz + yz y-1/2 Z1/2 M '  = -[- ~k(X - 1 / 2  -1- "l- - -  ) ,  

y + z  

where 2~ is an arbi t rary,  non-zero constant.  For this funct ion to be a m i n i mu m,  
its derivatives with respect to x, y, z, and  ~ must be zero. The  differentiat ion 
of  (x -1/2 + y-X/2 + z-1/2 _ M') is s t raightforward.  The  differentiat ion of  (xy 
+ xz + yz) / (y  + z) is facil i tated by sett ing u -- xy + xz + yz and  v -- y + z, 
and  not ing  tha t  d u / d x  -- y + z, d u / d y  -- x + z, d u / d z  = x + y, d v / d x  --- 0, 



T. F. SHERMAN The Meaning of Murray's Law 

d v / d y - -  1, d v / d z - -  1. 
Since d ( u / v ) / d x  -- (v �9 d u / d x  - u �9 d v / d x ) / v  2, this leads to: 

OF (y + z)(y + z) - (xy + xz + yz)(0) _ _l~Lx_3/2 
Ox (y + z) 2 2 

---- 1 -- lykx-3/2 = 0 at m i n i m u m  

OF (y + z)(x + z) - (xy + xz + yz)(l)  
Oy (y + z) 2 

---- 0 at m i n i m u m  

OF 

0z 

I _ -3 /2  Z2 l 3/2 

-7Sy --(y+z) 2-Txy- 

y2 1 ~kz_3/2 

(y + z) z 2 

= 0 at m i n i m u m  

OF 
~__. x - l / 2  .~. y - l / 2  4- Z -1 /2  - -  M '  - 0 at m i n i m u m  

0h 

From the first three of  these equat ions 

- -  ~ ,  X -~- 

Xy-3/2 (y ~ z) 2 \ h ]  \ y  + z /  

1 Xz-3/2 y2 z (~)x/2  
2 (y + z) 2 '  \ ~ - - ~ ]  " 

Hence,  x -3/4 -- y-3/4 + z-3/4. M i n i m u m s  for the funct ion (xy + xz + yz) / (y  
+ z) subject to the condi t ion that  x -1/2 + y-i/2 + z-1/2 _- M'  therefore exist 

r 3 where x -3/4 ffi y-3/4 + z-3/4 or (replacing x, y, and  z by ro, rl, and  r2) whe e ro 
r l  3 + r2 3. 

I f  in the above derivat ion we start wi th  vessel segments not o f  uni t  length 
but  ra ther  of  similar shape to one another  (i.e., wi th  len}ths P3r~176176 to 
their  radii), min imal  resistance is again achieved when  r0 - -  r l  -t- r2 3. 

W h e n  the parent  vessel is assumed to divide into three daugh te r  vessels 
instead of  two, min imal  resistance can be shown to occur where ro 3 = rl 3 + 
r2 3 + r3 3 (r3 being the radius of  the thi rd  daugh te r  vessel). Likewise, wi th  four 
daugh te r  vessels resistance is minimized  when the sum of  the cubes of  the 
radii is conserved. Conservat ion of  the sum of  the cubes of  the radii is the 
condi t ion for min imal  resistance whether  the parent  vessel divides symmetri-  
cally or asymmetr ical ly ,  and  whether  it divides into two, three, four, or, 
presumably ,  any  n u m b e r  of  daugh te r  vessels. 

439 

(y + z)(x + y) - (xy + xz + yz)(1) _ 1Xz_3/2 = _ _  
(y + z) 2 2 
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Hence, Murray's law seems to hold for a system of fixed volume seeking 
minimum resistance just as it holds for a system seeking, within a flexible 
volume, an optimum compromise between volume and resistance (i.e., be- 
tween work associated with volume and that associated with flow itself). A 
system obeying Murray's law during growth, when vessel size is increased to 
meet increased flows, will continue to be optimum when, having achieved a 
fixed size, the system is subjected to variable flows. Since there is nothing in 
this derivation that assumes that the vasculature is living, Murray's law will 
hold for any branching vascular system that, within a given volume, requires 
minimum flow resistance. For symmetrical, dichotomous systems, this leads 
again to the 21/3 rule. 

V A L I D A T I O N  O F  M U R R A Y ' S  L A W  

Do biological vessels actually conform to Murray's law? Quantitative studies 
of the vessels of whole organs have been conducted by Mall (1888) on the 
small intestine of the dog, by Miller (1893 and 1937) on the dog lung, and by 
Weibel and Gomez (1962), Weibel (1963 and 1964), Horsfield and Cumming 
(1968), and Horsfield (1978) on the human lung. 

Mall's histological study was inspired by the physiologist Carl Ludwig, and 
he aimed to estimate, for different parts of the circulation, such physical 
characteristics as the total cross-sectional area of vessels. His data are still the 
basis of tables found in most present-day physiology textbooks, but the tables 
appearing today have passed through modifications made by Schleier (1919) 
or by Green (1944). Whereas Schleier merely edited the data, leaving out the 
inconvenient categories of vessels, Green drastically altered them by extrapo- 
lating from the dog intestine to the whole human body. Zamir (1977) 
attempted to compare Murray's law with Green's extrapolation. A valid 
comparison can only be made by means of a statistical test applied to the 
complete original data. For this purpose, Mall's original data are reproduced 
in Table I. 

Mall himself noted that his data were approximate. Although he could 
directly count the number of large vessels over the entire organ, smaller vessel 
numbers were estimates based upon small samples, so that the number of 
capillaries, for example, might be in error by 30-50% or more (Mall sometimes 
employed far too many significant figures in tabulating his data). Vessel radii, 
which presumably are external radii, are also approximate, and there is 
probably a systematic distortion in the sizes of some of the small arteries, since 
the dogs were killed by bleeding with the result that vasoconstriction was 
probably pronounced. 

Nevertheless, Table I displays in an approximate way how the blood 
brought in by the superior mesenteric artery is carried throughout the intes- 
tine. Five capillary beds are supplied: in the villi of the mucosa, around the 
crypts of the mucosa, in the circular muscle, in the longitudinal muscle, and 
in the peritoneum. Schleier (and subsequent textbooks) tabulated only those 
vessels involved with the circulation to the villi, because only by eliminating 
the other beds can a uniform progression from large vessels to small be 
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T A B L E  I 

D A T A  O F  F. P. M A L L  (1888) 

441 

Description of vessel Number Radius Probable rank 

Superior mesenteric artery 
Main branches of mesenteric art. 
Final branches of mesenteric art. 
Short intestinal arteries (s.i.a.) 
Long intestinal arteries (l.i.a.) 
Last branches of s.i.a. 
Last branches of l.i.a. 
Branches to crypts 
Branches to villi 
Arteries of the villi 
Capillaries of the villi (upper 2/3) 
Capillaries of the villi (lower 1/3) 
Veins at base of villi 
Veins between villi & submucosa 

Last branches ofsubmucosal veins 
Anastomoses of submucosal veins 
Last branches of s.i.v. 
Long intestinal veins 
Short intestinal veins (s.i.v.) 
Last branches of mesenteric veins 
Branches of mesenteric vein 
Mesenteric vein 

p-m 

1 1,500 0 
15 500 1 
45 300 2 

1,440 40 3 
459 96 3 

8,640 25 4 
18,000 26.5 4 

4,000,000 4 5, 6, 7 
328,500 15.5 5 

1,051,000 11.25 6 
31,536,000 4 7 
15,768,000 2.5 x 
2,102,400 13.25 6' 

131,400 37.5 5' 
18,000 64 4' 

2,500,000 16 xx 
28,800 32 4' 

459 220 3' 
1,440 56 3' 

45 750 2' 
15 1,200 1' 

1 3,00O 0' 

Muscle layers 
Direct muscle arteries 1,800 15 3, 4, 5, 6 
Indirect muscle arteries 3,600 20 3, 4, 5, 6 
Capillaries of circular muscle 27,000,000 1.5 7 
Capillaries of longitudinal muscle 9,000,000 1.5 7 
Veins 3,600 56 3', 4', 5', 6' 

Peritoneum 
Arteries 360 24 3, 4, 5, 6 
Capillaries 36,000 9 7 
Veins 360 40 3', 4', 5', 6' 

Data of F. P. Mall (1888). Most of the data is also available in English in a later article by Mall (1905-06). 
The vessels are tabulated exactly as Mall presented them, except for the following changes: (a) names are 
translated from German, (b) vessel radii are given in #m instead of vessel diameters in cm, (c) a printer's 
error in assigning the decimal point in the size of the capillaries of the circular muscle has been corrected. 
In addition, the vessels are assigned to a probable rank (see text). Each rank is a group of vessels carrying 
the full flow of blood originating in the superior mesenteric artery. Two groups of vessels have not been 
assigned a rank: x, capillaries of the villi (lower one-third) represent a partial channel intermediate between 
ranks 7 and 6'; xx, anastomoses ofsubmucosal veins represent cross channels within rank 4'. 

displayed. Although the capillary bed of  the villi is more extensive than the 
other four beds combined, all must be included if the total carriage of  blood 
is to be portrayed. In addition, Schleier combined the upper capillaries of  the 
villi with the lower. These channels are probably in series rather than in 
parallel, so that they should be regarded as separate stages of the system. 
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In analyzing these data, we seek to establish sets of  vessels that carry, 
without duplication, the full flow of blood brought in by the superior 
mesenteric artery. These full flow sets have been tabulated as ranks in Table  
I. In passing from the superior mesenteric vein, a particle of blood must flow 
through the following sequence of ranks: arteries 0, 1, 2, 3, 4, 5, 6, capillaries 
7, veins 6', 5', 4', 3', 2', 1', 0'. In some cases a vessel must be assigned to more 
than one rank. The branches to the crypts, for example, carry blood from 
arteries of rank 4 directly into veins of rank 6', so that these vessels achieve the 
same connection that vessels of ranks 5, 6, and 7 do in the villi. The ranks also 
represent the number  of major branching processes that Mall detected down- 
stream from the superior mesenteric artery (or upstream from the mesenteric 
vein). The actual number  of dichotomous branchings is obviously far higher 
than the number  of ranks. 

The ranks have been brought together in Table  II, where each vessel listed 

T A B L E  II 

V E S S E L S  I N  T A B L E  I G R O U P E D  A C C O R D I N G  T O  R A N K  

Vessel r a n k  Z r  2 Xr  a Z r  4 

m m  2 tom 3 rrtm 4 

0 2.2 3.4 5.1 
1 3.8 1.9 0.94 

2 4.0 1.2 0.36 

3 8.6 0.54 0.043 

4 2(I 0.51 0.013 

5 140 1.5 0.021 

6 200 1.8 0 .019 

7 650 2.4 0 .0095 

6'  380 5.5 0.10 

5 '  200 7.6 0.30 

4 '  120 6.3 0.37 

3 '  39 5.8 i. 1 

2' 25 19 14 

I '  22 26 31 

0 '  9 27 8l  

T h e  vessels o f  T a b l e  I have  been g r o u p e d  a c c o r d i n g  to r a n k  a n d  the  sums  o f  r 2, r ~, 

a n d  r 4 have  been  c a l c u l a t e d  for e ach  rank .  

in Table  I has been assigned to its appropriate rank or ranks. For each rank, 
a sum of radii squared (Y~r2), of radii cubed (~r3), and of radii to the fourth 
power (Zr 4) have been calculated. For homogeneous ranks (ranks with only 
one set of similar vessels), ]~r 2, ]~r 3, and ~r  4 are nr 2, nr 3, and nr 4, respectively, 
where n is the number  of vessels of  radius r. 

It is evident from Table II that in moving from rank 0 (the superior 
mesenteric artery) to rank 7 (the capillaries), Zr 2 increases dramatically and 
Zr 4 decreases to a similar degree. Since Y~r z is proportional to cross-sectional 
area of  the vessels and Zr 4 is proportional to their conductance to flow, Table  
II displays the striking manner in which area increases as conductance 
decreases in moving from the larger to the smaller vessels. It was this sort of 
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insight that Mall hoped to gain from his studies, and although he (and later 
authors) failed to group the vessels together correctly, the general trend of his 
findings has been well known to physiologists since. 

Unlike Y~r 2 and 5It 4, ]~r 3 has no obvious physiological significance and has 
therefore been ignored. However, it is this quant i ty  that, according to Murray's  
law, should be conserved. Table II shows that it remains fairly constant 
throughout the arterial system (from ranks 0 to 7) and even through the first 
one-half of the venous system as well (ranks 6' to 3'). In the larger veins Zr 3 
tends to increase somewhat, though the changes in Zr 3 are far less than those 
for ~r  4 and about the same as those for ~r  z. 

If  Zr z, ~,r 3, and 53r 4 are plotted against rank, it becomes evident that the 
values for ranks 3 and 4 are altogether too low. The deviations of these ranks 
from a line of best fit for the other ranks is greatest for ~r  4 values, and least 
for 5~r 2. If  the mean value of r is raised by a factor of 1.5 for ranks 3 and 4, not 
only are the aberrant points for Y~r ~ brought close to their line, but the 
corresponding points for ~r z and ~]r 4 are restored to their lines as well. This 
suggests that there is a systematic underestimation of the value of r for these 
ranks, an error that might easily arise as a result of the preparation of the dog 
by bleeding, with the resultant vasoconstriction of the arteries of these ranks. 
There is reason therefore to suppose that ~2r 3 is normally conserved even better 
than portrayed in Table II. 

If  ~r  3 is constant for ranks (full-flow sets) of the arterial system and much 
of the venous system, then for any homogeneous, full-flow set of this region 
where Zr 3 - nr 3, we have a functional relation between n and r, namely, nr 3 
--- K, or n - Kr -3, where K is a constant. If  the vessels of every rank were 
homogeneous (i.e., had the same radius), we could check the nr 3 = K rule by 
fitting a power curve of the form nr m - K to the data (or by finding the 
regression line for I n n  ffi - m  In r + In K). A value of m "-3 would support the 
rule. Because ranks 3, 4, 5, 6, 7, 6', 5', 4', and 3' are not homogeneous, the test 
cannot be done without first converting these ranks to equivalent homogeneous 
ranks. To do this, the radius of the vessels that contribute the largest nr 3 
component to the rank is taken as the radius of the rank, and the number  of 
those vessels is recorded. To this number  is added a calculated number  of 
vessels of that radius needed to give an nr 3 value equal to that of the lesser 
groups of vessels in the rank. Table III shows the radii and numbers of vessels 
for homogeneous ranks created from Mall's data in this way. The conversion 
introduces a bias in favor of  the nr 3 rule, since this rule has been used in the 
transformation of the ranks from nonhomogeneous to homogeneous. However, 
because the original ranks are only slightly nonhomogeneous, the bias is very 
small; it can be eliminated to any degree required by making successive 
approximations in the determination of the regression line. 

When the data  for ranks 0-3' in Table III are fitted to a regression line, a 
value of 2.984 is found for the exponent, m, with a coefficient of determination 
of 0.971. If  the questionable ranks 3 and 4 are eliminated, m is found to be 
3.006, with a coefficient of determination of 0.987. If  only the arterial data 
(ranks 0 to 7) are fitted, the exponent is 2.947 (coefficient of determination 
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0.988) or, without ranks 3 and 4, the exponent is 2.972 (coefficient of 
determination 0.998). In any case, throughout the vascular system of the 
intestine--until  the large veins are reached--the classical data for Mall falls 
very close to the line predicted by Murray's law. 

The data of  Miller (1893) for the dog lung also conform fairly closely to 
Murray's law, though not so closely as Mall's data for the small intestine. The 
exponent m is 2.61 for the arteries and 2.76 for the veins. For all the veins 
except the final four large pulmonary veins, however, the exponent is 3.01. 

Weibel and Gomez (1962) in their study of  the human lung fitted their 
data for arteries to an equation of the form rz = r02 -z/3' where z is the number 
of bifurcations, assumed in their model to be symmetrical. This equation is 

T A B L E  I n  

D A T A  O F  F. P. M A L L  (1888) M O D I F I E D  T O  F O R M  H O M O G E N E O U S  R A N K S  O F  

V E S S E L S  

Radius of predominant Equivalent number  of 
Vessel rank vessels of rank (r) vessels for homogeneous rank (n) 

/J,?t/ 

0 (parent artery) 1,500 1 
1 500 15 
2 300 45 
3 96 608 
4 26 27,400 
5 16 408,000 
6 11 1,260,000 
7 (capillaries) 4 37,800,000 
6' 13 2,380,000 
5' 37 144,000 
4' 64 24,100 
3' 220 544 
2' 750 45 
1' 1,200 15 
0' (end vein) 3,000 1 

The vessels of Table I have been grouped according to rank, the radius of the predominant group has been 
taken as the radius of the rank, and the number  of vessels for the rank has been calculated to give a value 
of nr :~ (for the homogeneous rank) equal to the original Y~r 3, 

derived from Thompson's  21/3 rule, and hence, the line of  best fit of Weibel 
and Gomez (1962) has the slope predicted by Murray's  law. 

Horsfield and Cumming (1968), Singhal et al. (1973), and Horsfield (1978) 
do not assume a symmetrical branching pattern in their studies of  the lung, 
but  order the lung vessels by a modification of methods introduced by Horton 
(1945) and Strahler (1953 and 1957) for analyses of river systems. Since the 
Horsfield orders do not necessarily correspond to full-flow sets of vessels, 
however, they do not lend themselves easily to the present analysis. 

Suwa et al. (1963) concluded that human arteries, over a wide range of 
sizes, preserve a constancy of ~']r 2"7 for full-flow sets, but that in the largest 
arteries ~]r  2 is nearly constant in such sets. Patel et al. (1963) and Mall (1905- 
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06) also found that the largest vessels tend to maintain a constant total cross- 
sectional area, so that Murray's  law is not followed in the most immediate 
branchings of  the aorta, the pulmonary trunk, the venae cavae, and the 
pulmonary veins. Iberall (1967) concluded from a study of  the data  of Mall 
(1905-06), Patel et al. (1963), and Suwa et al. (1963) that "the cross-sectional 
data  does not change much until arterial diameters of the order of 1/2 mm 
are reached; then an approximately uniform increase in area per level for 
arterial sizes down to about  20-30 #m occurs, after which a large increase in 
area down to capillary sizes of  the order of  8/~m takes place." Iberall thus 
divides the arterial tree into three regions; the most extensive (middle) region 
shows, in his view, a linear relation of  some sort between Yr 2 and r x. An 
inspection of  Iberall's graph shows that he has chosen to make ~r  2 proportional 

- - 0 7  �9 2 7  �9 to r ", and, hence, has acceptcd thc conclusmn of Suwa et al. that r �9 is 
constant in this middle region. 

Blum (1919) estimated cross-sectional area ratios for a great many artcrial 
branchings. He  concluded that his results were scattered around a mcan of 
1.26, a result which, for symmetrical branching, is that predicted by Murray's  
law. 

Hutchins et al. (1976) found a constancy o f ~ r  a for branch points in normal 
coronary arteries. In diseased arteries they found the exponents to be <3. 

In summary,  arteries and veins, excluding only the largest, follow Murray 's  
law very well. Estimates of  exponents, m, for a relation nr TM --- K, fall mostly 
in the range of  2.7-3.0. The capillaries of  the small intestine seem also to obey 
the relationship, but  capillaries of  many tissues cannot be expected to do so 
(see below). 

There is evidence that the larger airways of  the lungs also follow Murray's  
law. A test of  the data  of  Miller (1893) gives an exponent of 2.71 for all the 
airways down to the alveolar sacs. Weibel and Gomez (1962) found a difference 
between the first ten generations of airways (starting with the trachea) and 
the finer airways beyond. The first ten generations followed the 21/3 rule (and 
hence Murray's  law), whereas those beyond deviated increasingly from the 
theoretical line. Wilson (1967) also noted the correspondence between the 
data of  Weibel and Gomez and the 2 x/3 rule, and independently gave a 
theoretical argument,  very similar to Murray's,  for the optimality of such a 
rule. Hooper  (1977), realizing that the lung branches asymmetrically (not 
symmetrically, as Weibel and Gomez's model assumes), made resin casts of 
the airways and, cutting the casts, compared the weight distal to a cut with 
the radius of the airway at the cut. From a regression line fitted to 79 
observations, he found that the weight was proportional to r 2"9s. Using an 
argument adopted from a study of  trees by Murray (1927)--that  the weight 
supported by a parent branch is the sum of the weights supported by its 
daughters, Hooper  concluded that for his airways (which were of fairly large 
size), r02"9s -- ra 2'9s + r22'9s. This confirms Murray's  law for the larger airways 
in a more direct way than do the earlier studies, because it does not require 
that da ta  from an asymmetrical branching system first be fitted to a sym- 
metrical model. 
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L I M I T A T I O N S  O F  M U R R A Y ' S  L A W  

Murray's  law will usually apply only to branching systems for which the 
original assumptions leading to the law are valid. These assumptions are: (a) 
that the system is arranged to minimize energy output ,  and (b) that the energy 
output  is that which results from two terms associated with (i) Poiseuille flow, 
where energy output  is proportional to f2r-4; and (ii) volume of the system, 
where maintenance energy is proportional to r 2. Alternatively, the law applies 
to a system of given volume that is arranged to minimize resistance, where 
resistance is proportional to r -4. 

An electrical conduit system would be expected to obey some other law, for 
resistance in such a system is proportional not to r -4 but  to r -2. It is easy to 

~ , , ,  �9 �9 �9 2 2 show that the Murray  s law for branching electrical systems is ro -- rx + 
r2 2. A branching system of wires, made from a given amount  of  material that 
is to minimize resistance, should have a constant ~r  2 for all full-current sets of 
wires. Throughout  the system the current, I, in any segment of wire of  radius 
r, should be I = Kr 2, where K is a constant. Since current is proportional to 
voltage gradient times conductance, and since conductance in a wire is 
proportional to r 2, this means that the o~t imum electrical system has a 
constant voltage gradient (proportional to r ). In contrast, the opt imum flow 
system has a pressure gradient that is not constant with changes in vessel size, 
but is proportional to r -1 (see bclow). 

A diffusion conduit system would follow the same law as the electrical 
system, for diffusion, like electrical current, has a conduction proportional to 
r 2 for a given cylindrical segment, or to Y~r 2 for a sum of parallel segments. 
Although diffusion in a biological conduit system requires no work from the 
organism (the work is supplied by the free energy gradient), the minimization 
of resistance within a given volume will lead to the same result as for the 
electrical system, namely Y~r 2 = K. Krogh (1920, also described in Krogh 
[1941]) has studied terrestrial insect larvae that show no respiratory move- 
ments and hence rely upon diffusion to supply oxygen through their tracheal 
systems. In Cossus (goat moth) larvae, Krogh found that the tracheal system 
maintained a constant cross-sectional area (~6.7 mm 2) in branching from 
larger to smaller vessels. This curious fact, recently described by Schmidt- 
Nielsen (1979), is now seen to be predicted by a model analogous to Murray's.  

The fundamental  limitation of  Murray's  law itself (]~r 3 ---- K) is that it 
applies only to branching conduction systems in which conduction is propor- 
tional to r 4. Analogous laws, however (such as ]~r z -- K for the electrical or 
diffusion systems) apply to other cases. That  the diffusion system of insects 
follows an analogue of  Murray's  law supports the appropriateness of Murray's 
approach. 

Should Murray's law hold for fluid flow systems in which the work required 
to drive the flow is only partially accounted for by the frictional drag in the 
tubes themselves? In the lung, for example, the work used in overcoming 
frictional resistance in the airways is, in quiet breathing, only one-fourth to 
one-third of the total work of breathing, the balance being required to 
overcome the elasticity of  the lungs and thoracic wall (Comroe, Jr. 1974). 
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Such factors may influence the total volume of the vessel system, but  they do 
not affect the optimal branching rule for the system; Murray's  law would still 
hold as the result of  minimizing resistance in whatever volume was available 
for the branching system. 

On the other hand, a system would not be expected to obey Murray's  law 
where flow is turbulent  instead of  laminar, so that the work for propelling the 
fluid in the tubes is not proportional to f2r-4.  Uylings (1977) showed that 
optimality for a turbulent system requires that ro 7 / a =  ra 7/3 + r27/a. The 
turbulence of  flow in the aorta and pulmonary trunk may help to explain 
why the immediate branchings of  these vessels seem to conserve Zr 2 more 
nearly than Zr a. The  occurrence of  pulsatile plug flow in the aorta would also 
tend to limit Murray's  law to the lesser arteries. 

In the smallest blood vessels, Murray's  law might be limited by the changes 
in blood viscosity noted by Fahraeus and Lindqvist (1931), since the derivation 
of Murray's  law assumes a constant viscosity coefficient. The decrease in blood 
viscosity in the small vessels, although important  in decreasing circulatory 
energy requirements, is nevertheless small compared with the decrease in 
vessel radius required to bring it about.  If blood viscosity, T/, were to be 
approximated by a single-power term in vessel radius, r, the relation would be 
no stronger than 7/ffi k r 1/6 (Fahraeus and Lindqvist, 1931; Haynes,  1960). If  
Murray's  assumption that 7/ is independent of  r, that is, that ~ -- kr ~ is 
changed to "q ---- kr 1/6, then his law is altered only to ~,r 3s/12 - -  ~ ] r  2"92 ---~ K from 
Y~r 3 ---- K. The  Fahraeus-Lindqvist effect has therefore rather little effect upon 
the Murray  system. 

Various specific physiological requirements may be expected to limit ad- 
herence to Murray's  law. The capillary beds of  certain tissues may require 
vascular surface areas (and numbers of  capillaries) unusually large compared 
with the dimensions of  the arteries supplying them. Such arrangements allow 
rates of transmural diffusion to be unusually rapid, as at the alveoli of  the 
lungs. In skeletal muscle the capillaries are arranged so as to allow large 
changes in the conductance of  the system, so that greatly varying flows can be 
driven by a relatively constant pressure gradient. In the resting muscle only a 
minority of  the capillaries are utilized at any given moment,  so that the ~r  3 
for the total capillary bed could be expected to exceed the Y.r 3 for a full-flow 
set of arterial vessels supplying the bed. 

In any vessel segment (of unit length) obeying Poiseuille's law, the flow 
through the segment is proportional to the pressure difference and to the 
fourth power of  the vessel radius. If  that vessel segment is part of  an opt imum 
system (obeying Murray's  law as well as Poiseuille's law), the flow through 
the segment is still proportional to the pressure difference and to the fourth 
power of the radius, but, because the pressure difference in the segment (given 
a constant overall pressure difference for the system) is proportional to the 
vessel radius (see below), these two factors combine to give a flow in the 
segment that is proportional to the cube of  the vessel radius. O f  the total flow 
of  a system, the portion that flows through a given segment is given by ri3/ 

3 ~r  ~, where r i  is the radius of  the segment and ~r  refers to the whole system. 
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If the portion flowing to a given region is to be changed, the value of ri 3 must 
be changed. If  the system is to remain optimal, the radii of all vessels upstream 
that carry flow to that segment must also change, as must some of the vessels 
downstream from the segment. In the end the maintenance of optimality for 
all the physiological patterns of distribution would require vasomotor control 
of nearly all the arterial vessels. Since this is unlikely to be the case, Murray's 
law can be expected to hold only for the most common distribution patterns. 

In vessels of the body where functions other than bulk flow become 
significant, Murray's  law again may not hold. That  the large veins act as 
blood reservoirs as well as flow channels may explain why they are somewhat 
larger than Murray's  law would predict. The small airways of  the lung tend 
also to be larger than predicted, and this is probably because, as noted by 
Weibel and Gomez (1962) and West (1979), diffusion becomes more important 
than bulk flow in the transport of gases in the terminal airways. 

M E A N I N G  O F  M U R R A Y ' S  L A W  

By establishing a relation between flow and vessel radius in a vascular system, 
Murray's  law enables one to predict a number  of other interesting features of 
the system. The following characteristics hold for a system obeying Murray's 
l a w ;  

Volumetric Flow 

In every vessel of a Murray system, flow is proportional to r a (Murray's law). 

Velocity of Flow 

Because the flow is proportional to r a and because the cross-sectional area of 
a vessel is proportional to r 2, the average velocity of flow in any segment must 
be proportional to r (Murray, 1926a). Since the maximum velocity (at the 
center of  the tube) is twice the average velocity in laminar flow, the maximum 
velocity of  flow is also proportional to the vessel radius. 

Velocity Profile 

Since the maximum velocity of flow (at the center) is proportional to the vessel 
radius in every vessel of a Murray system, it is evident that the parabolas 
describing velocity profiles in all the vessels are similar to one another. In this 
sense the flow has a similar shape in every vessel of a Murray system. 

Vessel-Wall Shear Stress 

Since the velocity-profile parabolas are all similar to one another, the rate of 
change (at the vessel wall) of velocity with distance from the wall (dv/dx) is 
the same for all vessels. This can also be seen because in laminar flow in tubes 

r 2 ' 

where v is the velocity at a distance x from the wall, vm is the maximum 
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velocity at center of the tube, and r is the radius of the tube. Then 

= Vm - - 7  = 4{- - - ~  , 

where b-is the average velocity (Vm/2). 
At the wall (x = 0), dv/dx = 4g/r. Since b-is proportional to r, dv/dx is 
independent of r and hence the same for vessels of all sizes. The shear stress on 
the vessel wall, T -  ~/dv/dx, where 77 is the viscosity of the fluid. Hence, the 
vessel-wall shear stress is constant throughout an opt imum vascular system. 
Rodbard (1975) proposed that shear stress detected by the vessel endothelium 
leads to vessel growth or contraction, and Zamir (1977) suggested that this 
leads to the development of the Murray system as vessels maintain a constant 
shear stress. 

Reynolds Number 

Since the average velocity is proportional to r in a Murray system, and since 
the Reynolds number  is proportional to velocity of flow times vessel radius, 
the average Reynolds number  is proportional to the square of the radius for 
vessels in an opt imum system. Caro et al. (1978) give estimates of the Reynolds 
numbers for flow in arteries of different sizes; their values closely conform to 
an r 2 proportionality. 

Pressure Gradient 

In a vessel segment where flow obeys Poiseuille's law, the flow is proportional 
to the pressure gradient (the pressure difference per unit length) times the 
fourth power of  the vessel radius. I f  Murray's law also holds, the flow is 
proportional to the cube of  the vessel radius, and the pressure gradient must 
therefore be proportional to r -a (neglecting the small effects from changes in 
kinetic energy of  the fluid). Zweifach (1974) has measured pressure gradients 
in small arterioles, capillaries, and venules of the cat mesentery. The pressure 
gradients reported by Zweifach are very nearly proportional to r -~, suggesting 
that the smallest vessels of the cat mesentery conform closely to Murray's law 
even though the flow in such vessels is not completely laminar. 

Conductance and Resistance 

The conductance of a full-flow set of vessels is proportional to Zr 4. If the full- 
flow set is homogeneous, the conductance is proportional to nr 4. Since nr 3 is 
constant (in an opt imum system), nr 4 must be proportional to r. Hence, 
conductance is proportional to r for homogeneous, full-flow sets in a Murr_a~ 
system. Resistance (the reciprocal of conductance) is proportional to r , 
which agrees with the long-established fact that the greatest part of the 
resistance of the arterial tree is in the smallest vessels. 

Cross-sectional Area 

The cross-sectional area of a full-flow set of vessels is proportional to ]~r 2. If  
the full-flow set is homogeneous, the cross-sectional area is proportional to nr 2. 
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If  nr 3 is constant, then nr 2 is proportional to r -1. Therefore, the cross-sectional 
area is proportional to r -1 for homogeneous full-flow sets in a Murray system. 
For similarly shaped vessels (where length is proportional to r) the wall surface 
of a homogeneous, full-flow set is also proportional to r -1. A Murray system 
therefore gives (as do actual vascular trees) much greater total surface areas 
in the small vessels (where transmural diffusion occurs) than in the large 
vessels. 

Murray's  law is therefore very useful in providing a functional relation 
between vessel radius and volume flow (ara), velocity of flow (ar), and vessel- 
wall shear stress (o~r ~ for all vessels of an opt imum system. Where vessels 
comprise homogeneous, full-flow sets, Murray's law also provides a functional 
relation between vessel radius and conductance (at), resistance (ar-l), and 
cross-sectional area (at-l) .  These relations can serve to predict, at least in an 
approximate manner,  properties of a vascular system at all its various levels. 

Murray's  law also provides an interesting perspective on the scaling of 
vascular systems in animals growing or evolving to different sizes. If  capillary 
densities and dimensions are to remain constant as an organ increases in size, 
the number  of capillaries must increase linearly with the mass or volume of 
the organ. Tha t  is, the number of capillaries, n, must be proportional to L 3, 
where L is the linear dimension of the organ. As an organ grows in size, its 
blood flow (increasing with L 2 to L 3) could be accommodated by increasing 
the radius of its parent artery to various degrees. There is only one increase, 
however, that will supply the organ at minimum cost: the increase that will 
keep the value of nr 3 for the parent artery equal to nr 3 for the capillaries it is 
supplying. Since the number of capillaries increases with L 3 and the capillary, 
radius is assumed to remain constant, nr 3 for the capillaries increases with L . 
The radius of the parent artery must then increase with L, so that nr 3 for the 
artery increases with L 3 and remains equal to that for the capillaries. Thus, 
minimum energy cost is maintained by having the artery grow in radius 
proportionally to the linear dimension of the organ. If  the organ is growing at 
the same rate as the animal itself, the radius of the artery should increase with 
the linear dimension of the whole animal. The proportion of space occupied 
by the blood vessels need not change therefore as the animal grows larger. It 
is well known that blood volume (unlike bone volume) remains a fairly 
constant percentage of body volume as animals increase in size (Sj/Sstrand, 
1962). 

If  minimum energy cost required any other than the inverse cubic relation 
between the radius and the number of arterial vessels (for example, a constancy 
of nr 2 or nr4), then the radii of supplying arteries would have to vary with 
some power of L other than unity if opt imum conditions were to be main- 
tained. Conversely, if a group of various-sized animals (or one individual at 
different stages of its growth) was to maintain a linear relation between r and 
L, and the nr a = K relation did not hold, then only one size or stage could 
maintain opt imum energy conditions. The nr a = K relation permits all sizes 
and stages to operate at minimum cost while maintaining a constant propor- 
tion between vessel and organ size. 
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T h e  constructs  o f  the h u m a n  mind  are no  doub t  always imperfect  ideali- 
zat ions of  nature, in physiology perhaps even more than in the purer realms 
of  physics and chemistry. Poiseuille's law of  flow is not obeyed by non- 
Newtonian fluids, or fluids in turbulence, or fluids in noncylindrical vessels, 
nor by red blood cells undergoing tank-track roller motion in small capillaries. 
Fick's law of diffusion requires amendment  even in some very dilute nonliving 
molecular matrices (as in hyaluronic acid gels; see Ogston and Sherman 
[1961]), as well as in cellular barriers with selective pores and solubilities and 
active transport systems. But Poiseuille's law and Fick's law have been useful 
idealizations nevertheless. We may find that Murray's law has considerable 
uti l i ty  as well. 

Received for publication 3January 1981. 
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