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ABSTRACT The potencies of saxitoxin (STX) and of five structurally related
toxins were determined by their ability to block impulses at equilibrium in frog
sciatic nerve. The order of potency, with values relative to STX potency in
parentheses, was: neo-STX (4.5) > gonyautoxin (GTX) 111 (1.4) > STX (1.0) >
GTXII (0.22) > 12a-dihydroSTX (0.050) > 128-dihydroSTX (0.0014). When
equipotent solutions of STX and neo-STX were exchanged, impulses in the
treated nerve were transiently overblocked or underblocked, thus kinetically
distinguishing neo-STX from STX. Similar phenomena occurred with ex-
changes of STX and GTXIII. No consistent evidence was found for any
blocking activity of STX molecules that were not protonated at the C8 guani-
dinium, but the pH dependence of STX potency cannot be described simply
by the titration of this guanidinium group. The effects of pH and of various
substituents on STX potency are accounted for by changes in the molecular
forms of STX and by alterations in specific electrical charges on STX and at
the receptor. The results support a model in which toxin molecules bind in two
steps; initial binding of the C8 guanidinium to an anionic group induces the
loss of water from the normally hydrated ketone (at carbon 12), which then
forms a weak covalent bond with a nucleophilic group on the receptor.

INTRODUCTION

Tetrodotoxin and saxitoxin are used widely to study sodium channels in many
excitable membranes (Ritchie and Rogart, 1977). Although it is known that
these toxins reversibly block sodium channels by binding with high affinity to a
receptor on the external surface of the membrane, the structural details of this
receptor have not been characterized definitively. Since these toxins currently
Address reprint requests to Dr. G. R. Strichartz, Anesthesia Research Laboratories, Brigham
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are being used to purify and reconstitute sodium channels (Hartshorne and
Catterall, 1981; Barchi et al., 1980), investigations that may ultimately lead to a
molecular description of the channel’s structure, and, in addition, as their binding
properties are being used to classify naturally occurring variants of channels
(Rogart et al., 1983; Jaimovich et al., 1983), it is important to define what
portions of these toxins are essential for their actions on native membranes.
Information about essential groups on the toxin molecules also implies the
existence of physicochemical properties of the toxin binding site on the sodium
channel (cf. Hille, 1975a; Kao, 1983).

Previous work provides the background for the present experiments. Results
both from electrophysiological experiments (Ulbricht and Wagner, 1975a, b)
and from binding studies using radiolabeled toxins (Colquhoun et al., 1972;
Henderson et al., 1973, 1974; Weigele and Barchi, 1978; Hansen Bay and
Strichartz, 1976; Reed and Trzos, 1979) have shown that these ligands bind,
with mutual exclusion, to an acidic site that also binds a variety of metal and
organic cations. Elimination of binding or of toxin sensitivity by chemical reac-
tions with selective reagents that modify the membranes strongly implicates at
least one carboxylic acid group at the toxin receptor (Baker and Rubinson, 1975;
Shrager and Profera, 1973; Spalding, 1980).

Previously published hypotheses of tetrodotoxin (TTX) and saxitoxin (STX)
action proposed that these toxins blocked channels by partially entering the pore
and literally “plugging” it (Kao and Nishiyama, 1965). In one highly explicit
model (Hille, 1975a), much of the binding site corresponded to a putative ion
selectivity filter. The plugging models were based largely on analogous chemical
groupings in the two toxins and, in particular, on the guanidinium moieties that
are present in both STX and TTX, and which, as free guanidinium ions, can
permeate the sodium channels (Tasaki and Spyropoulos, 1961; Kao and Nishi-
yama, 1965; Hille, 1971). Strict analogies between these two toxins must be
drawn cautiously, however, because the parameters that determine the affinity
for STX are not identical to those that determine the affinity for TTX. For
example, elevating the concentration of calcium ions reduces the affinity of STX
more than that of TTX (Henderson et al., 1974; Hille et al., 1975), and replacing
solute water by D9O increases the STX potency, whereas TTX potency is
unchanged (Hahin and Strichartz, 1981), and raising the temperature lowers the
affinity of TTX by a much greater factor than it lowers that of STX (Hansen
Bay and Strichartz, 1980). Thus, the bonds formed by the receptor and STX do
not contribute the same energies as those formed by TTX.

In this paper, I present a comparison of the potency of TTX, STX, and a
variety of STX derivatives on sodium channels in amphibian nerve membranes.
By applying different toxins under different chemical conditions, I have identi-
fied some of the chemical groups on STX that are essential for the channel
blocking reaction. Recent work by Kao and colleagues (Kao and Walker, 1982;
Kao, 1983; Kao et al., 1983) uses an approach similar to the one reported here,
although in several cases their findings differ from mine and so do the conclu-
sions. The results of my studies are consistent with an attachment of STX to its
receptor via one ionic bond, involving the C8 guanidinium, one weak covalent
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bond, and perhaps two to three hydrogen bonds. The guanidinium group at C2
does not bond to the receptor. Fitting of the guanidinium group at C8 into a
narrow cleft is neither ruled out nor required by this model. Some of the
experimental results have been presented previously (Strichartz, 1981; Strichartz
etal, 1984).

MATERIALS AND METHODS

Electrophysiology

The ability of the toxins to reduce the amplitude of compound action potentials from
frog (Rana pipiens) sciatic nerve was assayed using the sucrose gap method (Stampfli,
1954). Sciatic nerves were removed from live frogs and used within 2 d. Before mounting
in the chamber, each nerve was desheathed and then split longitudinally, the split section
being used for the assay without further division. The nerve chamber was like one
described previously (Hahin and Strichartz, 1981) with a 300-ul-vol test pool and utilizing
Pt-blacked platinum electrodes for stimulation as well as for potential measurements. The
entire test pool volume could be replaced twice in <20 s. The nerve was stimulated

R |4nMSTX| 10nM STX |snmSTY R

10 min
FIGURE 1. Compound action potentials were reversibly depressed by STX. Solu-
tions were completely replaced in the sucrose gap test pool at the time shown by
the arrow to the left of each condition. The time axis of the figure refers to the real
time of the experiment.

supramaximally by electrodes isolated from the test pool, applying a 50-us-duration
cathodal pulse from a square-wave stimulator (model SD9B; Grass Instrument Co.,
Braintree, MA), and the compound action potential was recorded directly on a storage
oscilloscope (model 5113; Tektronix, Inc., Beaverton, OR). Both stimulator and oscillo-
scope were gated by a digital clock, which accumulated an incremental delay in triggering
the stimulus relative to the horizontal axis of the oscilloscope screen and thus produced a
final oscilloscope tracing in which sequentially stimulated action potentials were displaced
continuously from left to right on the screen (see Fig. 1).

In almost all of the experiments, the blocking potency of one drug is compared with
that of another, usually STX at a standard concentration. By comparing the equipotent
toxin concentrations, I assess only the relative potencies of the various toxins, and make
no claim to determine the absolute affinities from action potential recordings. A typical
nerve “calibration” is shown in Fig. 1. The experimental protocol required that the action
potential in Ringer be constant in amplitude for at least 10 min before addition of toxins,
and that the test toxin be applied.for a time sufficiently long to permit the reduced
impulse amplitude to reach a steady state. This took 10-20 min, depending on the
particular toxin and its concentration (cf. Fig. 1). No slower components of inhibition of
the action potential were evident with any of these toxins. Usually a concentration of
standard STX was found that reduced the compound action potential (AP) amplitude by
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between 40 and 60%, and the concentration of the toxin being tested that was required
to produce the same reduction was determined by switching from solutions of standard
STX to solutions of test toxin and back again. Often the relative potencies were compared
at multiples of these concentrations and, therefore, at different degrees of block, but
never less than 20% or beyond 80% block. The extents of block by standard STX before
and after application of the test toxin had to agree within 10% of each other for the data
to be included in the potency determinations. All electrophysiological experiments were
conducted at room temperatures ranging from 19 to 23°C.

In most of these experiments, a standard frog Ringer with tetraethylammonium (TEA)
was used, which contained (in mmol/liter): 115 NaCl, 2.5 KCl, 2.0 CaCls, 5 or 10 HEPES
or MOPS buffer, pH 7.2, adjusted with NaOH, and 12 TEA-CL In those experiments
where the pH was varied from 6.5 to 10, a Ringer solution was used containing the same
inorganic ions, but buffered by MES (5 mM) and glycylglycine (5 mM) as well as 5 mM
HEPES. A solution of 0.18 M sucrose was flowed through the chamber “gap” at a velocity

of 2-3 ml-min™.

Preparation of Neurotoxins

STX (standard paralytic shellfish poison) was obtained from the Food and Drug Admin-
istration, Cincinnati, OH. Gonyautoxin 11 (GTXII), gonyautoxin II1 (GTXIII), and neo-
saxitoxin (neo-STX) were isolated from the cultured cells of Gonyaulax tamarensis (Ipswich
strain) (Shimizu et al., 1976) according to the previously described procedure (Shimizu et
al.,, 1975, Oshima et al., 1977), and quantitated by the procedure described earlier
(Shimizu et al., 1981). 12a-DihydroSTX was prepared by the catalytic hydrogenation of
STX in an acidic medium, and 128-dihydroSTX by the NaB(CN)H3 reduction of STX
(Shimizu et al., 1981). Both compounds were exhaustively purified by chromatography
to free them of the starting material and the stereoisomers, and the purity and stereo-
chemistry were checked by high-resolution nuclear magnetic resonance (NMR) (Shimizu
et al., 1981). A sample of neo-STX, whose purity (>99%) had been established by NMR
within hours before delivery and refrigeration (4°C) (cf. Wichmann et al., 1981), was
generously provided by Dr. Sherwood Hall, Woods Hole Oceanographic Institute, Woods
Hole, MA.

RESULTS

The aim of this research was to identify the properties of the STX molecule that
determine its potency in blocking the sodium channel. Toward this end, two
factors were manipulated: (a) the chemical structure of STX was altered, either
by modifying STX itself or by purifying naturally occurring derivatives, and (b)
the pH of the incubating solution was systematically varied in order to modify
the electrical charge and the structure of STX and its derivatives.

Essential Cationic Guanidine Groups

The charge on the two guanidinium groups may be a key factor in determining
STX potency. This charge is due to protonation of these basic groups (see Fig.
2) and can be removed by raising the pH. Both NMR and direct titration data
(Schantz et al., 1966; Shimizu et al., 1981; Rogers and Rapoport, 1980) show
that the guanidinium at C8 has a pK, of ~8.2, whereas the one at C2 has a pK,
of 11.6 (see Fig. 2). For STX and all the derivatives studied here, except neo-
STX, toxin structures and charges are essentially constant below pH 6.5. 1
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FIGURE 2. The structures of STX. At pH 7.0, >99% of the toxin exists as the
divalent hydrate, STX?" (A). At the pH is raised, the guanidinium at C8 becomes
de-protonated (pK = 8.2), giving the monovalent hydrate (B), which exists in
equilibrium with the unhydrated ketone (C). The region of the molecule beyond

the broken lines is unchanged.

assume initially that the toxin binding site is affected little by changes in pH from
6.5 to 10.5 and that the apparent potency differences arise from structural
changes of the toxin molecules themselves. This assumption is reviewed in the
Discussion.

The potency of STX and of several derivatives in blocking impulses was
measured, as in Fig. 1. Toxin concentrations required to reduce the AP by half
at different pHs were determined from data like those graphed for neo-STX in
Fig. 3. Potency (Cso) was defined by the intercept of the diagonal line (fit by
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FIGURE 3. A family of dose-response curves for neo-STX measured at different
pH values. The lines are fit by linear regression analysis. All data are from the same

nerve.
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linear regression) with the horizontal axis at 50% AP. The pH dependences of
STX and neo-STX potency are graphed in Fig. 4. The potency of STX was
relatively constant between pH 6.5 and 8.2, but then decreased rapidly as the
pH was raised further, which is consistent with a major involvement of the
charged C8 guanidinium in the channel blocking reaction. At pH values above
10, the toxin’s potency fell by >98%, preventing a direct test of the importance
of the charge at C2. These results support the general finding of Kao et al.
(1983) that the C8 guanidinium is essential for the blocking action of STX. (The
loss of STX and neo-STX potency in alkaline solutions is not caused by irrevers-

10

TOXIN CONCENTRATION TO BLOCK APc BY 50% (nM)

¢
L
L el 1 J
6.5 75 8.5 9.5
pH

FiIGURE 4. The pH dependence of the potency of STX (O) and of neo-STX (@).
The toxin concentration for 50% block was determined from three to four separate
experiments like that shown in Fig. 3, except for one single determination, in
parentheses. The horizontal bars indicate the SEM. The broken line plots the
concentration of total STX in solution that would be required to maintain STX**
at 7.4 nM, its concentration producing 50% block at the standard pH of 7.2. The
dotted line shows the modification of this curve caused by a titratable basic group
fixed near the toxin receptor (sec Discussion and Appendix).

ible degradation of the toxin molecules. Solutions of toxins, tested at pH 7.2,
lost no detectable AP blocking activity after being incubated at pH 8.8 for 1 h
at 22°C.)

Before analyzing the pH dependence of the blocking reactions, I should
substantiate my assumption that the impulse-supporting properties of the axons
are not compromised at elevated pH. Were this the case here, then any treatment
that reduced the net inward current during an impulse would be potentiated at
alkaline pH. However, alkaline pH values per se did not increase the sensitivity
of impulses in this preparation to treatments that reduce the net inward current
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density. This condition was evaluated by comparing the inhibition of the AP by
frog Ringer containing one-third the normal Na* (substituted by tetramethyl-
ammonium ions) at pH 7.2 and 8.9; the degree of inhibition was essentially
identical, being 82 and 81%, respectively. Thus, the pH sensitivity of the toxin
blocking reactions is not due to changes in the nerve’s response to reduced
sodium permeability alone and most probably follows from changes in the toxin-
channel reaction itself.

The absolute requirement of the channel blocking reaction for the charged
C8 guanidinium can be evaluated by comparing the empirical findings with the
theorcticall;' predicted pH dependence. The fraction of STX molecules charged
at C8 (STX**) was calculated from the Henderson-Hasselbalch equation assuming
a pK. of 8.24 for this group (Rogers and Rapoport, 1980); the total STX
concentration necessary to maintain STX** at 7.4 nM (the 50% blocking concen-
tration of STX** at pH 7.2) was determined as a function of pH and is plotted
as the dashed line in Fig. 4. The discrepancy between this predicted behavior
and the observed potency loss shows that STX potency does not decrease as
much as the change in STX*" would predict and thus that the channel blocking
reaction does not depend simply and exclusively on the divalent STX** cation
in the bulk solution.

There are several explanations that might account for this discrepancy. For
one, the net charge on a toxin molecule appears to influence both its local
concentration near the membrane surface and its ability to form specific bonds
(Henderson et al., 1974; Hille et al., 1975). Such effects are consequences of the
electrostatic interactions between charged drugs and charged membranes. For
example, if a positively charged group were fixed to the membrane near, but
not at, the toxin binding site, then making the toxin less positive on average, by
reducing the degree of protonation of the C8 guanidinium, would tend to
increase the local concentration of STX near the receptor and thus increase its
apparent affinity. However, such a phenomenon could only account for the
discrepancy illustrated in Fig. 4 if the gain in local concentration exceeded the
loss in STX charged at C8.

A second, related complication arises from the possible titration by protons
not of the toxin, but of charged groups fixed to the membrane surface at or
near the toxin binding site. Although there is evidence for acidic groups contrib-
uting to negative electrostatic potentials at the toxin binding site (Henderson et
al., 1974; Hille et al., 1975), no previous results suggest changes in positively
charged groups at alkaline pH values. Direct studies of specific binding of
radiolabeled toxins are not possible at high pH, because any effects on the
binding site would be obscured by the large effects of alkaline pH on the specific
radioactivity of exchange-labeled radioactive toxin molecules (Strichartz, 1982).
Still, it is possible to model such effects of titratable basic groups, and this has
been done in the Appendix and is described in the Discussion. An arbitrary
choice of parameters for this modeling produced the theoretical pH dependence
shown by the dotted line in Fig. 4. The fit to the data points is good, although
probably fortuitous, and other sources for the pH dependence of STX should
not be neglected.
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A third explanation for the pH dependence concerns the affinity attributable
to monovalent STX", unprotonated at the C8 guanidinium, and the secondary
changes in toxin structure that accompany the titration of this specific group. In
particular, as the pH of toxin solutions is raised and the C8 guanidinium becomes
de-protonated (STX** — STX™), the equilibrium between the gem-diol at C12
and its unhydrated ketone shifts toward the latter (Fig. 2, B and C; Shimizu et
al., 1981). Only the monovalent cationic STX molecule (STX™), deprotonated
at C8, displays any ketone character, but, a priori, either of the forms of
monovalent STX, the gem-diol (Fig. 2 B), or the unhydrated ketone (Fig. 2C)
might have some affinity for the sodium channel. The binding of these molecular
species could in theory account for the discrepancy between the pH dependence
of the observed potency and the calculated concentration of STX?*. This last
hypothesis can be tested by calculating relative potencies for the hydrated
monovalent and divalent species and for the ketone form of STX'*. If these
calculated potencies are constant over a range of pH values, then the monovalent
forms could also be blocking sodium channels. Such calculations are described
and summarized in Table I. From these calculations, I conclude that it is not
possible to account for the anomalous pH dependence of STX potency by simply
assigning constant blocking activity to forms of the toxin other than STX?**.
Some alternative explanations are presented in the Discussion. Thus, although
it appears that a charged C8 guanidinium moiety is essential for the blocking
action of STX, the total reaction probably involves more than the simple
formation of an ionic bond.

Blocking Activity of Neo-STX

Neo-STX is a derivative of STX having a weak acidic hydroxyl group at N1 (pK.
= 6.75; Shimizu et al., 1978; cf. Table II). The absolute potency of this toxin at
different pH values was also directly measured (Fig. 3) and is distinctly different
from that of STX (Fig. 4). At pH 7.2, where 76% of the N1 hydroxyl groups in
neo-STX are not protonated (and the net charge at the C2 guanidinium thus
differs markedly from that at the C2 in STX), neo-STX is about four times more
potent than STX (Table II). This potency difference increases at more acid pH,
but decreases under more alkaline conditions (Fig. 4). The potentiation of neo-
STX action at acid pH is due to a reversible alteration of the toxin’s structure,
for when the pH of an acidic solution of neo-STX is changed to pH 7.2 (by the
addition of 1 M Tris base), the potency of the solution becomes equal to that of-
an equimolar toxin solution that was at pH 7.2 originally. The two toxins are
equipotent at about pH 7.7. At this pH, the N1 hydroxyl of neo-STX is
unprotonated 92% of the time and the average net charge on a neo-STX
molecule is +1.0, whereas that on STX is +1.73. Clearly, altering the protonation
of the N1 hydroxyl does change the potency of neo-STX, although the net
charge on a gonyautoxin molecule is not the only determinant of its potency. If
the guanidinium group at C2 were important for ionic bonding, then the
presence of a negatively charged hydroxyl group at N1, as occurs in neo-STX,
would create major steric and electrostatic interference, strongly compromising
toxin potency. Since this does not occur in our experiments, it appears that the
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C2 guanidinium group of STX does not bind ionically to the receptor, in
agreement with the findings of Kao and Walker (1982).

The pharmacological difference between STX and neo-STX is further mani-
fested by changes in the AP amplitude upon switching between equipotent
concentrations of the two toxins. In the experiment shown in Fig. 5, neo-STX is
4.5-fold as potent as STX at pH 7.2. When an STX-containing Ringer solution
bathing the nerve is exchanged for one containing approximately equipotent
neo-STX, the AP amplitude transiently increases; when the opposite exchange

TABLE I
Calculation of Theoretical Potencies of Monovalent STX

(A)
Calculated required
pH Cyo — STX? STX'* ketone* relative potency
(@) )] (a/B)
7.7 0.8 nM 0.01 X9 nM =0.09nM 8.89
8.4 6.0 nM 0.24 X 12 nM = 2.88 nM 2.08
9.0 30 nM 0.36 x 20 nM =7.2 nM 4.20
(B)
Calculated required
pH Cso ~ STX® STX'* hydrate* relative potency
(a) ® (a/8)
7.7 0.8 nM 0.22Xx9 aM=1.98nM 0.40
8.4 6.0 nM 0.37 X 12nM = 444 nM 1.35
9.0 30 nM 0.54 X 20 nM = 10.8 nM 2.77

* Values for percent STX'* ketone and STX'* hydrate are from NMR studies of STX in solution (Shimizu
et al., 1981).
We first question whether the monovalent ketone alone can provide all of the potency difference between
the calculated STX®" and the measured blocking potency. At pH 7.7, the half-blocking concentration
(Cso) of STX is 9 nM (Fig. 4); and 1% of all the STX molecules, or 0.09 nM, are in the keto form in
solution at this pH (term g). The difference (@) between the measured Csy and the theoretically predicted
concentration of STX®* (the dotted line in Fig. 4) is 0.8 nM at pH 7.7. In order to account for this
difference, we must assign the hypothetically active ketone form a potency equal to /8, about nine times
that of STX** (above, right-hand column). When this procedure is repeated at pH 8.4, however, the
calculated potency ratio is equal to ~2, and at pH 9.0 the ratio is ~4. Thus, it is not possible to assign a
constant relative potency to the STX ketone form. The same conclusion follows for the monovalent
hydrate form of STX (section B), nor can the sum of the two account for the difference in observed and
calculated STX potency.

occurs, the amplitude transiently decreases, even though the steady state ampli-
tudes are almost equal in all three solutions. The kinetic transients seen in Fig.
5 can arise from two factors: (a) the different concentrations of the toxins
diffusing to and from the nerve membrane receptors, and (b) the intrinsic
differences between the dissociation rate constants of the STX- and neo-STX-
receptor complexes (for example, see Wagner and Ulbricht, 1975), differences
that are detectable in sucrose gap experiments such as these (Hahin and Stri-
chartz, 1981). But regardless of their origin, the kinetic transients in Fig. 5
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further demonstrate that the active blocking molecules of STX and neo-STX
are distinguishably different by their physiological action.

Importance of the Hydroxyl Groups at Carbon 12

Since the gem-diol form of STX?* (Fig. 2A) seems to express most if not all of
the toxin’s potency, can we determine the relative contribution to the toxin’s
action of the two different hydroxyl groups at C12? Comparison of the blocking
potencies of reduced isomers of STX, produced by stereoselective reduction of
the a- and §-hydroxyls of the gem-diol, revealed a significant difference between
the two (Table II). When the a-hydroxyl group remained, the molecule retained
5-8% of its native activity, but when the 8-hydroxyl remained and the a-hydroxyl

TABLE 11
Structures and Relative Potencies of STX Derivatives

HoN 0.
Y

0 H
RN N +
J\ >= NH,
H N N
AN
Rs
Rs
Compound Potency* Substituents
n R| Rz R5 Rq R!:
STX 1.0% H OH OH H H
Neo-STX 4.4810.23 (6) OH? OH! OH! H H
12a-DihydroSTX 0.052+0.008 (3) H H OH H H
128-DihydroSTX 0.0014+0.0005 4) H OH H H H
GTXIl 0.220+0.002 4) H OH OH H 0SO;
GTXIII 1.36+0.08 (4) H OH OH 0803 H
TTX 0.91"

* Potency equals the ratio of STX concentration to equipotent test toxin concentration. This ratio was
determined on separate nerves for the number of observations shown in parentheses, n. Conditions were
pH 7.2, T = 20-23°C.

* Relative STX potency is unity, by definition.

§ Acidic hydroxyl; pK. = 6.75.

! Unhydrated ketone detectable at pH 7.

¥ Data from Hahin and Strichartz (1981).

was reduced to a hydrogen, only ~1-2 X 107 of the STX potency was retained,
and this could easily be due to undetected residual STX. (Unreacted STX could
be present at 1-2% of the total toxin concentration, too little to account for the
potency of the 12a-OH compound [Shimizu et al., 1981].) These findings are
an explanation for the report that reduced STX, probably a mixture of the a-
and S-epimers, had a potency 0.01 that of STX (Kao and Walker, 1982), a value
about midway between those we measured for the separate stereoisomers.
Apparently, the presence of both hydroxyl groups at C12 is important for full
potency, but the a-OH confers more of the potency than does the 8-OH group.
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The Effect of Sulfate Groups on Carbon 11

The potency of STX is modified when negatively charged sulfate is esterified to
a hydroxyl group at carbon 11. This occurs in two natural STX derivatives,
GTXII (11a-SO4STX) and GTXIII (118-SO4STX), shown in Table II. There
is a remarkable stereospecific difference between the potencies of GTXIII and
GTXII; solutions of the former are significantly more potent than STX, whereas
the latter is only about one-fourth as potent. (However, transitions between the
a- and B-epimers do occur in solution at pH >6.0, and at room temperature the
equilibrium ratio of GTXII to GTXIII is 3:1 [Shimizu et al., 1976]; therefore,
in any solution of GTXIII, there is almost certainly some small concentration of
GTXII at physiological pH, and vice versa. Consequently, the stereospecificity
of potency reported here should be taken as a lower limit.) As in the experiments
with neo-STX, transient overblocks or underblocks were observed when solu-
tions of GTXIII or GTXII, respectively, were replaced by equipotent solutions
of STX. Since the direction of the transient depends on whether GTXIII or
GTXII is being exchanged, it is highly improbable that these kinetic differences
arise from diffusion processes. Instead, these results are consistent with a differ-

5nM STX [ InM neo-STX 1 4 nM STX

10 min

FIGURE 5. Action potentials display transient changes in amplitude when solutions
of STX and neo-STX are exchanged in the test pool. Conditions are the same as
described for Fig. 1.

ence in the rates of dissociation of the toxin-receptor complexes; GTXIII
dissociates more slowly than STX, which dissociates more slowly than GTXII.

Although these sulfate substituents are negatively charged groups of relatively
large van der Waals dimension (diam ~5 A), their presence on the molecules
reduces the potency, at most, by less than an order of magnitude compared with
STX?". Therefore, it seems unlikely that the region of the bound STX molecule
around Cl1 makes intimate contact with the receptor. The presence of the
sulfate ester at Cl11 can, in principle, modulate the toxin’s activity by several
means. First, the additional negative charge could interact with charged groups
located at the receptor site or nearby on the membrane. Second, sulfate substi-
tution could influence the structure of the toxin, for example, by shifting the
gem-diol = ketone equilibrium at carbon 12, or by altering the pK. of the
guanidinium groups. The last of these possible modes of influence was tested by
measuring the pH dependence of the potency of GTXII and GTXIII.

The blocking activities of GTXII and GTXIII were changed by different
extents at alkaline pH. Compared with the decrease in STX potency resulting
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from an elevation of pH to 8.8, which was a fall to 0.53 £ 0.14 (4) of the potency
at pH 7.2, the potency of GTXII was reduced to 0.55 = 0.01 (3) and that of
GTXIII to 0.34 = 0.03 (3) by the same pH change. On the basis of simple
electrostatic interactions, the presence of a nearby anionic substituent should
elevate the pK, for protonation of a dissociable group (Edsall and Wyman, 1958),
producing less of a pH dependence in the extent of charge in the C8 guanidinium.
But in the STX derivatives, this simple behavior is not apparent; rather than
being less sensitive to rises of pH, the 11-OH-SO, derivatives are as (GTXII) or
more (GTXIII) sensitive than STX. As noted above, GTXIII isomerizes spon-
taneously to an equilibrium mixture of the epimers GTXII and GTXIII, and it
is possible that this epimerization reaction is alkaline catalyzed. However, the
absence of an obvious difference in pH sensitivity between GTXII and STX,
which differ structurally by addition of one ~SO, moiety at 6-7 A distance from
the center of the C8 guanidinium, again demonstrates that simple ionic bonding
does not account totally for the action of these toxins.

DISCUSSION

In this study, the amplitudes of compound action potentials have been measured
to assay the relative potency of neurotoxins in blocking sodium channels. The
advantage of this assay is the stability of the preparation; AP amplitudes of frog
sciatic nerves remain constant in the sucrose gap for up to 6 h, and several
different toxins and conditions can be tested on the same preparation. The
disadvantage is that the amplitudes of compound APs are both less sensitive to
sodium channel blockade than are direct measures, such as voltage clamp or
toxin binding studies, and can change in response to alterations of other param-
eters, such as increases in potassium currents or changes in channel gating. To
avoid interference from changes in potassium channels, I conducted all experi-
ments in Ringer containing TEA ions. Although I cannot be absolutely certain
that the toxins do not alter channel gating, none of the previous voltage clamp
studies have detected such an effect (Hille, 1968; Hille et al., 1975; Wagner and
Ulbricht, 1975; Ulbricht and Wagner, 19754, b; Hahin and Strichartz, 1981;
Kao, 1983). Furthermore, the ratio of relative potencies of TTX to STX
measured in sucrose gap, 0.91 (Table II), is essentially identical to that measured
directly under voltage clamp, 0.89 (Hille et al., 1975). The relative toxin
potencies from sucrose gap also agree closely with the affinities for the toxins
measured by equilibrium binding experiments on brain membranes (Strichartz,
1981; Strichartz et al., 1984) and from analyses of their actions on single channel
currents in membranes reconstituted in lipid bilayers (Moczydlowski et al., 1984).
Indeed, measurements of the blockade of single channels by these toxins inde-
pendently provide both the association and dissociation rate constants for the
blocking reaction. These data confirm the relative potencies reported here,
demonstrate that there are no impurities giving irreversible inhibitions, and
substantiate the observation of the slow rate of reversal of bound neo-STX (E.
Moczydlowski, S. Hall, G. Strichartz, and C. Miller, unpublished observations).
For these reasons, I believe that compound action potentials provide valid assays
of relative toxin potencies.
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The results of this study provide strong clues about the parts of the STX
molecule that are important for its action in blocking sodium channels. Groups
on STX and its derivatives affect blocking activity in three ways: (a) by interacting
directly with the receptor or with the nearby membrane to form bonds, or (b)
by influencing local toxin concentrations, or (¢) by modifying the chemistry of
other parts of the toxin molecule. I will evaluate the potency contributions
produced by specific regions of the toxins in light of such considerations.

STX: Charge

The electrical charge on specific parts of STX is important for potency. Binding
of STX to its receptor on the sodium channel appears to involve ionic bonding
because it can be inhibited competitively by cations and protons (Henderson et
al., 1973, 1974; Weigele and Barchi, 1978; Hansen Bay and Strichartz, 1978;
Reed and Trzos, 1979). From the pH dependence of potency, it appears that
the positively charged guanidinium group at C8 is an essential element for the
toxin’s blocking action, and since the presence of an additional —OH group at
the C2 guanidinium (as in neo-STX) does not eliminate potency, but instead
elevates it at pH values below 7.7, we conclude that ionic bonding probably
involves the guanidinium at C8 but not that at C2, which confirms the results of
Kao and Walker (1982) and Kao et al. (1983).

Adding negatively charged groups to STX has different and, at first glance,
unpredictable effects. At C11 (GTXII, GTXIII), at N1 (hydroxy-acid form of
neo-STX), and at the carbamyl nitrogen (an additional sulfate in compounds
GTXVIII and Bl; Strichartz et al., 1984; and unpublished observations), nega-
tive charges appear either to increase (GTXIII) or reduce toxin potency but do
not abolish it. There is no direct correlation between the net electrical charge of
a toxin molecule and its potency.

My analysis also shows that the pH dependence of STX potency is not
interpretable only in terms of simple ionic binding of the cationic C8 guanidino
moiety to an anionic group on the receptor; i.e., with regard to STX, the potency
loss with increasing pH did not behave as a simple titration of the C8 guanidinium
(Fig. 4). STX maintained its relative potency to a greater extent than the C8
guanidinium would remain protonated in solution, and this difference could not
be accounted for by attributing some constant blocking activity to the monovalent
STX'* or to the ketone molecules in solution. The sulfate ester derivatives
GTXII and GTXIII also demonstrated a pH dependence that is not explainable
simply on the basis of intra- or intermolecular charge interactions. The formation
of an ionic bond between the STX guanidiunium group and one anionic receptor
moiety is insufficient to describe the blocking action of STX, although I believe
it is a necessary step in the overall mechanism.

Any process that increases the free energy of toxin binding in a pH-dependent
manner could account for the difference between the titration behavior of toxin
in solution and the pH dependence of its blocking action. However, a change in
the toxin’s pK. caused by a lower pH near the charged axonal surface is not a
valid explanation. These changes do not occur, because the equilibrium constant
for protonation, K,, is equal to [H*] [STX'*]/[STX?**], and the electrostatic
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effects on [H*] are exactly canceled by those on [STX'*]/[STX?**]. Therefore,
in the absence of binding, the pH dependence of toxin groups at the membrane
surface is like that in the bulk solution. One hypothesis to explain the observed
pH dependence of STX action is presented later in this Discussion.

STX: Hydration

STX can exist in two chemical forms, which differ by the addition of H;O at
C12, the gem-diol (or hydrated ketone; Fig. 2, A and B) and the unhydrated
ketone (Fig. 2C). At pH 7.0, no STX ketone is detectable in solution, but as the
pH is raised, this form increases so that at pH 8.4, 24% of the toxin molecules
are in the ketone form (Shimizu et al., 1981). In STX, the gem-dioi-ketone
equilibrium shifts with changes in pH because of titration of the charge on the
C8 guanidinium. Loss of protons from this group (pK ~8.2) results in an electron
shift from the guanidine nitrogens to C4, which consequently destabilizes the
gem-diol (Fig. 2 B) relative to the unhydrated ketone (Fig. 2 C), resulting in more
of the latter at equilibrium. Other modifications of the STX molecule that
increase the electron density of C4 will also increase the ketone form and decrease
the gem-diol form. Since the keto form is required for exchange of the methylene
hydrogens at C11 on STX, a reaction that occurs via a keto-enol tautomerism,
this exchange can be used to detect the presence of the unhydrated ketone.
Tritium exchange from C11 is greatly accelerated when STX is bound to anionic
groups on resins or bound to isolated membranes at “nonspecific” sites, other
than high-affinity receptors (Strichartz, 1982). Like deprotonation, these ionic
bonding reactions increase the electron-donating power of C4 and thereby
stabilize the ketone form of STX molecules.

Exchange of C11 protons, detected by NMR, is also much faster in neo-STX
than in STX in solutions at neutral pH (Shimizu et al., 1978), which indicates
the presence of the unhydrated ketone. These facts taken together provide the
basis for a binding scheme for STX and its derivatives that accounts for almost
all of my experimental observations.

A Two-Stage Binding Reaction: lonic Bonding and Ketone Induction

Because neo-STX is markedly more potent than STX and exists in the ketone
form at C12 to a greater extent than STX, and because the ketone form occurs
when STX bonds to anionic groups, I propose the following mechanism for toxin
binding. STX binds to the receptor in a two-stage process (Fig. 6). First, the
cationic C8 guanidinium group binds to a receptor anionic group. This initial
interaction induces the dehydration of the gem-diol to the unhydrated ketone at
C12, which then proceeds, in the second stage, to form a covalent bond with a
nucleophilic group of the receptor. This covalent bond is relatively weak, which
accounts for the rapid reversibility of the binding reaction; examples would be
the formation of a hemiketal or a Schiff base with a hydroxy or an amino group,
respectively.

Toxins must be protonated at the C8 guanidinium in order for binding to
occur. Thus, although raising the pH of an STX solution results in the formation
of the ketone, it does so because of deprotonation of this guanidinium; the
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monovalent gem-diol would not be reactive. We would also expect relatively
little binding of the monovalent STX ketone, based on the analysis of Table I.
In contrast, neo-STX molecules in solution have both a charged C8 guanidinium
(pK = 8.65; Shimizu et al., 1978) and significant unhydrated ketone character
at C12. The net greater potency of neo-STX results from the opposing effects
of having more charged molecules with potentially reactive C12 ketones but also
having a negatively charged group at N1, which reduces the apparent affinity,
probably by electrostatic repulsion from anionic groups at or near the receptor
(Henderson et al., 1974; Strichartz et al., 1984). At slight acidic pH values, the
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FIGURE 6. Two-stage binding reaction of STX with receptor. The charged guan-
idinium at C8 binds at an acidic group on the receptor in the initial step (4 — B).
This binding induces the dehydration of the gem-diol with concomitant formation
of the ketone, which exists as a resonance hybrid of carbony! (C,) and carbo-cation
(C2) species. The ketone carbon at C12 is then susceptible to attack, for example,
by an alcohol on the receptor with the eventual formation of a hemilactal (D). The
amine group on the membrane above the binding site represents the fixed basic
charge that modifies the pH dependence of STX potency.

potency of neo-STX increases because the acidic N1 hydroxy group becomes
neutralized (solution pK. = 6.75) and, with it, the electrostatic repulsion caused
by this group disappears.

The potencies of the other gonyautoxins can also be explained within this
scheme. GTXIII potency exceeds that of STX because the 8-OH sulfate group
on Cl1 is negatively charged and by its nearness exerts an electrostatic effect
that stabilizes the carbo-cation form of the ketone (see Fig. 6 C). This direct
electrostatic effect is greater than the rather weak electron-withdrawing activity
of —SO¥%, which occurs by induction through carbon-carbon bonds. In addition,
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the carbo-cationic form of the ketone is the major reactive intermediate for
nucleophilic attack in the formation of a hemiketal bond. An identical role is
provided by the 11a-OH sulfate in GTXII, but because of its steric position, it
strongly compromises the initial ionic bonding of the guanidinium. Nevertheless,
covalent bonding can occur and some GTXII molecules do bind to the receptor.

Reversible covalent bonds can account for a wide range of free energy values
and their presence is not inconsistent with the observed toxin equilibrium
dissociation constants. For example, a variety of substituted aldehydes and
ketones can inhibit serine proteases, such as papain, with K; values ranging from
>0.5 to 5.2 X 107 M (Poulos et al., 1976; Lewis and Wolfenden, 1977b).
Measurements of the positive deuterium isotope effects on several of these K;
values testify to the likely formation of a reversible thiohemiacetal between
inhibitor and protein. The deuterium isotope effect may arise from the equilib-
rium hydration reaction of the aldehyde or ketone (Lewis and Wolfenden, 1977a)
and that hydration has a large energetic component that is catalyzed by general
acids and general bases (Pocker and Dickerson, 1973; Lavery et al., 1979). The
chemistry of these compounds as enzyme inhibitors parallels much of the behav-
ior of STX as an inhibitor of sodium channels and produces circumstantial
evidence in support of the involvement of a weak reversible covalent bond.

The stereoselective reduction of STX to 12a-dihydroSTX or 128-dihydroSTX
produces a 50-fold difference in potency loss. I interpret this to show that weak
bonding, such as hydrogen bonding, can still happen to the 12a-OH group but,
because of steric differences, not to the 128-OH group. The energy of a typical
(-O-H---N-) hydrogen bond of ~2 kcal/mole could easily account for a 100-fold
difference in the toxin dissociation constant and thus in the measured relative
affinities and potencies. In the gem-diol form of STX, the 12a-OH group also
can form a hydrogen bond, but it will be markedly weaker than that formed
with 12a-dihydroSTX because the electron-withdrawing power of the 128-OH
group lowers the ability of the 12a-OH group to share its hydrogen. Nevertheless,
we cannot rule out completely the receptor binding of the gem-diol form of
STX.

A previous study (Strichartz, 1982) showed that the exchange rate of the C11
methylene hydrogens from STX that was specifically bound to sodium channels
was no different from the slow exchange from toxin molecules in solution. In
the current binding scheme, the induced ketone reacts rapidly and covalently
with the receptor and cannot participate in the keto-enol tautomerism that
accounts for this hydrogen exchange in solution. Accordingly, although the
ketone does occur, exchange is limited to the brief periods before or after it has
reacted with the receptor; at these times, the C11 methylene may be accessible
to the solvent and the measurable hydrogen exchange occurs. For this reason,
and because the 11-OH sulfate derivatives (GTXII and GTXIII) bind success-
fully, we propose that intimate contact between the region of the toxins at C11
and the receptor is not required for tight binding.

Alternative Models

An alternative explanation to account for the greater potency of neo-STX
hypothesizes the formation of a hydrogen bond between the N1 hydroxy group
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and a donor group on the receptor. Depending on the ability of the N1 hydrogen
in STX also to contribute to hydrogen bonding, the additional energy from this
bond could account for as much as 3 kcal/mol, corresponding to an increase in
affinity and toxin potency of 10°. Since the observed potency increase is about
fourfold at pH 7.2, but increases as the N1 oxygen is protonated (Fig. 4), the
formation of such a hydrogen bond is tenable. However, the net charge on a
toxin molecule modulates its apparent potency, with more positively charged
toxins apparently more strongly attracted to the membrane surface (Henderson
et al., 1974; Hille et al., 1975; Strichartz et al., 1984), and protonation of neo-
STX’s N1 hydroxy group would increase its apparent potency by this mechanism
also.

The increase of STX affinity in D2O solvent over HyO was interpreted as
evidence for some role of hydrogen bonding (Hahin and Strichartz, 1981). This
positive deuterium isotope effect was also observed with neo-STX, but not with
TTX. The increased STX affinity at equilibrium was resolved kinetically as a
halving of the dissociation rate, which indicates the formation of a stronger
toxin-receptor complex. While hydrogen bonding described these results quan-
titatively, there are other explanations. For one, the reversal of a covalent bond,
as postulated in this Discussion, could be acid catalyzed and its rate could be
dependent on vibrational energy levels directly coupled to proton mass (Lavery
etal., 1979). Another explanation concerns entropic changes in STX molecules,
where the carbamyl “tail” moiety may be able to assume more positions in
solution than when the molecule is bound. Removal of this group reduces the
toxin’s potency (Kao and Walker, 1982), but the energetics of its contribution
to binding are still unknown. Deuterium isotope effects on that group’s popula-
tion states could account for the selective presence of a D;O effect on STX when
none is observed on the more compact TTX molecule which has fewer degrees
of freedom. Until we know the thermodynamics of the microscopic rate constants
for the toxin-receptor interactions and the energetic contributions of nearby
electrostatic charges, we will have an incomplete and equivocal description of
the toxin binding reactions.

Hypothesized Membrane Amino Group

The two-stage binding model requires the initial reaction of divalent STX
(STX**) and therefore predicts the same dependence of binding on pH as is
plotted in Fig. 4 (broken line). The discrepancy between this predicted behavior
and the experimental results, which could not be accounted for by other forms
of STX in solution or by changes in the pK, of STX, must still be addressed.
One explanation for the observed pH dependence posits the existence of a
positively charged basic group(s) fixed to the membrane near the STX binding
site. According to this hypothesis, the free energy of the toxin bound at the
receptor is affected by the electric potential from this charge, and so the apparent
affinity is reduced by the repulsion of the divalent STX cation by the cationic
group fixed to the membrane. As the pH is raised, this hypothetical group loses
its proton (and charge) and the apparent affinity of the reactive STX?* is
increased. Exact modeling of this phenomenon requires the specification of
several parameters, including the pK of the membrane group and the relative
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distance and angular position of the bound STX?*. In an initial approximation
of this situation, I have assumed arbitrarily the presence of a typical 2° amine,
having a pK of 9 (e.g., the side chains of arginine or lysine in a protein), located
10 A from the charge center of bound STX (see Appendix). The electrical
potential from this amino group at the toxin binding site is ~15 mV at pH 7.0,
which lowers the apparent affinity for STX?* by a factor of 3.25. The effect of
this titratable potential on the potency of STX at pH values from 6.6 t0 9.2 is
graphed as the dotted line in Fig. 4. Its close agreement with the measured
change in STX potency must be somewhat fortuitous, since the several essential
parameters were arbitrarily selected, but it still encourages belief in the postulated
2° amine near the STX binding site.

Selective chemical reaction already has indicated the presence of specific amino
groups that contribute potentials of ~20 mV at the inactivation voltage sensor
of sodium channels in frog excitable membrane (Cahalan and Pappone, 1981).
The spatial relation of this site to the toxin binding site is not known; however,
in preliminary STX binding experiments to rabbit brain membranes, I have
found that reaction with the same large amino group-selective reagent, trinitro-
benzenesulfonic acid, had two effects on specific STX binding parameters. The
number of binding sites was reduced, and the remaining sites bound STX with
a much higher Kp. The second effect is indicative of a reduction in the free
energy of binding, possibly because of conversions of groups near the binding
site but also because of more general modifications of the receptor, of an allosteric
nature, for example.

Comparison with Previously Reported Results

The structure-potency study presented here supports several aspects of STX
action that others have previously proposed. The involvement of the C8 guani-
dinium confirms the finding of Kao et al. (1983), who showed that toxin potency
fell rapidly in the pH range of 7-8.25. These authors, however, reported no
discrepancy between the pH dependence of STX potency and the fraction of
toxin charged at the C8 guanidinium (Kao, 1983). Since their studies were done
on squid in artificial seawater (ASW) containing much higher concentrations of
monovalent (432 mM: Na* + K*) and divalent (59 mM: Ca** + Mg®*) cations
than those in frog Ringer, the electrostatic effects that I posit here may have
been effectively screened in their measurements. They also used Viax a8 2
measure of blockade, although this parameter is a nonlinear measure of relative
sodium conductance (Cohen et al., 1981); and at pH 8.25, the highest pH that
they studied, this parameter is only reduced by 30% (Kao et al., 1983). The
absence of measurements beyond this pH, coupled with the assumption that the
pKa of STX is unchanged in ASW, confuses any comparison between Kao’s
(1983) conclusions and my own.

My finding of a greater potency of neo-STX over STX differs from the results
of Kao and Walker (1982) and Kao et al. (1983), who found that neo-STX was
equipotent with STX in skeletal muscle and in squid at pH values of 6.5 and
7.25. It is highly improbable that the differences that I observed between these
two toxins was due to an error in concentration, for the neo-STX sample was



GARY STRICHARTZ Structural Determinants of Saxitoxin Affinity 299

purified and analyzed within days of its testing and the kinetics are clearly
different (Fig. 5). At present, I see no explanation for the discrepancy between
my results and those of Kao and co-workers.

A Hypothetical Receptor

A graphic interpretation of this structural investigation is summarized in Fig. 6.
The receptor forms one ionic bond with the C8 guanidinium group, a weak
covalent bond with the C12 carbonyl moiety and one or several hydrogen bonds,
perhaps with the amino groups of the C8 and C2 guanidinium groups and of the
carbamyl “tail” (cf. Kao and Walker, 1982). A hydrogen bond might also be
formed with the protonated acid hydroxy moiety on N1 in neo-STX. The region
around the C11 methylene does not contact the receptor. In addition to the one
anionic group on the receptor that bonds ionically to the C8 guanidinium, other
negatively charged groups nearby modulate toxin binding through electrostatic
interactions (Henderson et al., 1974; Hille et al., 1975; Strichartz, 1981; Stri-
chartz et al., 1984). At least one basic group with pK = 8-9 also is fixed near
the STX binding site and influences binding through electrostatic effects.

In several respects, this model resembles one published by Hille (1975q). A
hemiketal bond between the C12 ketone and receptor was proposed, as well as
the formation of ionic bonds with the C8 guanidinium and numerous hydrogen
bonds. (Camougis et al. [1967] had previously suggested the presence of a
hemilactal bond linking TTX to its receptor.) The new aspects of the model
presented here are the two-stage binding with induction of the ketone form and
the presence of the local basic group. Unlike Hille’s speculated structure, this
one does not require binding to a “selectivity filter” at the inner opening of the
sodium channel and the consequent blockade by toxin acting as a plug.

The model is intended as a hypothetical structure for the STX binding site,
based solely on the potency data from this and other studies. No information
about the mechanism of blockage of sodium channels by STX or TTX is available
directly from these data, and the relationship of the toxin binding site to other
aspects of the sodium channel is not specified.

Nevertheless, some comments on existing models for toxin action are pertinent
to this discussion. Two classes of models for toxin action have been proposed in
the literature. One specifies that STX or TTX molecules enter the outer opening
of the channel pore and “plug” it at a cation binding site that is part of the so-
called “selectivity filter” of the channel (Kao and Nishiyama, 1965; Henderson
etal., 1974; Hille, 1975a; Weigele and Barchi, 1978). The other model suggests
that the toxin binding site is located more superficially, near the outer opening
of the channel, and that block occurs by steric or electrostatic interference with
sodium ions rather than by a literal “plug” (cf. Spalding, 1980; Kao and Walker,
1982; Kao, 1983). A third possibility, infrequently entertained, is that toxins
interfere with a channel’s conductance via some allosteric mechanism rather than
by direct occlusion at a cation binding site.

Although the “plugging” models originally were accepted widely and are
consistent with some experimental results from competition experiments between
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toxins and metal cations (Henderson et al., 1973, 1974; Weigele and Barchi,
1978), recent experiments provide evidence that cannot be reconciled with a
plugging action for the toxins within the pore of the channel at a site for ion
selectivity. These experimental results include (a) changes of a channel’s toxin
sensitivity with no change in cation selectivity properties following modifications
produced either biologically (Huang et al., 1979; Pappone, 1980) or chemically
(Spalding, 1980), and () a discrepancy between the strong ability of certain
cations (e.g., NHY) to block toxin binding and their weak interference with
transport of sodium ions through the channel (Hansen Bay and Strichartz, 1978;
Hille, 1975b). Furthermore, if the C8 guanidinium group plugged the channel
at the putative selectivity filter, the site of voltage-dependent proton and Ca?*
binding (cf. Woodhull, 1973), then the binding of STX also should be voltage
dependent. Although a voltage-dependent action of TTX has been reported for
the block of batrachotoxin-activated sodium channels incorporated into lipid
bilayers (Kreuger et al., 1983), the voltage dependence is the same for TTX,
STX, and neo—ST.X, as well as GTXII and GTXIII, which have sulfate substit-
uents within 4-6 A of the charged C8 guanidinium (Green et al., 1984; Moczyd-
lowski et al., 1984). These compounds would be expected to bind with less
voltage dependence than STX if the C8 guanidinium were plugging at the H*
and Ca** binding site of Woodhull's (1973) model, 0.25 of the equivalent
electrical distance through the membrane (but also cf. Campbell, 1982). Their
equal voltage dependence, together with the fact that equilibrium STX binding
to brain synaptosomes (Kreuger et al., 1979) and TTX binding to intact frog
skeletal muscle (Almers and Levinson, 1975) are conspicuously voltage inde-
pendent, means that the impact of membrane potential on TTX and STX
binding is not a direct influence of voltage on the charged toxin molecules but
probably requires a change in the receptor itself.

Although none of these results unequivocally disproves the toxin plug at the
selectivity filter model, because the alterations of toxin affinity caused by biolog-
ical, chemical, and membrane potential perturbations could all be explained
through an allosteric mechanism, this complicated response seems improbable
and the more parsimonious model in which toxins obscure the ion pathway of
an otherwise conducting channel is preferable to me.

STX binding is competitively inhibited by metal cations, and in the same order
in which they block sodium currents at frog nodes (Henderson et al., 1974;
Weigele and Barchi, 1978; Gitschier, 1981; Hille, 19755). The competitive
inhibition by organic cations, however, occurs with a different sequence (Hansen
Bay and Strichartz, 1978; Gitschier, 1981) and certain organic cations displace
STX more effectively than they block sodium current. This could not occur if
there were one and the same cation binding site for toxin competition and for
the blockade of channel permeability, and I propose that at least part of the
toxin receptor is located at the exterior surface of the sodium channel rather
than within the pore. The properties of this hypothetical receptor correspond to
a cation binding site at the opening of the channel, which participates in the
dehydration of ions, rather than to a plugging site within the channel pore.
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APPENDIX

Calculation of the Effects on STX Affinity from a Titratable Charge Near the
Binding Site
Assume that a basic 2° amino group is fixed on the membrane at distance r from the
charge center of STX?** when it is bound to the receptor. If the amino group, having an

assumed pK of 9, is charged +1 at pH 7.0, then it will produce a potential, ¥y, in a
spherically symmetrical solution described by the Debye-Huckel theorem:

ey explax) exp(-—rx)

¥ = 4xeoe (1 + a) r

1)

where ¢ is one positive electron charge, Zy is the valence of the amine group, ¢ is the
dielectric of the medium (H2O: we take e = 70 here), ¢ is the permittivity of free space,
a is the radius of the amino group (2 A used here), and «™ is the Debye length, which
depends on the electrolyte concentration of the solution and is calculated to be ~10 A for
frog Ringer (see Robinson and Stokes, 1959). Using the Jparameter values just noted,
from Eq. 1, the ¥y at pH 7.0 (where Zy = 1.0)and r = 10 A is 7.7 mV. Since we position
the group at the surface of a planar membrane of relatively low dielectric constant (¢ =
3-10), the condition of spherical symmetry is removed. The electric field, E, from the
charge has a much shallower gradient through the membrane than through the aqueous
solution and, since E = —VV¥, the potential at the membrane surface is greater than it
would be if the charge were surrounded by electrolyte solution; for this calculation, we
assume that the potential is doubled, and thus ¥y (r = 10 A) =~ 15 mV.

The STX concentration will depend on the potential according to Boltzmann’s equa-
tion:

STX, = STX,, exp(—¥Zre/kT) @)

where STX, and STX, are the STX concentrations at the binding site and in the bulk
solution, respectively, Zy is the charge on STX in solution, & is Boltzmann’s constant, and
T is the temperature in degrees Kelvin. Since we know that STX has basic groups with
pK. values of 8.25 and 11.6, we can calculate Zr from the Henderson-Hasselbalch
equation. The value of Zy can be computed similarly, and the expected variation of [STX]
at the binding site as a function of pH can be calculated from Eq. 2. For the +15-mV
potential at pH 7.0, the toxin concentration at the site would be 0.32 of the concentration
in the absence of this potential. As the pH is raised, ¥y falls, as does Zr, so that at pH 9.2
they equal 5.8 mV and 1.11, respectively, and the binding site STX concentration is
reduced by a factor of only 0.9. The calculated change in STX concentration caused by
this electrostatic effect, [STX),/[STX]s, can be multiplied by the calculated decrease in
STX?** (assumed here to be the reactive molecular species) to get the concentration of
reactive STX?** at the toxin binding site at different pH values. The result is shown by
the dotted line in Fig. 4. The experimental points fit this line far better than the curve
that describes the pH dependence of STX?** concentration in the bulk solution (the broken
line).

Several comments on the assumptions included in these calculations are appropriate.
We have localized the charge on STX at a single point, although the center carbons on
the two charged guamdmlum groups are separated by ~4 A (Schantz et al., 1975), and
the distance from the toxin site to the 2° amine group is assumed to be only 10 A. The
electrostatic effects on the nearer guanidinium will exceed those on the farther one,
depending on the dielectric of the substance separating the two groups, and since one
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group is selectively depronated, the effects of the field will vary at the two STX charges
at different pHs. But for a first approximation, the assumption of a point charge provides
a good fit to the experimental data.

The valence for STX used in Eq. 2 is the average charge on any STX molecule, even
though we assume that only the divalent STX?** binds to the receptor (see Results). The
validity of this treatment depends on the fact that the protonation-deprotonation of the
guanidinium groups and the diffusion of STX to the receptor are faster processes than
the binding and dissociation reactions of the toxin, which have a relaxation time of ~1
min at 20°C in frog nerve (Hahin and Strichartz, 1981). Thus, the repelling force of the
amino group rapidly affects all the STX molecules in solution, even though only STX?*
molecules actually bind.
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and especially to Ms. Anna Malatantis for typing it.

This research was supported by grants from the U. S. Public Heaith Service (NS-12828 and
NS-18467 to G. S., and GM-28754 to Yuzuru Shimizu) and by a grant to G. S. from the Astra
Pharmaceutical Company, Sidertalje, Sweden.

Received for publication 26 September 1983 and in revised form 23 April 1984.

REFERENCES

Almers, W., and S. R. Levinson. 1975. Tetrodotoxin binding to normal and depolarized frog
muscle and the conductance of a single sodium channel. J. Physiol. (Lond.). 247:483-509.
Baker, P. F., and K. A. Rubinson. 1975. Chemical modification of crab nerves can make them

insensitive to the local anesthetics tetrodotoxin and saxitoxin. Nature (Lond.). 257:412-414.

Barchi, R. L., S. A. Cohen, and L. E. Murphy. 1980. Purification from rat sarcolemma of the
saxitoxin-binding component of the excitable membrane sodium channel. Proc. Natl. Acad.
Sci. USA. 77:1306-1310.

Cahalan, M. D,, and P. A. Pappone. 1981. Chemical modification of sodium channel surface
charges in frog skeletal muscle by trinitrobenzene sulfonic acid. J. Physiol. (Lond.). 321:127-
139.

Camougis, G., B. Takman, and J. R. P. Tasse. 1967. Potency difference between the zwitterion
form and the cation forms of tetrodotoxin. Science (Wash. D. C.). 156:1625-1627.

Campbell, D. T. 1982. Do protons block Na* channels by binding to a site outside the pore?
Nature (Lond.). 298:165-167.

Cohen, 1., D. Atwell, and G. Strichartz. 1981. The dependence of the maximum rate or rise
of the action potential upstroke on membrane properties. Proc. R. Soc. Lond. B Biol. Sci.
214:85-98.

Colquhoun, D., R. Henderson, and J. M. Ritchie. 1972. The binding of labelled tetrodotoxin
to non-myelinated nerve fibers. J. Physiol. (Lond.). 227:95-126.

Edsall, J. T., and J. Wyman. 1958. Biophysical Chemistry. Academic Press, Inc., New York.
457-463.

Gitschier, J. M. 1981. Tritiated-saxitoxin as a probe for voltage-sensitive sodium channels in



GARY STRICHARTZ Structural Determinants of Saxitoxin Affinity 303

wild-type, mutant, and aneuploid Drosophila melanogaster. Ph.D. Thesis. Massachusetts Insti-
tute of Technology, Cambridge, MA. 117 pp.

Green, W. N, L. B. Weiss, and O. S. Andersen. 1984. Voltage- and Na*-dependent tetrodo-
toxin (T'TX) block of batrachotoxin (BTX)-modified sodium channels. Biophys. J. 45:68a.
(Abstr.)

Hahin, R., and G. R. Strichartz. 1981. Effects of deuterium oxide on the rate and dissociation
constants for saxitoxin and tetrodotoxin action. J. Gen. Physiol. 78:113-139.

Hansen Bay, C. M., and G. R. Strichartz. 1978. Ion and drug interactions at the saxitoxin
binding site. Biophys. J. 21:207a, (Abstr.)

Hansen Bay, C. M., and G. R. Strichartz. 1980. Saxitoxin binding to sodium channels of rat
skeletal muscles. J. Physiol. (Lond.). 300:89~103.

Hartshorne, R. P, and W. A, Catterall. 1981. Purification of the saxitoxin receptor of the
sodium channel from rat brain. Proc. Natl. Acad. Sci. USA. 78:4620-4624.

Henderson, R., J. M. Ritchie, and G. R. Strichartz. 1973. The binding of labelled saxitoxin to
the sodium channels in nerve membranes. J. Physiol. (Lond.). 235:783-804.

Henderson, R., J. M. Ritchie, and G. R. Strichartz. 1974. Evidence that tetrodotoxin and
saxitoxin act at a metal cation binding site in the sodium channels of nerve membrane. Proc.
Natl. Acad. Sci. USA. 71:3936-3940.

Hille, B. 1968. Pharmacological modifications of the sodium channels of frog nerve. J. Gen.
Physiol. 51:199-219.

Hille, B. 1971. The permeability of the sodium channel to organic cations in myelinated nerve.
J- Gen. Physiol. 58:599-619.

Hille, B. 1975a. The receptor for tetrodotoxin and saxitoxin: a structural hypothesis. Biophys.
J- 15:615-619.

Hille, B. 19755. Ion selectivity, saturation, and block in sodium channels. J. Gen. Physiol.
66:535-560.

Hille, B., J. M. Ritchie, and G. R. Strichartz. 1975. The effect of membrane surface charge on
the action of tetrodotoxin and saxitoxin on frog myelinated nerve. J. Physiol. (Lond.).
250:34P-35P.

Huang, M. L.-Y., W. A, Catterall, and G. Ehrenstein. 1979. Comparison of ionic selectivity of
batrachotoxin-activated channels with different tetrodotoxin dissociation constants. J. Gen.
Physiol. 73:839-854.

Jaimovich, E., R, Chicheportiche, A. Lombet, M. Lazdunski, M. Iidefonse, and O. Rongier.
1983, Differences in the properties of Na* channels in muscle surface and T-tubular
membranes revealed by tetrodotoxin derivatives. Pfligers Arch. Eur. J. Physiol. 397:1-5.

Kao, C. Y. 1983. New perspectives on the interactions of tetrodotoxin and saxitoxin with
excitable membranes. Toxicon. 21(Suppl. 3):211-219.

Kao, C. Y., and A. Nishiyama. 1965. Actions of saxitoxin on peripheral neuromuscular systems.
J- Physiol. (Lond.). 180:50-66.

Kao, C. Y., and S. E. Walker. 1982. Active groups of saxitoxin and tetrodotoxin as deduced
from actions of saxitoxin analogues on frog muscle and squid axon. J. Physiol. (Lond.).
323:619-637.

Kao, P. N, M. R. James-Kracke, and C. Y. Kao. 1983. The active guanidinium group of
saxitoxin and neosaxitoxin identified by the effects of pH on their activities on squid axon.
Pfligers Arch. Eur. J. Physiol. 398:199-203.

Krueger, B. K., R. W. Ratzlaff, G. R. Strichartz, and M. P. Blaustein. 1979. Saxitoxin binding



304 THE JOURNAL OF GENERAL PHYSIOLOGY - VOLUME 84 - 1984

to synaptosomes, membranes and solubilized binding sites from rat brain. J. Membr. Biol.
50:287-310.

Krueger, B. K., J. F. Worley, and R. ]J. French. 1983. Single sodium channels from rat brain
incorporated into planar lipid bilayer membranes. Nature (Lond.). 303:172-175.

Lavery, R., M. de Oliveira, and B. Pullman. 1979. A preliminary theoretical study of the acid
catalyzed hydration of glyoxal, and other simple aldehydes. Int. J. Quantum Chem. Quant.
Biol. Symp. 6:459-466.

Lewis, C. A., and R. Wolfenden. 1977a. Antiproteolytic aldehydes and ketones: substituent
and secondary deuterium isotope effects on equilibrium addition of water and other nucleo-
philes. Biochemistry. 16:4886-4890.

Lewis, C. A., and R. Wolfenden. 1977b. Thiohemiacetal formation by inhibitory aldehydes at
the active site of papain. Biochemistry. 16:4890-4895.

Moczydlowski, E., C. Miller, S. Hall, and G. Strichartz. 1984. Blockade of muscle Na* channels
by guanidine toxins: a voltage-dependent block independent of the charge on toxin molecule.
Biophys. J. 45:286a. (Abstr.)

Oshima, Y., L. J. Buckley, M. Alam, and Y. Shimizu. 1977. Heterogeneity of paralytic shellfish
poisons, three new toxins from cultured Gonyaulax tamarensis cells, Mya arenaria and
Saxidomus giganteus. Comp. Biochem. Physiol, 57:31-34.

Pappone, P. E. 1980. Voltage clamp experiments in normal and denervated mammalian skeletal
muscle fibres. J. Physiol. (Lond.). 306:377-410.

Pocker, Y., and D. G. Dickerson. 1973. The hydration of propionaldehyde, isobutyraldehyde,
and pivaldehyde. Thermodynamic parameters, buffer catalysis, and transition state charac-
terization. J. Phys. Chem. 11:4005-4012.

Poulos, T. L., R. A. Alden, S. T. Freer, J. J. Birktoff, and J. Kraut. 1976. Polypeptide
halomethyl ketones bind to serine proteases as analogs of the tetrahedral intermediate. J.
Biol. Chem. 251:1097-1103.

Reed, J. K., and W. Trzos. 1979. Interaction of substituted guanidines with the tetrodotoxin-
binding component in Electrophorus electricus. Arch. Biochem. Biophys. 195:414-422.

Ritchie, J. M., and R. B. Rogart. 1977. The binding of saxitoxin and tetrodotoxin to excitable
membranes. Rev. Physiol. Biochem. Pharmacol. 79:1-50.

Robinson, R. A., and R. H. Stokes. 1959. Electrolyte Solutions. Second edition. Butterworths,
London. 79.

Rogart, R. B., L. J. Regan, L. C. Dziekan, and J. B. Galper. 1983. Identification of two sodium
channel subtypes in chick heart and brain. Proc. Natl. Acad. Sci. USA. 80:1106-1110.

Rogers, R. S., and H. Rapoport. 1980. The pK.s of saxitoxin. J. Am. Chem. Soc. 102:7335-
7339.

Schantz, E. J., V. E. Ghazarossian, H. K. Schnoes, F. M. Strong, J. P. Springer, J. O. Pezzanite,
and J. Clardy. 1975. The structure of saxitoxin. J. Am. Chem. Soc. 97:1238-1239.

Schantz, E. J., J]. M. Lynch, G. Vayvada, K. Matsumoto, and H. Rapoport. 1966. The
purification and characterization of the poison produced by Gonyaulax catenella in axenic
culture. Biochemistry. 5:1191-1195.

Shimizu, Y., M. Alam, Y. Oshima, and W. E. Fallon. 1975. Presence of four toxins in red tide
infested clams and cultured Gonyaulax tamarensis cells. Biochem. Biophys. Res. Commun.
66:731-737.

Shimizu, Y., L. J. Buckley, M. Alam, Y. Oshima, W. Fallon, H. Kasai, I. Miuha, V. P. Gullo,
and K. Nakanishi. 1976. Structures of gonyautoxin II and III from the East Coast toxic
dinoflagellate Gonyaulax tamarensis. J. Am. Chem. Soc. 98:5414-5416.



GARY STRICHARTZ Structural Determinants of Saxitoxin Affinity 305

Shimizu, Y., C.-P. Hsu, W. E. Fallon, Y. Oshima, I. Miura, and K. Nakanishi. 1978. Structure
of neosaxitoxin. J. Am. Chem. Soc. 100:6791-6793.

Shimizu, Y., C.-P. Hsu, and A. Genenah. 1981. Structure of saxitoxin in solutions and
stereochemistry of dihydrosaxitoxins. J. Am. Chem. Soc. 103:605-609.
Shrager, P., and C. Profera. 1973. Inhibition of the receptor for tetrodotoxin in nerve
membranes by reagents modifying carboxyl groups. Biochim. Biophys. Acta. 318:141-146.
Spalding, B. C. 1980. Properties of toxin-resistant sodium channels produced by chemical
modification in frog skeletal muscle. J. Physiol. (Lond.). 305:485-500.

Stampfli, R. 1954. A new method for measuring membrane potentials with external electrodes.
Experientia. 10:508-509.

Strichartz, G. 1981. Relative potencies of several derivatives of saxitoxin: electrophysiological
and toxin-binding studies. Biophys. J. 38:209a. (Abstr.)

Strichartz, G. 1982. Structure of the saxitoxin binding site at sodium channels in nerve
membranes. Exchange of tritium from bound toxin molecules. Mol. Pharmacol. 21:343-350.

Strichartz, G. R., S. Hall, and Y. Shimizu. 1984. Evidence for covalent bonding of saxitoxin to
the neuronal sodium channel. Biophys. ]. 45:286a. (Abstr.)

Tasaki, 1., and C. Spyropoulos. 1961. Permeability of the squid axon membrane to several
organic molecules. Am. J. Physiol. 201:413-419.

Ulbricht, W., and H.-H. Wagner. 1975a. The influence of pH on equilibrium effects of
tetrodotoxin on myelinated nerve fibres of Rana esculenta. |. Physiol. (Lond.). 252:159~184.

Ulbricht, W., and H.-H. Wagner. 1975b. The influence of pH on the rate of tetrodotoxin
action on myelinated nerve fibres. J. Physiol. (Lond.). 252:185-202.

Wagner, H.-H., and W. Ulbricht. 1975. The rates of saxitoxin action and of saxitoxin-
tetrodotoxin interaction at the node of Ranvier. Pflugers Arch. Eur. . Physiol. 359:297-315.

Wichmann, C. F., G. L. Boyer, C. L. Divan, E. J. Schantz, and H. K. Schnoes. 1981. Neurotoxins
of Gonyaulax excavata and Bay of Fundy scallops. Tetra. Lett. 22:1941-1944.

Weigele, J. B., and R. L. Barchi. 1978. Saxitoxin binding to the mammalian sodium channel.
Competition by monovalent and divalent cations. FEBS Lett. 95:49-53.

Woodhull, A. M. 1973. Ionic blockage of sodium channels in nerve. J. Gen. Physiol. 61:687-
708.



