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ABSTRACT Single channel currents were obtained from voltage-activated
sodium channels in outside-out patches of tissue-cultured GHj cells, a clonal
line from rat pituitary gland. In membrane patches where the probability of
overlapping openings was low, the open time histograms were well fit by a
single exponential. Most analysis was done on a patch with exactly one channel.
We found no evidence for multiple open states at —25 and —40 mV, since open
times, burst durations, and autocorrelation functions were time independent.
Amplitude histograms showed no evidence of muitiple conductance levels. We
fit the gating with 25 different time-homogeneous Markov chain models having
up to five states, using a maximum likelihood procedure to estimate the rate
constants. For selected models, this procedure yielded excellent predictions for
open time, closed time, and first latency density functions, as well as the
probability of the channel being open after a step depolarization, the burst
duration distribution, autocorrelation, and the distribution of number of open-
ings per record. The models were compared statistically using likelihood ratio
tests and Akaike’s information criterion. Acceptable models allowed inactivation
from closed states, as well as from the open state. Among the models eliminated
as unacceptable by this survey were the Hodgkin-Huxley model and any model
requiring a channel to open before inactivating.

INTRODUCTION

The mechanisms underlying the voltage-dependent sodium conductance of nerve
and muscle have been studied extensively for the last thirty years (for recent
reviews, see Armstrong, 1981; Benzanilla, 1982; Brodwick and Eaton, 1982,
Yeh, 1982; French and Horn, 1983). The kinetics underlying this time- and
voltage-dependent process are quite complex, leading to a wide variety of
proposed mechanisms based on observations of macroscopic currents. Until
recently, many of these proposals were excessively arbitrary, since it was difficult
to systematically eliminate alternative proposals. The advent of gating current
and single channel current measurements, however, greatly restricts the possi-
bilities, because these data yield new information that must be consistent with
proposed kinetic models.
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Kinetic analysis usually involves the construction of a Markov chain model
with a finite number of states, and transition rates that are instantaneously
voltage dependent. Models of this nature are chosen partly for convenience, but
they also have some justification (French and Horn, 1983; for alternative view-
points, see Neumcke et al., 1978; Greeff et al., 1982; Rubinson, 1982; Fishman
etal., 1983). The predictions of a given Markovian model can be compared with
experimental data, and models can thus be evaluated. The main purpose of this
approach is to estimate parameters of models and eliminate classes of models
that are not consistent with experimental data. One hopes that the estimated
parameters and acceptable models will give some insight into the molecular
processes underlying the gating, and that the kinetic states in such models will
be representative of conformational states of the protein molecules responsible
for gating.

We have used a statistical approach in examining the single channel behavior
of sodium currents from the tissued-cultured cell line GHs (Fernandez et al.,
1984; Horn et al., 1984). The general questions we ask here are: (a) Is the gating
process Markovian? () How many kinetic states are needed to explain sodium
channel gating? (¢) How are the states arranged into a kinetic scheme? (d) What
are the rate constants between states? (¢) What is the voltage dependence of each
rate constant in the models? We provide partial answers to these questions in this
and the accompanying paper (Vandenberg and Horn, 1984). In this paper, we
argue that at least one aspect of gating is Markovian and we describe a maximum
likelihood analysis of our single channel data using a method developed for
estimating parameters and testing hypotheses (Horn and Lange, 1983). We also
describe and use procedures for statistically comparing kinetic models. The
following paper examines in some detail the interaction between activation and
inactivation, and presents evidence that the inactivation process is inherently
voltage dependent.

METHODS

The experimental methods have been described previously (Horn et al., 1984) and will
be summarized briefly. Single channel records were obtained using outside-out patches
from tissue-cultured GHs cells, a rat pituitary cell line. The electrodes were fabricated
from one of a variety of glasses including Corning 7052 and Corning 8161 (Corning Glass
Works, Corning, NY), borosilicate (A-M Systems, Everett, WA), and Vanlab pipettes
(VWR, Norwalk, CA). All electrodes were insulated with Sylgard (Sylgard 184; Dow
Corning, Midland, MI) and filled with an internal solution consisting of (mM): 120 CsF,
11 EGTA, 2 MgCl,, 1 CaCl,, 10 Cs-HEPES (pH 7.4). The use of CsF was dictated by the
following two considerations. (a) Inward calcium and outward potassium currents are
abolished by this internal solution. This was verified in whole cell recordings, where the
subsequent addition of tetrodotoxin abolished all voltage-dependent ionic currents be-
tween —70 and +60 mV. (b) The patches were very stable in this solution, often lasting
>2 h. The bath contained 160 NaCl, 2 CaCls, 1 MgCl;, and 10 Na-HEPES (pH 7.4).
Voltages were corrected for a measured liquid junction potential of 8 mV. All experiments
were performed at 9.3°C. Most of the analysis presented here was performed, for
computational purposes, on a patch with exactly one channel. It was verified, as discussed
below, in other patches.

The experimental protocol and method of data acquisition are described in Horn et al.
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(1984). In all experiments in this and the following paper, we low-pass-filtered the
command voltage with a single-pole filter set at 2 kHz. Capacity transients were usually
almost completely eliminated by subtraction at the level of the headstage (Hamill et al.,
1981). In some cases, residual transients were removed by averaging records without
openings and subtracting the average from each record in the series. If measurable,
leakage currents were removed by an analog circuit. All records were filtered at 1.5 kHz
by an eight-pole Bessel filter and were digitized at rates of 5.26-8.33 kHz.

Data Analysis

“Idealized” records were obtained from the digitized current records by setting a threshold
for a transition (either opening or closing) at haif the amplitude of the open channel
current (Colquhoun and Sigworth, 1983). We tested the ability to resolve transitions by
sampling filtered voltage pulses of known duration. When sampling at the lowest rate
used in this paper (5.26 kHz), the minimal detectable duration was 150 us. Since the
single channel currents were at least seven times greater in amplitude than the rms
baseline noise (see below), 150 us was also the effective minimal duration of detectable
openings. :

The idealized records, then, were vectors of integers, representing the number of open
channels at each epoch (time point) during a voltage pulse. Although the storage of these
digitized records used a large amount of disk space, we found that this format was very
useful for subsequent data analysis, especially for the maximum likelihood analysis dis-
cussed below.

Amplitude Histograms

After filtering single channel currents at a bandwidth of 1.5 kHz and sampling at a rate
of 5.26 kHz, the records of the one-channel patch were cut into segments. Each segment
represented, by the half-amplitude criterion (see above), current from either an open or
a closed channel. Segments of <1 ms duration were discarded. The mean of each segment
was subtracted from each sample point and amplitude histograms of open and closed
channels were obtained as deviations from the mean. We also obtained histograms of the
mean currents for each segment. For Gaussian noise, the error in estimation of the mean
and mean square error requires that each segment be greater than ~0.8/bandwidth =
533 us (Bendat and Piersol, 1971). The error in estimating the mean in this case is <1%.

The amplitude histograms of deviations from the mean are estimates of a probability
density that we have plotted in bin widths of 9.8 or 12.6 fA (Fig. 9). The standard
deviation of the number of observations in each bin is the square root of the number of
observations since their distribution is approximately Poisson. Theoretical Gaussian func-
tions were fitted to the amplitude histograms using a nonlinear least-squares fit with the
Powell (1978) algorithm.

Exponential Fits to Open Time Histograms

Histograms of channel open time were fit with single exponentials by minimizing the chi-
square values derived from a comparison of the data with the integral of the theory for
each bin (Colquhoun and Sigworth, 1983). Both the time constant and the amplitude of
the exponential were allowed to be free parameters. The width of each bin was the
sampling interval (0.12-0.19 ms), except that bins containing less than five observations
were combined. The first one or two bins were not used for exponential fitting to reduce
errors from missed brief openings.
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Maximum Likelihood Analysis

The method for obtaining estimates of parameters (i.e., rate constants and initial condi-
tions) for linear kinetic models from idealized records has been described previously
(Horn and Lange, 1983; Horn et al., 1984). We have extended the analysis in order to
be able to use branched and cyclic kinetic models. In the most general model possible,
any state can interconvert directly into all other states. This model was never used in
practice, because the rate constants are not identifiable in highly cyclic models (Nguyen
and Wood, 1982). For many of the cyclic models used here, the rate constants are not all
independent parameters, but are functions of the others by microscopic reversibility.
These rate constants were considered in the calculation of the likelihoods. Because of the
computational time for our calculations, the models were restricted to five states, with
each state being either open or closed. An examination of closing transitions (see Results)
indicated that only a single open state was present in our data. Therefore, all the models
had one open state and at most four closed states. We quickly found that more closed
states were needed to adequately fit the activation time course. Since this was computa-
tionally infeasible, we usually truncated the beginning of the idealized records, a technique
sometimes used in fitting macroscopic currents (e.g., see Neumcke et al., 1976). The
implications of this truncation are discussed in the Results. For analysis of the experiment
shown in Fig. 1, 1.33 and 0.76 ms were removed from the initial part of the idealized
records at —40 and —25 mV.

We used a variable metric method (Powell, 1978) to search the likelihood surface. The
algorithm, kindly provided by Dr. Kenneth Lange (University of California at Los
Angeles), quickly and consistently found the maximum log(likelihood), which was inde-
pendent of the initial guesses of parameters. It also produced an information (i.e., Hessian)
matrix (Rao, 1973; Colquhoun and Sigworth, 1983). In some models, this matrix was
singular and could not be inverted to yield a covariance matrix. This was observed in
some of the cyclic models and suggested that some of the estimated parameters were not
identifiable and could be expressed as linear combinations of others. In this case, we
obtained a reduced covariance matrix by sweeping the information matrix in order of the
tolerance of each parameter until the remaining parameters failed to pass the tolerance
test (see discussion in Dixon, 1983). This procedure allowed us to obtain estimates of
standard errors for identifiable parameters. Correlation matrices were generated from
the reduced covariance matrices by dividing each term by the product of the standard
errors of the estimates for the corresponding parameters.

For likelihood calculations, we used a VAX 11/730 computer (Digital Equipment
Corp., Marlboro, MA) with an attached array processor (FPS 100; Floating Point Systems,
Beaverton, OR). The array processor produced a 20- to 30-fold increase in computational
speed. With these improvements, the estimation of all 11 parameters of the general model
(see below) required ~20 h of computer time for 474 records containing 224 epochs each
from our single channel patch. Models with fewer parameters required from 20 min to
12 h, depending on the initial guesses for the parameters. Records from patches with
more channels required much more time to analyze. Consequently, we examined fewer
models in those experiments. Table V lists all experiments in which maximum likelihood
estimates of rate constants were obtained.

Likelihood ratio tests were applied to test hypotheses under nested conditions (Rao,
1973; Horn and Lange, 1983). A chi-square value is given by twice the difference between
the maximum log(likelihood)s for the two models being compared. The number of degrees
of freedom is the difference between the number of free parameters in each model. Note
that in many of the tests below (e.g., in Table IV), the rate constants were estimated at
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two voltages, which doubles the number of free parameters and therefore the degrees of
freedom.

In patches with more than one channel, we also used a maximum likelthood method to
estimate the number of channels (cf. Patlak and Horn, 1982). Usually the estimates were
identical to the maximum number of channels simultaneously open.

Predicting Channel Properties from Transition Rate Constants

The probability that a channel is open as a function of time after a voltage step and the
predicted probability densities (histograms) for channel open time, closed time, time to
first opening, and burst duration were calculated numerically from the rate constants
estimated by maximum likelihood analysis. A typical kinetic model used for these calcu-
lations is the basic model (scheme 1, shown below). At 50-us intervals, the probability was
computed that a channel entered each state, based both on its probability distribution
among the states at the preceding interval and on the rate constants for transitions
between states (e.g., see Horn and Lange, 1983). The initial distribution of channels
among states was set appropriately for each theoretical density, and appropriate states
were made absorbing. For example, the open time density is calculated by assuming that
the channel is open at time zero and that all closed states are absorbing. The probability
of the channel leaving the open state thereafter, dPopeq(t)/dt, estimates the open time
density (see discussion in Colquhoun and Hawkes, 1981; Horn, 1984). For the burst
duration density, the theoretical prediction is complicated by the fact that if a channel
closes to Cs, the closed state preceding the open state in the basic model, it sometimes
reopens and the time spent in the closed states is considered part of the burst, but it
sometimes inactivates, in which case the time spent in the closed states before inactivating
is not part of the burst. This ambiguity was resolved by weighting the time spent in the
set of closed states by the probability that a channel in a closed state would reopen rather
than inactivate (i.e., rate(Cs — O)/[rate(Cs — O) + rate(Cs — I)]), where I represents a
closed-inactivated state in the basic model. Because a channel in any of the closed states
must ultimately reopen or inactivate through these pathways from Cs, the weighting
factor is appropriate for all the closed states. The probability densities were scaled
according to the method of Colquhoun and Sigworth (1983). The first one or two bins
(0.19-0.38 ms) were not included in the scaling for open or closed times to minimize
errors caused by brief missed transitions. We did not scale the probabilities of a channel
being open [Pogen(t)] and of a channel being open given that a burst started at time zero
[M(?)], except to consider the number of channels.

RESULTS

Before examining possible kinetic models of sodium channel gating, we will
address the question of the appropriateness of Markov models. Since the gating
is so complex, we cannot answer this question completely, but instead we present
evidence that the process of the closing of open channels has all the qualitative
and quantitative aspects of a time-homogeneous Markov process, at least within
the voltage range we have examined.

In order to simplify the analysis, we have restricted most of our observations
to a patch containing only one channel. Records from this patch are displayed in
Fig. 1. Each column shows a series of consecutive current records in response to
44-ms voltage steps (indicated by an arrow) to either —40 or —25 mV. By
convention, a downward transition indicates an opening. A total of 474 and 426
records were obtained at —40 and —25 mV, respectively. Openings of duration
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FIGURE 1. Currents from a patch with one channel. Consecutive current records
from 44-ms voltage steps (indicated by an arrow) to —40 (left) and —25 mV (right).
Note the multiple reopenings of the channel, especially at —40 mV. Voltage steps
from the holding potential of ~90 mV were preceded by a 20-ms prepulse to —120
mV. The interpulse interval was 1.5 s.

>150 us were clearly resolved (see Methods), and transitions were measured
using the half-amplitude threshold criterion of Colquhoun and Sigworth (1983).
The following analysis was based on the idealized records from this and other
experiments (see Methods).

The Sodium Channel Has One Open State

A true Markov process is said to be memoryless. That is, the dwell time in a
given state does not depend upon the time when the state was entered; nor does
it depend on the pathway by which it leaves this state. A necessary and sufficient
condition for memorylessness is that the dwell time in such a state be exponen-
tially distributed (Feller, 1971). We have examined the open times, and the
histograms are well fit by a single exponential at each membrane potential. This
is shown in Fig. 2 for an experiment with a two-channel patch, and in Fig. 4 for
our one-channel patch. In the former experiment, the proportion of overlapping
openings was 6% (=50 mV), 8% (—40 mV), and 17% (—25 mV). The quality of
the fit suggests that sodium channels have a single open state (see also Fukushima,
1981; Quandt and Narahashi, 1982; Horn and Standen, 1983; Huang et al,,
1984; however, see the contradictory evidence of Nagy et al., 1983). The
theoretical curves in Fig. 2 were derived by minimizing the chi-square values
obtained by comparison of theory with the data. Chi-square goodness-of-fit tests
show that the histograms are well fit (see figure legend).

We were concerned, however, that this analysis might not reveal subtleties
caused by the presence of more than one open state. Two alternatives were
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FIGURE 2. Histograms of open time from a patch with two channels. The expo-
nential fit, obtained by minimizing chi-square values comparing the data with theory,
gave mean open times of 1.7 (=50 mV), 2.7 (=40 mV), and 1.9 ms (—25 mV). The
chi-square values (degrees of freedom) were 9.9 (19), 15.4 (29), and 36.0 (31) at
—~50, —40, and —25 mV, respectively, giving P values of 0.98, 0.98, and 0.25. Open
times obtained by the maximum likelihood method (Horn and Standen, 1983) were
2.1 (-50 mV), 2.9 (=40 mV), and 1.9 ms (—25 mV).

considered. First, the open times may be nonstationary, as suggested for sodium
currents in the node of Ranvier by autocovariance measurements (Sigworth,
1981) and by single channel data obtained from neuroblastoma cells (Nagy et
al., 1983). These data could indicate the presence of more than one open state,
with longer open times later in the pulse. If the same were happening in our
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experiments, and the open times were not very different, the discrepancy may
have been lost in the process of combining all the data into one histogram. The
second alternative is that the sodium channel might contain more than one open
state, but all states would have the same mean open time. In this case, the data
of Sigworth could be explained, for example, if a channel opening early in the
pulse would not tend to reopen after closing, whereas the late openings would
be more “bursty,” tending to reopen more often.

We have tested these alternatives for the one-channel patch (Fig. 1) in the
following manner. The open times were ordered according to when the channel
opened after the onset of the voltage step. The time, t,, was obtained, which
represented the time before which one half of the openings occurred, and
cumulative open time histograms were plotted for openings occurring before
and after t#y, as shown in the uppermost panels of Fig. 3. Qualitatively, open
times early and late in the pulse are indistinguishable at both —40 and —25 mV.
The density histograms were compared using Pearson’s chi-square test for
homogeneity of parallel samples (Rao, 1973, p. 399). The chi-square (degrees of
freedom) values were 22.26 (34) and 17.40 (27) at —40 and —25 mV, which
suggests there is no difference between the distributions of early and late open
times (P >0.9). This result was not appreciably altered by deliberately varying
ty,.

The second alternative, that channels have more than one open state, each
with the same dwell time, was tested in several ways. First, we measured burst
durations at early and late times after the onset of the activating depolarization.
We defined the beginning of a burst as the time of the first opening, and the
end of the burst as that of the last closing during a 44-ms voltage pulse. If the
channel was open at the end of the pulse, this time was considered the end of
the burst. The latter occurred in, at most, 4.8% of the records. As above, bursts
were ordered according to the time of their onset and separated into two equal-
numbered groups. The cumulative distributions of burst durations early and late
in the pulse are shown in the middle panels of Fig. 3. As in the case of open
times, burst durations are quantitatively not dependent on when they begin. The
chi-square test for homogeneity in this case gave values of 9.19 (20) and 15.08
(22) at =40 and —25 mV (P ~0.98 and ~0.85). This result was not affected by
the possible truncation of bursts that occurred later in the pulse, since truncated
density histograms of burst durations were also statistically indistinguishable.

We have also estimated the probability M(t) of a channel being open, given
that a burst started at time zero. This was obtained by averaging the idealized
records, arranged so that the bursts all began at the same time (Neher and
Steinbach, 1978; Horn and Lange, 1983). The bottom row of Fig. 3 shows that
these conditional probability estimates, which are analogous to the nonstationary
autocovariance measurements of Sigworth (1981), are also not dependent on the
time when the bursts begin. The standard error bars in the lowermost panels of
Fig. 3 were obtained by the use of Eq. 6.72 in Bendat and Piersol (1971, p. 183).

Four further arguments also support the idea that sodium channels have one
open state. (a) We find no evidence for multiple conductance levels (see Fig. 10,
below), which, in neuroblastoma cells, have been reported to correlate with
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FIGURE 3. Comparison of opening statistics at early and late times in the record.
Open time, burst duration, and probability of being open after the start of a burst,
M(z), vs. time are plotted for events occurring early and late in the record (see text).

tiple open times (Nagy et al., 1983). (b) For a single open state, the mathe-

matical convolution of the distribution of first latencies (the times of the first
opening after the voltage step) with M(¢) (the probability of being open during a
burst) will reproduce Popen(t), the probability of a channel being open after the
voltage step (Aldrich et al., 1983). This prediction is confirmed in the following
paper (Vandenberg and Horn, 1984). (c) The open time apparently does not
depend on how the channel reached the open state. This has been experimentally
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verified for N-bromoacetamide-treated single channels, in which the open times
do not depend on the voltage preceding a step to —30 mV (Horn et al., 1984).
(d) Finally, our analysis (Vandenberg and Horn, 1984) shows that channels can
close by two different pathways. This means that the open time does not depend
on the closing pathway, a possibility in a semi-Markov process (Feller, 1971).

Therefore, we are confident, at least under the conditions of our experiment,
that sodium channels have a single, kinetically distinct open state. However, at
more depolarized voltages, where the currents are more poorly resolved, we
sometimes observed a low percentage of openings of exceptionally long duration
(Horn et al., 1984). This raises the possibility that at depolarized potentials, a
second open state may exist. A thorough examination of this possibility will
require the use of pulses of longer duration, in order to allow the detection of a
slow tail in the open time distribution.

A Kinetic Model

The number and arrangement of closed states of the sodium channel are not
known (Armstrong, 1981; French and Horn, 1983). It is not even clear whether
other transitions in the gating process are Markovian, although the large tem-
perature dependence of the time course of activation argues in favor of this idea
(Bezanilla and Taylor, 1978; Horn, 1984). Because of this ambiguity, specific
kinetic models are always somewhat arbitrary. Within the limitations of our
analysis, however, we have tested 25 Markov chain models with up to five states
that are arranged in a variety of ways. These models can be compared statistically,
as we will demonstrate below. For the sake of illustration, we will show an
example of our statistical procedure using the following model, based partly on
kinetic schemes found in Bezanilla and Armstrong (1977), Armstrong and
Bezanilla (1977), and Armstrong and Gilly (1979). Later we will verify that this
model is statistically superior to most alternatives. The “basic model” is

// I\\ (Scheme 1)

Ci=0C= Cs=0

There are three closed states, C;, Ce, and Cs, one open state, O, and a closed-
inactivated state, I. The inactivated state differs from the other closed states in
two ways. First, channels at the holding potential tend to be in one of the other
closed states. Second, the rates for leaving I are small at activating voltages. In
other words, channels at rest tend to be in one of the closed states, and after a
depolarization they eventually end up in the inactivated state. We have arbitrarily
truncated the early portions of the current records by shifting the time origin of
the data to improve the fit to the rising phase of the averaged records (see
Methods), and we have made the assumption that at time zero, when the pulse
begins, 98% of the channels are in C, and 2% are in C,. These assumptions point
out three difficulties with our analysis. First, there must be more than three
closed states preceding the open state in the activation pathway. Second, the
analysis gives little information about transitions that are several steps away from
the open state (Horn and Lange, 1983). Finally, we are not certain about the
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initial probability distribution among the states at rest. The initial distribution
can be estimated, however, in two ways—either directly (Horn et al., 1984) or
by extrapolation of estimated rate constants to prepulse voltages by assuming an
exponential dependence on membrane potential. In the latter case, parameter
estimates for nontruncated data (see Table II in Vandenberg and Horn, 1984)
predict that the initial probabilities of being in states C, and C; are ~0.94 and
~0.05.

Note also that the model contains neither resting inactivation nor hibernating
states (Horn et al., 1984), which means that the channel is always capable of
opening during a voltage pulse. In this experiment, this seems a reasonable
assumption, based on four arguments. First, a 20-ms prepulse to ~120 mV
preceded each depolarization. This should remove any resting fast inactivation
at the —90-mV holding potential (see Horn et al., 1984; Vandenberg and Horn,
1984). Second, a runs analysis (Horn et al., 1984) failed to show convincing
evidence for hibernation, which is a tendency for openings in successive records
to be clustered at either —40 (P ~0.3) or —25 mV (P ~0.17). Experimentally,
the interpulse interval was made as long as practically possible, 1.5 s, to avoid
inducing slow inactivation or hibernation. Third, the peak probabilities of a
channel being open during a voltage step (Fig. 6) were approximately the same
as those estimated by the peak conductance-voltage relationship in macroscopic
currents (Fig. 9 in Vandenberg and Horn, 1984). Finally, inclusion of hibernation
in the analysis did not significantly improve the fits (see Discussion).

With the above limitations in mind, we have estimated rate constants for the
basic model at both voltages for our one-channel patch, using the maximum
likelihood method (see Methods). The rate constants are shown in Table 1. Note
that the model has 10 rate constants, although only 9 are estimated. The
remaining rate constant is obtained from microscopic reversibility. The final fit
was independent of the initial guesses, which indicates the smoothness of the
likelihood surface (Horn and Lange, 1983). The estimates of rate constants
entering and leaving the open state and that for inactivating from Cs had
relatively small standard errors. Transitions further from the open state were
less well characterized.

One problem with this type of analysis is that it is difficult to speak about the
“truthfulness” of any given model (cf. Leamer, 1983). However, we have adopted
two strategies for assessing the quality of particular models. The first is to see
how well they can make testable predictions, and the second is to compare and
rank (if possible) models against one another. Several predictions of the basic
model are shown in Figs. 4-7. We will discuss model comparisons later.

Fig. 4 plots the predicted and measured histograms of open and closed times.
Data for the latter were obtained by measuring intervals between closings and
subsequent openings. Since channels rarely reopened at —25 mV (Fig. 7; see also
Vandenberg and Horn, 1984), the data here are sparse for closed times. The fits
are all satisfactory.

Fig. 5 plots the predicted and observed burst open probability [i.e., M(t)] and
burst duration histogram, and Fig. 6 plots the first latency histogram and Popen(t).
Finally, Fig. 7 plots the discrete probability distribution of the number of
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TABLE

I

Rate Constants and Correlation Coefficients for the Basic Model

L

Basic model: C—=cz —=c —"""

Rate constant (s™')*

—40 mV -25 mV
a 1,260+1,710 1,190+253
b 1,420+1,830 1,240+269
¢ 438160 772+75
d 7681895 0
e 729 0
f 246x15 31.243.5
g 7.6£11.7 82.55.1
h 1.8£0.7 0.1210.04
i 256+38 242431

Correlation matrix, ~40 mV
a b c d f g h i
a 1.0 -0.95 0.78 -0.58 0.10 -0.12 -0.09 0.74
b 1.0 -0.82 0.79 -0.11 0.13 0.05 -0.79
¢ 1.0 -0.57 -0.08 0.10 -0.14 0.77
d 1.0 -0.09 0.12 ~0.10 -0.58
f 1.0 -0.78 0.26 0.32
g 1.0 ~0.33 -0.40
h 1.0 0.14
i 1.0
Correlation matrix, =25 mV

a b [4 f g h i
a 1.0 ~0.79 ~0.2% 0.01 -0.01 -0.01 -0.17
b 1.0 -0.24 0.01 -0.01 -0.02 -0.18
¢ 1.0 =0.11 0.08 -0.04 0.52
f 1.0 -0.22 0.38 0.13
g 1.0 -0.26 -0.09
h 1.0 0.36
i 1.0

* Standard errors of estimates are given for all identifiable parameters (see Methods). In some cases, the

best estimate was zero, the minimal possible value.

openings per record, along with the predicted distribution. The latter was

obtained as follows.

Since the mean dwell time in state I is estimated to be >740 ms (see Table 1),
considerably longer than the pulse duration of 44 ms, state I may be considered
an absorbing state. With this simplification, we first calculate the probability P,
of exactly one opening in a burst, defined here as the sequence of openings and
closings in any record with at least one opening. It suffices to examine only part
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FIGURE 4. Comparisons of predictions of the basic model with data for open and
closed times. The mean open times predicted by the basic model were 3.9 + 0.2
(—40 mV) and 8.8 * 0.4 ms (—25 mV). An exponential fit to the data (not shown),
minimizing chi-square, gave comparable mean open times of 3.6 and 8.2 ms, with
chi-square values (degrees of freedom) of 56.8 (45) and 66.9 (54) at —40 and ~25
mV (P values, 0.12 and 0.12).

of the kinetic scheme in the basic model.

I

A

The rate constants a, b, ¢, and d completely characterize the distribution of the
number of openings in a burst. In this scheme, P, = Prob (one opening in a
burst) = Prob (channel reaches I before reopening) = Prob ([channel closes by
O — C; and does not reopen] U [channel inactivates directly by O — I]) = Prob
[(channel closes by O — Cs) N (channel inactivated by Cs — I)] U (channel
inactivates directly by O —= 1) = b/(b + d) X ¢/(a + ¢) + d/(b + d) = ¢. Notice
that if the channel closes via O — Cs, it may dwell in Cs for any length of time
and may leave and re-enter Cs from the left any number of times. The only
relevant information here is the relative probability of Cs — I vs. C3 — O.

If P; is the probability of exactly i openings in a burst, then it has a geometric
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FiIGURE 5. Comparisons of predictions of the basic model with data for burst

duration and the probability of being open after the start of the burst, M(z).
probability distribution

Pi=dl—¢7', i=1,..., 0

and the average number of openings in a burst is €' (Colquhoun and Hawkes,
1981). We must also consider the probability of a channel never opening, y =

¢/(a + ¢). Then the modified probability distribution shown in Fig. 7 is given by
P¥, where i is the number of openings per record, and

P§=x
P¥ = (1 — )P,
P¥ = (1 — )Py, etc.

All of the above predictions are qualitatively consistent with the measurements
derived from the data. We stress that the theoretical curves in Figs. 4-7 are not
fits to the histograms, but were obtained entirely from the rate constants in
Table I, which were extracted from the observed transitions themselves. The
theoretical curves were not arbitrarily scaled.

Alternative Hypotheses

Within the limits of less than six states, one being open, there are many other
possible alternative models. Table II shows the 25 models we have examined, in
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FIGURE 6. Comparisons of predictions of the basic model with data for first latency
density and Popen(¢), the probability of the channel being open after the depolarizing
voltage step.
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FIGURE 7. Comparisons of predictions of the basic model with data for number
of openings per record.
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TABLE 11
Kinetic Models
Model ’ Number of
number Log (likelihood) parameters AIC rank*
[—‘1
" o o« s Jdm =Tl
(1) C——C= c=—0 -10,351.55 10 2
> 1
[§
9
@ cn‘ 2 ‘c{z/:"?‘c‘ < J} ~10,355.64 1 5
il I_‘]
[
®) c=—=cs : ‘cF:_:jo ~10,356.61 9 3
°'f I cl
(9 e ‘cF:—:ju ~10,356.93 7 1
b b d
s 1=
ilv' ] b [ 9
(5) P#—‘c:-'—‘c‘—-'—‘c -10,358.83 9 4
r——‘x——l
1|
I;h
6) c==cs :Ac‘ == -10,361.24 9 6
h| I
[ a '1ck b q),
0 = ?J -10,380.45 8 8
c
f 1
] "'-'IL
(8) c,—;‘-_—*cz# —10.880.45 7 7
<
. 1
L] ‘P_)h‘:il [
9 Cs C3 0% c —10.385.18 8 9
d ¢ f
0 SRR T
(10) l;——*“ c’@——\c;-;——‘l -10,418.99 10 16
]
|———>1<——7|
9
an c==c3 b ‘"3‘ =0 ~10,419.98 9 15
[ 3
1
[']
(12) c==¢ :—E—‘ c==o0 ~10,420.66 8 14
[l
[ ]
(13) cs : cs : g o :«1]) -10,420.78 7 12

>1¢
. [}
(14) c‘—-’f {—;-'{i{c‘——i—* —10,421.20 6 10
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TABLE I1I-—Continued

Model Number of
number Log (likelihood) parameters AlC rank*
1
oo o T
(15) CE Cs (o= 0 -10,421.43 6 11
b b d
0 ,; Ia{ ¢
(16) == 57— C — —C f—‘—‘d -10,424.84 5 13
9 b I h
an c#c‘—_—_.—‘_oz: -10,432.60 8 17
lc 3o Vzlu a cl
(18) Ce=CFF=c=—0 -10,462.27 3 18
o
(19) c‘__—:—‘ c==c=—0 ~10,490.87 6 19
i)
(20) c;_—_:_—‘o -10,573.18 5 20
1
Fied
1) =0 —10,595.38 4 21
(22) =t =o—==1 ~10,691.50 6 99

(23) L = ~11,265.29 6 24
A

(24) = e==c :—:—*o' -11,265.29 5 23

(25) C#Q#I -11,613.18 4 25

* The AIC ranking orders the models by their Akaike information criterion value. The lowest number is
considered best.

* An additional parameter, j, is the initial distribution of channels between the two closed states on the left.
¥ An additional parameter, g, is the probability that a channel is hibernating at the beginning of the voltage
pulse.

order of decreasing maximum log(likelihood). Some models had fewer than five

states. Since the number of states in a model will directly affect the value of the

likelihood (Horn and Lange, 1983), we used the following strategy to avoid this

problem. Suppose that we desire to examine the three-state linear scheme
C=0=1
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We start with a five-state linear scheme,

Ci=2CG=C=0=],
2]

setting the rate constant 8 equal to zero and the initial condition that the channel
be in state Cs with probability 1. This effectively reduces the number of states
without reducing the number of compositions in the likelihood calculation (Horn
and Lange, 1983).

Many of the alternative hypotheses are subhypotheses ot model 2, which we
call the general model. These models can be compared with the general model,
using the likelihood ratio test (Rao, 1973; Horn and Lange, 1983), which
provides a method for a statistical ranking of the subhypotheses. Table III gives
the parameter estimates and correlation matrices for the general model, and

TABLE II1I
Rate Constants and Correlation Coefficients for the General Model

s 1
k| r
c[:b‘——*: ¢ ‘—-l\“/: Y = clnl

General model:

Rate constant (s™)

~40 mV 25 mV
a 1,080+3,640 1,160+360
b 1,490+4,510 1,200£266
¢ 528 819+190
d 1,125 0
e 7761779 0
f 193423 29.146.6
g 60.3£22.5 84.5
h 16.9 185181
i 0.06 0.08+0.11
j 166.5 52.5
k 91.8 824263

Correlation matrix, —40 mV

a b e f g
a 1.0 ~0.998 ~0.96 0.89 -0.93
b 1.0 0.98 -0.88 0.92
e 1.0 -0.80 0.83
f 1.0 -0.92
g 1.0

Correlation matrix, ~25 mV

a b 4 f h i k

a 1.0 -0.55 -0.73 0.64 0.71 0.70 -0.73
b 1.0 —0.09 ~0.003 -0.03 -0.02 0.03
[4 1.0 -0.81 —0.87 —0.88 0.90
f 1.0 0.87 0.89 —0.88
h 1.0 0.97 -0.99
i 1.0 -0.97
k 1.0
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TABLE 1V
Comparison of Models: Likelihood Ratio Tests

General hypothesis: model 2

Subhypothesis model Degrees of
number x? freedom* Approximate P value
3 1.93 4 0.75
4 2.58 8 0.96
5 6.38 4 0.2
6 11.21 4 0.025
10 126.69 2 <10™*
11 128.67 4 <107*
12 130.04 6 <10™*
14 131.11 10 <10™*
15 131.57 10 <10™*
16 138.40 12 <107*
18 213.25 16 <107*
19 269.46 10 <10~
23 1,819.29 10 <107
24 1,819.30 12 <10™*
General hypothesis: model 3
Subhypothesis model Degrees of
number x? freedom* Approximate P value
4 0.65 4 0.96
12 128.11 2 <10~
15 129.64 6 <10™*
19 267.54 6 <10™*
23 1,817.36 6 <107
24 1,817.37 8 <10™*
General hypothesis: model 10
Subhypothesis model Degrees of
number Xx? freedom* Approximate P value
11 1.98 2 0.4
12 3.35 4 0.5
14 4.43 8 0.8
15 4.88 8 0.8
16 11.71 10 0.3
18 86.57 14 <10™*
24 1,692.61 10 <10~

* The number of degrees of freedom is two times the difference between the number
of parameters in the models being compared because likelihoods for data from both
—25 and ~40 mV are combined (Horn and Lange, 1983).

Table IV gives the chi-square values for several possible likelihood ratio tests.
We will address the topic of model comparisons in the Discussion.

We conclude this section by showing that the likelihood ratio criterion is a far
better discriminator between models than the qualitative fits to histograms and
conditional probabilities. Fig. 8 shows a comparison at —40 mV of the basic
model, the Hodgkin-Huxley model, and a strictly coupled model. The Hodgkin-
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Ficure 8. Comparisons of the basic model with the Hodgkin-Huxley (model 18)
and strictly coupled (model 23) models for data at —40 mV. The rate constants for
the Hodgkin-Huxley model determined by maximum likelihood analysis were an =
346.91, 8., = 65.37, and B, = 68.72 57",

Huxley model had three parameters, am, 8m, and 8, which were estimated by
our maximum likelihood procedures, assuming that a, = 0. We have plotted the
first latency and closed time histograms, as well as Poen(t) in Fig. 8. The
theoretical open time histograms were identical for the three models. Qualita-
tively, at least, the Hodgkin-Huxley model produces theoretical curves that are
reasonable fits to the measured data, although it tends to underestimate the
number of brief closed durations. The predictions of the strictly coupled model
(23 in Table II) are obviously poor representations of the data. The likelihood
ratio test that compares these three models with the general model gives chi-
square (and corresponding degrees of freedom) values of 1.93 (4), 213.25 (16),
and 1,819.29 (10) for the basic, Hodgkin-Huxley, and strictly coupled models,
respectively, with corresponding P values of 0.75, <107, and <107*. The basic
model is therefore vastly superior to both of the other models on statistical
grounds, at least by comparison with the general model.

The above analysis is an example from a single patch with a single channel.
Because of the computational demands of our maximum likelihood analysis, we
have done most of our hypothesis testing on this experiment. Usually, patches
have more than one channel, which greatly increases the computer time for
calculations. In all, we analyzed four experiments in detail with this method. The
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patches had up to four channels. Usually the basic model, or some simplification
of it, produced reasonable fits to our data and was always statistically comparable
or superior to the alternatives we examined (see Table V below). As in the
example presented here, we always found that rates entering and leaving the
open state were better determined than other rates in the process. Further details
of the analysis of this and other experiments are given below and in Vandenberg
and Horn (1984).

Frequency Limitations

The maximum likelihood analysis assumes perfect data, i.e., no missed transitions.
The effect of missed transitions on parameter estimation is unclear and almost
certainly depends on the kinetic model. Transitions could be missed in two ways.
First, a very short event (e.g., an opening) of full amplitude could be missed
because of an insufficient sampling rate used for digitizing the current record.
Second, an event could have such a short duration that it will be reduced by the
low-pass filter to a peak level below that of the half-amplitude threshold criterion
(see Methods).

The first problem was addressed by Horn and Lange (1983), who showed that
a conservative sampling rate that will not affect estimates is >10 Nk, where k; is
the largest rate constant in the model and N is the number of channels. In the
above experiments, the sampling rate was 5.26 kHz. Therefore, rate constants
greater than ~526 s™' are probably underestimated.

We have shown (see Methods) that the combination of filtering and sampling
rate set an effective minimal detectable duration of 150 us. If either open or
closed times have significant components in this range, one might expect to see
deviations from Gaussian amplitude distributions for open or closed channel
currents (Sigworth, 1982; Auerbach and Sachs, 1983). Fig. 9 shows amplitude
distributions of deviations of currents from mean values at —40 and —25 mV.
At both voltages, the distributions are well fit by a Gaussian function, which is
superimposed over the data. The standard deviation of the current noise is 0.15-
0.16 pA, rms. This compares with a theoretical minimum of 0.05 pA for a
noiseless headstage amplifier with a 10-GQ feedback resistor and an infinite seal
resistance. In agreement with this, we found no evidence for a high proportion
of unresolved brief openings. Typically, open times were exponentially distrib-
uted with a mean open time of ~2.0 ms. The probability of an opening of <150
us in such a process is <0.08. The estimated proportions of missed brief openings
for the open time histograms shown in Fig. 4 are 0.04 and 0.02 at —40 and —25
mV. Note, however, that occasional missed closings are also reflected in overes-
timates of the open time, which can modify the above conclusions.

Fig. 9 shows that slight deviations from the Gaussian function occur for closed
channels at ~40 mV and for open channels at both voltages (see arrows). These
deviations might be expected for a small percentage of missed openings at —40
mV and missed closings at both potentials. Note that the mean open time is
smaller at —40 mV (Fig. 4). Such events may be missed by our threshold criterion,
but are reduced in amplitude by the 1.5-kHz filter. Unresolved closings could



526 THE JOURNAL OF GENERAL PHYSIOLOGY - VOLUME 84 . 1984

Closed Amplitude Open Amplitude
6001 1
-25mv 300t
&
xE: 400 200}
3
-4
2001 R 100}
o Y 0
10 05 o] -05 -0 10
800 ! T j 1 ’
300
6001
2 200}
E 400
z
200} 100}
o) o}
10 10
pA pA

FIGURE 9. Amplitude histograms of deviation from mean current for open and
closed channels. The Gaussian curves fitted to the data have standard deviations of
0.15 (closed channel current, ~40 and —25 mV) and 0.16 pA (open channel current,
—40 and —25 mV).
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FIGURE 10. Amplitude distributions of mean open amplitudes. The mean single
channel amplitudes were 1.46 (—40 mV) and 1.32 pA (—25 mV), and standard
deviations were 76 (—40 mV) and 58 fA (—25 mV).

account, for example, for the paucity of brief events in the closed time histograms
in Fig. 4.

Fig. 10 plots histograms of mean amplitude for open events of >1 ms duration.
These histograms show no evidence of multiple conductance levels, in agreement
with experiments using neuroblastoma cells (Huang et al., 1984; however, see
Nagy et al., 1983).

DISCUSSION

In this paper, we have examined the use of time-homogeneous Markov chain
models to describe the gating kinetics of sodium channels. Such models are



HORN AND VANDENBERG Statistical Properties of Single Na Channels 527

appropriate when the dwell time in each state is exponentially distributed. This
was substantially verified for the open state within the voltage range we have
studied (=50 to —25 mV). Furthermore, we find no evidence for the possibility
of multiple open states, each with the same mean lifetime. Our results are not in
agreement with those of Sigworth (1981), who found that autocovariance mea-
surements of sodium currents in frog node of Ranvier were decidedly nonsta-
tionary; the relaxations were faster immediately after an activating depolarization
than they were later on. We can think of three possible reasons for the discrep-
ancy. The first is simply a preparation difference. One obvious difference
between our two preparations is that the inactivation time course for single pulse
measurements in frog node is multiexponential (Chiu, 1977), whereas it is well
described by a single exponential curve in GHjs cells (Fernandez et al., 1984;
Vandenberg and Horn, 1984). It is possible that a slow process exists in frog
node that corresponds to slow relaxations later in the pulse. The second possibility
is the voltage range. We have only examined the range negative to —20 mV,
whereas Sigworth measured autocovariance near 0 mV. At the more depolarized
voltages, we have seen some evidence of exceptionally long openings (unpub-
lished observations; also see Horn et al., 1984). At voltages beyond the range of
the usual patch recording experiments (greater than +20 mV), Chandler and
Meves (1970) found a noninactivating component to sodium current in perfused
squid axons. They ascribed this to a second open state with slower kinetics.
Although we find no evidence for such a process in macroscopic sodium currents
(Vandenberg and Horn, 1984), it is possible that the sodium channels have a
second open state at more depolarized voltages, or else that sodium channels are
sufficiently heterogeneous that they do not all have the same open time. Note
that nonexponential open time distributions have been observed in multichannel
patches from mammalian cells (Patlak and Horn, 1982; Aldrich et al., 1983;
Nagy et al., 1983). Some caution is required in the interpretation of such data
because of the sampling errors inherent in handling overlapping openings (Patlak
and Horn, 1982; Horn and Standen, 1983). Furthermore, heterogeneity in the
population of channels may produce nonexponential histograms. The third
possibility is that we have not used pulses of sufficient duration to detect
occasional, very long openings. If such events occur, they are either very rare in
our experiments or else open at very late times after a depolarization.

Although channel closing conforms with predictions of a Markov process in
our experiments, we have little information about other gating transitions. A
number of arguments have been advanced to suggest that these processes, too,
are Markovian (Colquhoun and Hawkes, 1983; French and Horn, 1983; Horn,
1984).

Models of Gating

We have estimated rate constants for several Markov models, limited to at most
five states, using a maximum likelihood method. One of the principal values of
this approach is the possibility of comparing models statistically with likelihood
ratio tests (Rao, 1973; Horn and Lange, 1983). This is possible, however, only
for models in which one is a smoothly parameterized subhypothesis of the other,
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i.e., when the models are nested. Many of the models in Table 11, however, are
not comparable in this way. For example, the only difference between models
19 and 23 is that in the former, only state Cs can inactivate; in the latter, only
the open state can inactivate. Both models have the same number of parameters
and are subhypotheses of the basic model (model 3). However, they are not
properly compared by the likelihood ratio test since one is not a subhypothesis
of the other. The former model (19) is clearly better, however, as shown by a
comparison of their respective log(likelihood)s (Table II).

Akaike (1974) has proposed a method for ranking non-nested hypotheses. He
introduced an “asymptotic information criterion” (AIC) of the following form:

AIC = 2[number of parameters — log(maximum likelihood)].

The model with the minimum AIC is considered best. Although this approach
has not been universally accepted (e.g., Leamer, 1983), it allows for a simple
ordering of models and has the added advantage that it favors parsimonious
models. Table II shows the ordered AIC ranking for the 25 models examined.
The best model by this criterion is model 4, which is the basic model (model 3)
constrained to have equal rate constants for the first two transitions. Table IV
shows that this model is statistically indistinguishable from either the general
model (model 2) or the basic mode! (3) under a likelihood ratio test. This test
also shows it to be indistinguishable from model 1 (chi-square = 10.76; degrees
of freedom = 6, P ~0.1), which is the basic model with an extra parameter for
the estimation of the initial condition (see Table II).

An examination of the AIC ranking in Table II and the likelihood ratio tests
in Table IV leads to the following general observations, which are readily verified
by examination of these two tables.

(a) The best models require inactivation to occur from both the open state
and at least one closed state. The log(likelihood)s are not significantly increased
by allowing inactivation to occur from more than one closed state. Based on the
relative values of the maximum log(likelihood)s of models 3, 5, and 6, inactivation
from the state preceding opening produces a slightly better model than inacti-
vation from another closed state does. However, it is not clear whether the
difference between these models is significant, since all three are statistically
indistinguishable from the general model (model 2) and their maximum likeli-
hoods are within 5 log units of one another. Models 3, 4, 8, 12, 13, 15, 19, and
22-25 are all variations on this theme of inactivation occurring near the open
state, and are consistent with the notion of a coupling between activation and
inactivation, as we will explore in the following paper (Vandenberg and Horn,
1984).

() The models are significantly improved by allowing inactivation to be
reversible. For example, an irreversible version of the basic model is model 12.
Table IV shows that the latter is markedly inferior (P <107*). This is generally
true for comparisons between reversible and irreversible versions of the same
model.

(¢) The AIC ranking shows that inactivation from one closed state only (model
19) is statistically superior to the strictly coupled model 23, in which inactivation
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can occur only from the open state. All strictly coupled models (22-25), which
require a channel to open before inactivating, produced very poor predictions
of channel properties. This is probably due to difficulty in simultaneously fitting
the brief first latencies with the sizable proportion of blank records. In a strictly
coupled model, a blank record indicates that the channel is closed but not
inactivated.

(d) The log(likelihood)s in this experiment are not significantly increased by
the inclusion of a hibernating state (see Horn et al., 1984). This is seen by a
comparison of models 13 and 15. A likelihood ratio test here gives a P value of
~0.6. In other experiments, however (see Vandenberg and Horn, 1984), hiber-
nation was apparent in the raw data, and the log(likelihood)s were increased by
its inclusion in the model (Table V).

(¢) If the basic model is given the added freedom of estimating the initial
probability distribution between the first two closed states at the onset of the
depolarization, model 1 results. Although this model has the highest likelihood
of all models, it is not statistically distinguishable from model 4 (P ~0.1), in which
the initial probability distribution is fixed (see Methods). By the AIC, it also
ranks below the much simpler model 4.

(f) The more closed states the better. Although models with two closed states
(e.g., models 7 and 8) did surprisingly well, in terms of the magnitudes of their
maximum log(likelihood)s, this was primarily due to the fact that we truncated
the beginning of the records in this experiment (see Methods). For nontruncated
data from the same experiment, models with three closed states were vastly
superior to those with two closed states (unpublished observation).

(g) The irreversible Hodgkin-Huxley model (model 18) is statistically inferior
to most other irreversible models with the same number of states (with the
exception of strictly coupled models). Note that the reversible version of this

TABLE V
Models Fit by the Maximum Likelihood Analysis
Experi- Number of Number of
ment channels Vohage records Ranking

my

28 4 -20 219
-30 201 13<15<24
—40 283
=50 261

50 2 ~40 314 15<13<18<21*<2]

56 1 -25 426 See Table I1
-40 474

67 2 -25 474
-40 475 4*<10<13<21*<2]
=50 333

The ranking refers to model numbers listed in Table II, and is given in order of best
to worst model according to the AIC criterion. Model numbers followed by an asterisk
correspond to the model numbers in Table II with the addition of a hibernating state.
For experiments with more than one channel, a hibernating state usually improved
the fit. Experiment 56 is the one-channel patch analyzed in Tables I-IV.
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model could not be tested, because it has eight states (e.g., see French and Horn,
1983), which is beyond the range of our analysis.

The preceding discussion demonstrates our ability to compare and eliminate
alternative hypotheses. As mentioned earlier, we could confine ourselves to the
question of how well an individual model makes predictions. However, we have
generally found that most of the models examined yielded similar predictions
for a variety of histograms (e.g., see Fig. 8). The only models that produced
exceptionally poor predictions were three-state models and strictly coupled
models (models 20-25). These models also had the lowest likelihoods. The
problem of discriminating between kinetic models that yield similar predictions
has been encountered in several studies of gating (e.g., see Conti et al., 1980;
Sigworth, 1981). One option is to say that such models cannot realistically be
discriminated. Our opinion, however, is that hypothesis testing is a desirable
possibility, using the likelihood method. In many cases, we were able to quanti-
tatively compare two models using a likelihood ratio test.

Evaluation of the Method

We have adopted a fundamentally different approach to model development
than that usually used for kinetic analysis of gating. Usually a “synthetic” approach
rather than a “statistical” approach is taken (Armstrong, 1981). The former
strategy involves the construction of conceptually reasonable models with a
minimal number of parameters, which are estimated in a semiquantitative man-
ner by comparing the predictions of the model with the data. Often the compar-
isons are qualitative and only permit nonrigorous comparisons between models.
Such an approach might not, for example, be able to distinguish between the
Hodgkin-Huxley and a statistically superior model (Fig. 8).

The approach we use, by comparison with other methods of both synthetic
and statistical varieties, has a few notable advantages and several disadvantages,
which we will discuss briefly. Further discussion of the merits and problems of
this method can be found in Horn and Lange (1983). The principal advantage
is the power to estimate parameters and test hypotheses, as we have shown above.
It also has the important advantage over many other methods for the analysis of
single channel data of being able to handle nonstationary data in patches with
more than one channel. One of the main reasons for the power of this method
is that all the data are evaluated simultaneously. For example, the approach of
fitting histograms by sums of exponentials (e.g., see Colquhoun and Sigworth,
1983) will produce estimates of eigenvalues for the kinetic model of choice, but
reliable strategies for choosing appropriate conditional histograms and extracting
the underlying rate constants are not available. In our data, for example, the
closed time histogram at —25 mV (Fig. 4) has very few elements, since the
channel rarely reopens after closing. If we fit this to a sum of four exponential
components, appropriate for the basic model, the values of the four time
constants would be much less reliable than the one time constant obtained by a
fit to the open time histogram. We are unaware of a rigorous method to weight
the reliability of the fits of these two histograms in the effort to extract rate
constants from them. Another general problem with the use of histograms is that
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they lump data and thus lose information about detailed relationships between
events. For example, an open time histogram loses information about relative
patterns of long- and short-duration openings (Jackson et al., 1983). This
problem does not occur in our likelihood analysis, because the data remain in a
relatively “raw” form, which preserves all of the detailed relationships between
observable transitions.

One of the strengths of this method is the ability to determine standard errors
of parameter estimates. Unfortunately, the standard errors are sometimes larger
than the values of the estimates themselves (see Tables I and III). Although this
may be construed as a criticism of the method, we believe that it demonstrates
the real difficulty in estimating parameters in a cyclic compartment model in
which only transitions into and out of one state can be observed directly. This
problem cannot be fully appreciated in the synthetic approach to understanding
gating. It further demonstrates why many methods cannot successfully discrimi-
nate between models.

It is worth considering the sensitivity of this method in estimating rate constants
for branched kinetic sequences. (Horn and Lange [1983] already addressed this
issue using linear sequences.) We therefore simulated single channel currents for
model 15 of Table I1. We generated 500 records for a single channel using rate
constants similar in value to those obtained in our experiments, and sampled
these records every 190 us. The rate constants used for the simulation were (see
Table II): a = 1,000, & = 200, ¢ = 500, d = 200, ¢ = 250, and f = 40 s~!. The
estimated rate constants obtained from the simulated data were é = 985 + 73,
b=148 +53,(=443+£36,d=177£11,6=218 21, and f = 46.9 + 8.7
s!, which are in reasonable agreement with the values used for the simulation
and again support the reliability of our analysis. These estimates were marginally
improved by reducing the sampling interval to 100 us.

The principal drawback of the likelihood method is the extensive time required
for calculations. The estimates of rate constants for one model can take several
days of computer time for a five-state model in the case of a four-channel patch,
using our VAX computer with a dedicated array processor (see Methods).
Because the analysis is so time-consuming, we have had to restrict our detailed
attention to relatively few patches having a minimal number of channels (Table
V). If channels are sufficiently heterogeneous, we may be drawing conclusions
from a biased sample. In the following paper (Vandenberg and Horn, 1984),
this point is addressed by comparing the analysis of several patches with macro-
scopic currents.

Another drawback of the method is that it requires that the currents be well
resolved within the frequency bandwidth of interest. Therefore, the amplitude
of transitions should be well above the background noise. Although this may be
possible for sodium channels, at least over part of the voltage range of activation,
many channel types, such as calcium channels (Hagiwara and Ohmori, 1983) or
acetylcholine receptor channels (Colquhoun and Sakmann, 1981; Auerback and
Sachs, 1983), have rapid transitions within the frequency range of interest.

This paper demonstrates that the likelihood technique, which has previously
been used for relatively simple problems of single channel data analysis, is a
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powerful approach in the kinetic analysis of voltage-gated sodium channels. The
following paper (Vandenberg and Horn, 1984) exploits this method in an
examination of inactivation and its relationship with activation.
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