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Abstract

Exceptional advances have been made recently in our
understanding of the signaling pathways that control
cellular growth, differentiation, and survival. These pro-
cesses are regulated by extracellular stimuli such as cy-
tokines, cell-cell interactions, and cell-matrix interac-
tions, which trigger a series of intracellular events
culminating in the modulation of specific genes. STATs
are a highly homologous group of transcription factors
that are activated by various pathways and regulate
many of the genes controlling cellular function. STATs
are activated by tyrosine phosphorylation and modu-
lated by serine phosphorylation, placing them at a con-
vergence point for numerous intracellular signaling
pathways. Given the importance of STATs in the control
of normal physiologic processes, it is not surprising that
inappropriate activation of these proteins has been found
in human malignancies. A number of distinct mecha-
nisms have been elucidated by which STATs are acti-
vated inappropriately, including autocrine or paracrine

stimulation of normal receptors and increased activity of
tyrosine kinases through enhanced expression, muta-
tions, or the presence of activating proteins. Further-
more, inappropriate STAT serine phosphorylation has
been found in several tumors as well. The increased
understanding of signaling pathways in tumors can be
translated into therapeutic strategies that have the po-
tential to be more selective and less toxic than current
anti-cancer treatments. Approaches which may be effec-
tive include the development of antagonists of receptors
that can trigger STAT activation, inhibitors of the ty-
rosine and serine kinases that phosphorylate and acti-
vate STATs, agents that decrease STAT levels or inhibit
their recruitment to kinases, and molecules that can
prevent the binding of STATS to target DNA sequences.
Thus, elucidation of cellular and biochemical processes in
tumors has enhanced our understanding of the patho-
genesis of malignancies and may provide the basis for
significant advances in therapy.

Introduction

At the most basic level, cancer represents an
abnormal accumulation of cells that arise from a
selective advantage in one of three processes: (1)
an enhanced ability to grow; (2) a defect in un-
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dergoing cell death; or (3) a loss of the capacity to
differentiate. Each of these processes is normally
initiated by extracellular stimuli such as soluble
factors, cell-cell interactions, or cell-matrix in-
teractions, although the actual phenotypic pro-
gram is determined by the pattern of genes that
are activated or repressed. A variety of signaling
cascades are present in the cell that link events at
the cell membrane with programs of gene ex-
pression in the nucleus. In recent years a number
of lines of evidence have suggested that path-



ways that lead to the activation of a group of
transcription factors termed STATs may play a
particularly important role in the biology of both
hematopoietic and nonhematopoietic tumors.

STAT Signaling Pathways

Two approaches can be used to dissect the intra-
cellular events that connect the engagement of a
cell surface receptor with the modulation of tran-
scription in the nucleus. The first is to study the
receptor, and to discern modifications, such as
phosphorylation, that occur following binding by
a ligand. Through biochemical and genetic tech-
niques, one can then move step-wise to elucidate
proteins that are activated, ultimately arriving at
the transcription factors that directly modulate
gene expression. The second approach is to start
in the nucleus with genes known to be activated
by a specific stimulus. One can then define DNA
sequences in the promoter of the gene that con-
fer sensitivity to the stimulus. The transcription
factors that bind to these DNA sequences can be
identified, and the kinases or other enzymes that
modulate the transcription factors can then be
isolated. In this way, one can work from the
inside of the cell outward to discern the pathway
controlling new gene transcription. In the last
several years, a number of pioneering experi-
ments examining the signal transduction path-
ways utilized by interferons (IFNs) has employed
both of these approaches to define a signaling
cascade termed the STAT pathway, which has
become important in the understanding of both
normal and malignant cell growth.

In the late 1980s, a number of genes were
identified whose transcription was induced by
IFN-a or IFN-vy. Specific DNA elements, termed
the IFN stimulation response element (ISRE) for
IFN-a (1) and the gamma (IFN) activated site
(GAS) for IFN-vy (2), were identified which me-
diate responsiveness to each IFN. Using ISRE and
GAS DNA sequences as probes, proteins that
bound to these sites were isolated and their
genes identified (3). The proteins activated in
response to IFN-« and IFN-+y are in the cytoplasm
under basal conditions, though following stimu-
lation with an IFN, they rapidly translocate to the
nucleus and bind to their cognate DNA se-
quences. It was subsequently shown that the
activation of these factors requires tyrosine phos-
phorylation (4).

These elegant studies defining the activation
of IFN-responsive transcription factors were
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complemented by experiments performed at
about the same time on events occurring at the
cell membrane. Although it was known that the
IEN receptors become tyrosine phosphorylated
following stimulation with their ligand, and that
inhibitors of tyrosine kinases block the action of
IENs, in contrast to polypeptide growth factor
receptors [such as the receptors for epidermal
growth factor (EGF), platelet-derived growth
factor (PDGF), and insulin], the IFN receptors
themselves lack tyrosine kinase activity. To de-
termine how the IFN receptors activate tyrosine
kinases, a series of mutants that lacked the ability
to respond to IFNs was employed. Genes were
transfected into these cell lines, and the restora-
tion of sensitivity to IFNs was examined. These
experiments revealed that three members of a
recently described family of cytoplasmic tyrosine
kinases, termed Jaks, associated with the cyto-
plasmic domains of these receptors and could
restore their signaling ability (5-9). As a result of
these experiments, a unified model for interferon
signaling was proposed that is now known to
mediate signals generated by a multitude of cy-
tokines (Fig. 1). When a cytokine binds to its
receptor, it causes the receptor chains to aggre-
gate, bringing the associated Jak family kinases
into juxtaposition. This activates the Jak kinases
which mediate the subsequent tyrosine phos-
phorylation of the Jaks and the cytokine receptor
chains. The highly tyrosine phosphorylated re-
ceptor-kinase complex then serves as a docking
site for proteins, such as STATs, which possess
src-homology-2 (SH2) domains that allow bind-
ing to specific tyrosine-phosphorylated amino
acid sequences (10,11). The STATSs recruited in
this way become phosphorylated on unique ty-
rosine residues necessary for activation (12),
then dissociate from the receptor—kinase com-
plex and dimerize via reciprocal phosphoty-
rosine-SH2 interactions (13). The STAT dimers
translocate to the nucleus where they bind to the
DNA sequences necessary to mediate gene acti-
vation in response to the cytokine (14). The ac-
tual induction of transcription appears to require
interactions between STATSs and the p300/CREB
binding protein (CBP) family of co-activators
(15-18), and requires their histone acetyltrans-
ferase activity (19).

The activation of STATs is both rapid and
transient. Following IFN stimulation, STAT1 be-
comes maximally tyrosine phosphorylated in 15
to 30 min, and returns to its basal unphosphor-
ylated state in 1 to 2 hr. The de-activation of
STATs may occur through dephosphorylation
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Fig. 1. Cytokine-induced STAT activation.

(A) STATSs are latent transcription factors found in
the cytoplasm of cells. (B) When a cytokine interacts
with its cell surface receptor, it induces receptor
dimerization, bringing into juxtaposition associated
Jak family tyrosine kinases. The Jaks become acti-
vated, leading to the tyrosine phosphorylation of
themselves and the associated receptor chains.
STATs are recruited to the activated kinase-receptor
complex, where they become phosphorylated on

(20,21) and/or proteolysis (22-24). In addition,
cytokines can induce inhibitors of Jak family ki-
nases or of the STATs themselves, and this may
contribute to the transient nature of STAT acti-
vation under physiologic conditions (25-30).
Although this signaling cascade was initially
elucidated in the context of IFNs, it rapidly be-
came clear that many hematopoietic cytokines
whose receptors lacked intrinsic tyrosine kinase
activity could interact with Jak family members
and transduce signals by virtue of STAT activa-
tion. Such cytokines include interleukin-2 (IL-2)
(31-35), IL-3 (36), IL-4 (37,38), IL-6 (39,40),
IL-12 (41), leukemia inhibitory factor (42-46),

unique tyrosine residues. (C) Once tyrosine is phos-
phorylated, the STATs dimerize, translocate to the
nucleus, and bind to specific DNA sequences in the
regulatory regions of target genes where they can
modulate transcription. (D) STATs can also be phos-
phorylated on specific serine residues. Although this
is not sufficient to activate the STATS, it leads to an
enhancement of the transcriptional response medi-
ated by tyrosine-phosphorylated STATs.

erythropoietin (36), thrombopoietin (47-49),
colony-stimulating factor-1 (CSF-1) (50,51),
granulocyte-CSF (G-CSF) (52,53), and granulo-
cyte-macrophage-CSF (GM-CSF) (36). In addi-
tion, receptors for other soluble factors were also
found to activate Jaks and STATs, such as growth
hormone (54,55), oncostatin M (56), prolactin
(57-59), ciliary neurotrophic factor (60), tumor
necrosis factor (TNF) (61), and angiotensin II
(62,63). Given the importance of the Jaks in
mediating the tyrosine phosphorylation of
STATs, this pathway was initially referred to as
the Jak-STAT pathway. However, it is clear that
other kinases can participate in the phosphory-



lation of STATs, including src family kinases (64),
Tec family kinases (65,66), and the EGF, insulin,
and PDGF receptors (50,51,67-72). In addition,
other stimuli can induce STAT activation such as
engagement of the antigen receptor on B cells
(73), or of CD2 on T cells (74). STAT activation in
response to these stimuli is delayed, suggesting
that the mechanism for phosphorylation is dis-
tinct from that mediated by cytokines. STAT
phosphorylation is also enhanced by reactive ox-
ygen species, which may contribute to the phos-
phorylation of STATs triggered by physiologic
cytokines and growth factors (75,76). Thus,
STATs are activated by a large variety of stimuli
mediated by a number of tyrosine kinases.

The hypothesis that STATs occupy a conver-
gence point for a variety of cellular pathways was
enhanced by the finding that STATs could also be
phosphorylated on distinct serine residues (77—
79). Although serine phosphorylation is not suf-
ficient to lead to STAT activation, the phosphor-
ylation of specific serine residues enhances the
transcriptional activation that occurs following
tyrosine phosphorylation. The kinases mediating
the serine phosphorylation of STATs are still be-
ing elucidated, although there is evidence that
JNK (80), p38 (80,81), MAP kinase (82), protein
kinase C, and protein kinase A (83) might all be
able to lead to phosphorylation of these sites.

Six STAT family members have been identi-
fied, of which one, STATS, is encoded by two
highly related genes (84-88). All STATs share
structural similarities including a unique tyrosine
residue toward the carboxy terminus that is re-
quired for activation, a serine residue distal to
the critical tyrosine that also can be phosphory-
lated, a phosphotyrosine-binding SH2 domain,
and a DNA-binding domain. STATSs are activated
individually or in combination in response to a
wide variety of factors. STAT1, STAT3, and
STATS5 are each activated by a large number of
cytokines; STAT2, STAT4, and STAT6 are acti-
vated by relatively few of them. An important
area of research centers on determining how the
spectrum of STATs activated in response to a
given stimulus leads to a unique transcriptional
response.

In addition to forming dimers and binding
DNA directly, evidence is mounting that STATs
can interact with other families of transcription
factors. STAT1-STAT2 heterodimers formed in
response to treatment with IFN-« associate with
a non-STAT DNA-binding protein termed p48, a
member of the IFN regulatory factor-1 family
(3,89). Subsequently, various STAT family mem-
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bers have been found to associate with c-jun
(90), C/EBPa (91,92), SP1 (93), and the glu-
cocorticoid receptor (94). These studies suggest
that STATs may have important effects acting
both independently and in concert with other
transcription factors.

Cellular Functions Modulated by
STATs

Proliferation

Given that STATSs integrate signals from a variety
of pathways, it would be expected that they reg-
ulate genes important for critical cellular func-
tions such as growth, differentiation, and sur-
vival. In fact, there is evidence that STAT binding
sites are located within the promoter regions of
genes that affect each of these processes. Pro-
tooncogenes such as c-fos, which may play an
important role in the progression of the cell cy-
cle, can be induced by STAT proteins through the
so-called sis-inducible element (67,82,95-99),
although maximal induction of c-fos may require
concomitant activation of the ras pathway as
well (71,95,99). IL-3-induced proliferation is at
least partly dependent on STATS5, as dominant
inhibitory forms of this STAT decrease the mito-
genic effect of IL-3 (99). Similarly, STAT3 is ac-
tivated during EGF-induced mitogenesis and ap-
pears to be necessary for cellular proliferation
(100). Furthermore, the increased synthesis of
STATI induced by IFN-y can potentiate the mi-
togenic actions of growth factors such as EGF and
PDGF (101). By contrast, STAT1 may also medi-
ate growth arrest via induction of the cyclin-
dependent kinase inhibitor p21 (102). Thus, al-
though STAT activation is necessary for
proliferation in many cell types, it can be associ-
ated with growth inhibition as well.

Differentiation

In addition to modulating cellular proliferation,
STATs can mediate transcriptional events associ-
ated with the differentiated functions of cells. For
example, STATS5, originally described as “mam-
mary gland factor,” mediates the transcriptional
activation of milk proteins in response to prolac-
tin (57,58,103). STATS, activated in response to
IL-4, regulates expression of cell surface proteins

- such as major histocompatibility (MHC) class II

antigens and is involved in immunoglobulin class
switching and Th2 differentiation (104-106).
That STAT-mediated modulation of MHC class II
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expression is important to host immunity is in-
dicated by the finding that cytomegalovirus
(CMV) may escape immune clearance by inter-
fering with STAT-mediated up-regulation of
MHC class II molecules (107). Complementing
the actions of STAT6, STAT4 plays an important
role in the Thl differentiation pathway for T
lymphocytes (108,109). In addition to being as-
sociated with cell growth, STAT3 activation has
been found to be critical for differentiation of
astrocytes (110), keratinocytes (111), and my-
eloid cells (112), and plays an important role in
mediating the formation of epithelial tubules in
response to hepatocyte growth factor (113).
Thus, STAT activation can be an important ap-
proach to overcome blocks in differentiation in
malignant cells.

Apoptosis

STATs may play a role both in facilitating apo-
ptosis and preventing it, depending on the sys-
tem. In human fibroblasts STAT1 is required for
the constitutive expression of several caspases,
proteases required for executing the cell death
pathway (114). Up-regulation of Fas and FasL,
molecules that can initiate the apoptotic cascade,
is mediated by STAT1 in response to IEN-vy (115).
STAT3 appears to mediate apoptosis in Jurkat T
cells following ligation of MHC class I molecules
(116). On the other hand, STATI activation is
associated with the activation of the anti-apop-
totic protein bcl-x in colorectal carcinoma cells
(117) and in cardiac myocytes (118). Thus,
STATs may mediate opposing effects on survival
in different cell types, perhaps reflecting the fact
that the same physiologic stimulus may lead to
survival in some cells and apoptosis in others.

STATs in the Pathogenesis of
Malignancy

If STATs are involved in the physiologic regula-
tion of processes such as survival, growth, and
differentiation, then it would be expected that
derangements in STAT signaling could lead to
the development of malignancies. Studies in Dro-
sophila, which express a Jak homolog (119) and a
STAT homolog (120,121), indicate that gain-of-
function mutations affecting the Jak can lead to
a form of leukemia (122,123). Over the last sev-
eral years, evidence has accumulated indicating
that, by a variety of mechanisms, inappropriate
activation of STATs may play a role in human

malignancy as well (Fig. 2). This evidence devel-
oped initially from studies on cells taken from
patients with hematologic malignancies. Abnor-
mal STAT activation was subsequently found in
patients with epithelial and mesenchymal tu-
mors, suggesting that STAT activation might be a
common pathway for neoplastic cell growth. Fi-
nally, mechanistic studies have begun to shed
light on the kinases that mediate STAT phos-
phorylation in tumors and have confirmed that
this activation is necessary for malignant cell
growth.

STAT Activation in Hematologic Malignancies

ACUTE LEUKEMIAS. The first evidence that inap-
propriate activation of STATs might be playing a
role in human cancer came from studies on leu-
kemic cells taken directly from patients. Using
electrophoretic mobility shift assays to detect ty-
rosine phosphorylated STATs, constitutive acti-
vation of STAT5 and STATI1 was found in acute
lymphoblastic leukemia (ALL) cells and of
STATI, STAT3, and STATS in acute myelogenous
leukemia (AML) cells (124-126). These studies
provided direct evidence that in contrast to nor-
mal cells, leukemic cells from untreated patients
contain activated STAT transcription factors that
could be driving their abnormal growth.

CHRONIC MYELOGENOUS LEUKEMIA AND BCR-ABL.
Chronic myelogenous leukemia (CML) has long
been known to be characterized cytogenetically
by the presence of the Philadelphia chromosome,
a product of a reciprocal translocation between
chromosomes 9 and 22 (127,128). This translo-
cation results in the generation of a fusion pro-
tein termed Bcr-Abl, a highly active tyrosine ki-
nase that can transform hematopoietic cells in
vitro and in vivo (129-132). Whereas many he-
matopoietic cell lines require exogenous cyto-
kines such as IL-3 or GM-CSF for survival and
proliferation, the introduction of Bcr-Abl into
these cells relieves the requirement for cytokines
and leads to growth factor independence (133).
Since IL-3 and GM-CSF exert at least some of
their effects by activating STAT transcription fac-
tors, the possibility was considered that Bcr-Abl
caused factor-independent cell growth and by
extension, cellular transformation, through the
activation of STATs. In fact, Bcr-Abl transforma-
tion of hematopoietic cells leads to the tyrosine
phosphorylation of STAT1 and STAT5 in both
model systems and in cells of patients with CML
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Fig. 2. Mechanisms for STAT activation in can-
cer. A variety of pathways have been described
leading to STAT activation in tumor cells, including
(1) autocrine or (2) paracrine activation of cytokine
receptors, (3) oncoprotein kinases for which STATs
are not physiological substrates (such as Bcr-Abl),

(4) mutated cellular tyrosine kinases (such as Src),

(134-138). These cells do not display any evi-
dence of Jak activation, suggesting that the ty-
rosine phosphorylation of the STATs is mediated
directly by the Bcr-Abl kinase. Bcr-Abl has two
predominant forms, one of 210 kDa associated
with CML, and a 190 kDa form that is associated
with ALL (139). The reason that these isoforms
are associated with distinct hematologic malig-
nancies is unclear, but there are both qualitative
(136) and quantitative (135) differences in STAT
phosphorylation mediated by these proteins that
may underlie their different biological effects.
Recent evidence has suggested that the introduc-
tion of a dominant interfering form of STATS,
which inhibits STAT5 function, can block Bcr-
Abl-mediated cellular transformation (140). This

D. A. Frank: STAT Signaling and Cancer 437

&

Abl]

@ ﬂ)«'
m
®

&) JAK

P
STAT | STAT
©

(5) chimeric oncoproteins which activate kinases
that normally phosphorylate STATs (such as Tel-
Jak), (6) proteins that can activate a receptor inde-
pendent of ligand (such as in HTLV-I transforma-
tion), and (7) activated serine kinases that do not
activate the STATS per se, but may contribute to in-
appropriate responses to physiologic signals.

has provided the first direct evidence that cellular
transformation by Bcr-Abl requires the activa-
tion of specific STATs.

STAT SERINE PHOSPHORYLATION IN CHRONIC LYMPHO-
CYTIC LEUKEMIA (CLL). Given that cytokine-
driven cell growth is associated with STAT ty-
rosine phosphorylation, it is not surprising that
constitutive STAT tyrosine phosphorylation is
seen in rapidly growing leukemias. However, the
form of leukemia most common in the Western
world, CLL, is characterized by the gradual accu-
mulation of relatively differentiated B lympho-
cytes (141). As such, it might be expected that
activation of signaling pathways in CLL may be
more subtle than the full activation seen in these



438 Molecular Medicine, Volume 5, Number 7, July 1999

other malignancies. In fact, no constitutive ty-
rosine phosphorylation of STATs is found in CLL
cells (83). Thus, the possibility was considered
that STAT1 and STATS3, transcription factors ac-
tivated by cytokines important in lymphocyte
function such as IL-2 (33,142) and IL-6 (143),
might have a distinct modification. In fact, CLL
cells from untreated patients uniformly contain
STAT1 and STAT3 phosphorylated on the serine
residues known to modulate their function,
whereas normal peripheral blood or CD5* B cells
lack this modification (83). Although serine
phosphorylation does not lead to the nuclear
translocation and DNA binding induced by ty-
rosine phosphorylation, serine phosphorylation
does enhance the transcriptional response medi-
ated by tyrosine-phosphorylated STATs. Thus, in
CLL, the constitutive serine phosphorylation
may amplify the transcriptional induction medi-
ated by STATI or STAT3 once these proteins are
tyrosine phosphorylated following cytokine
stimulation or through other mechanisms. In
this way, inappropriate STAT serine phosphory-
lation would be expected to have a more subtle
effect on B cell function, consistent with the
biology of CLL.

STAT ACTIVATION IN LYMPHOMAS. Activation of
STAT proteins is not restricted to leukemia cells.
A cell line derived from a patient with mycosis
fungoides, a form of cutaneous T cell lymphoma,
contains STAT3, which is constitutively activated
(144). In these cells, the slowly migrating form of
STAT3, which is phosphorylated on ser-727
(78,83), is tyrosine phosphorylated as well. This
raises the possibility that the dual phosphoryla-
tion of STAT3 on both tyrosine and serine resi-
dues is an important part of cellular transforma-
tion. In the mycosis fungoides cell lines, STAT3
associates with Jak3 and tyk2, and the Jak kinase
inhibitor AG490 inhibits STAT3 tyrosine phos-
phorylation and the growth of these cells (144).
These results suggest that inappropriate activa-
tion of endogenous Jak family kinases may con-
tribute to STAT activation in mycosis fungoides.
However, this Jak activation in the absence of
growth factors does not completely recapitulate
cytokine-induced signaling. In nonmalignant cell
lines and primary cells, IL-2 induces the tyrosine
phosphorylation of STAT1 and STATS5 in addi-
tion to STAT3. Although STATS5 is not phosphor-
ylated in mycosis fungoides cells under basal
conditions, the addition of IL-2 leads to the in-
ducible phosphorylation of STAT5. As such, only
part of the IL-2-induced signaling pathway is

activated in these cells constitutively. It is possi-
ble that of the various biological effects induced
by IL-2, STAT3 mediates proliferation, and
STATS5 may mediate another effect such as cyto-
kine production. In a transformed cell, only the
IL-2-responsive transcription factors necessary
for proliferation would need to be activated. In
other T cell lymphomas, both STAT3 and STAT5
are activated, and this appears to be driven by
autocrine (or perhaps paracrine) activation of
the IL-2 receptor (145). Culture of these cells in
vitro leads to a gradual loss of STAT phosphory-
lation, which can be reinduced by exposure to
IL-2. Thus, constitutive STAT activation may oc-
cur in lymphomas by a variety of mechanisms,
many of which center around the IL-2 receptor.

HTLV-I-MEDIATED TRANSFORMATION. Another model
of hematopoietic cell transformation is represented
by lymphocytes infected with human T cell lympho-
tropic virus I (HTLV-I). Although T cells generally
require IL-2 for proliferation, T cells infected with
HTLV-I eventually become IL-2-independent. Be-
cause IL-2 rapidly activates STAT1, STAT3, and
STATS5 in resting or activated lymphocytes (33,142),
the activation of STATs in HTLV-I-transformed cells
was examined. In HTLV-1-transformed cells prior to
the development of IL-2-independent growth, little
STAT activation can be detected. By contrast, follow-
ing development of the IL-2-independent phase of
growth, prominent activation of STAT3 and STATS5 is
seen (146). These findings are not restricted to in vitro
models of HTLV-1 transformation, as primary leuke-
mic cells from 8 of 12 HTLV-I-seropositive patients
with adult T cell leukemia/lymphoma (ATLL) dis-
played constitutive activation of STAT1, STATS3,
and/or STAT5 (147). In Bcr-Abl-transformed cells,
there is no evidence for Jak activation, and it is pro-
posed that the STATs become tyrosine phosphory-
lated directly by the Bcr-Abl kinase (134,136). By
contrast, in patients with HTLV-I-associated ATLL,
Jak kinases are chronically activated (147,148), and
in IL-2-independent T cells transformed by HTLV-Iin
vitro, Jakl and Jak3 are activated (146). Although
the mechanism for Jak activation in HTLV-I-trans-
formed cells is unknown, it is likely that a protein
encoded by the virus can interact with components of
the IL-2 receptor to recapitulate the IL-2 signaling
pathway. It is also interesting that IFN-B, which nor-
mally exerts an anti-proliferative effect on T cells,
does not inhibit the growth of HTLV-I-infected T cells
(149). IFN-B induces the phosphorylation of STAT1
in both infected and uninfected cells, but in HTLV-I-
infected cells a greater proportion of the phosphory-
lated STATI is the truncated STAT18 form, which



may be transcriptionally inactive. It remains to be
determined whether this is the mechanism by which
HTLV-I infected cells escape IFN-mediated suppres-
sion of growth.

STAT ACTIVATION IN MULTIPLE MYELOMA. That in-
appropriate STAT activation might play a role in
multiple myeloma was suggested by the finding
that both IL-6 and the IL-6 receptor are ex-
pressed by myeloma cells. IL-6, which activates
STAT1 and STAT3, promotes the growth and
survival of myeloma and other B cell tumors
(150-153), and animals that lack IL-6 cannot
support the development of these malignancies
(154). The importance of STAT3 in these cancers
was demonstrated by the finding that IL-6-inde-
pendent B cell tumors contain constitutively ac-
tivated STAT3 (155), and STAT3 is activated in
the bone marrow of patients with multiple my-
eloma but not in normal individuals (156). The
majority of STAT3 activation in myeloma cells is
due to an IL-6 autocrine loop, as blocking the
IL-6 receptor leads to a loss of most, but not all,
STAT3 phosphorylation. This may reflect the ac-
tivation of STAT3 by an independent pathway,
activation of the IL-6 receptor intracellularly, or
incomplete blockade of the IL-6 receptor. IL-6-
mediated STAT3 activation can also be blocked
by an inhibitor of Jak family kinases or by the
introduction of an inhibitory form of STAT3. In-
hibiting STAT3 by any of these approaches sen-
sitizes myeloma cells to both spontaneous and
fas-mediated apoptosis, perhaps through down-
regulation of the anti-apoptotic protein bcl-xl
(156). IL-6 can also act as a growth factor in
hairy cell leukemia (157), and elevated serum
levels of IL-6 confer a poor prognosis in patients
with diffuse large-cell lymphoma (158). Thus,
cytokines such as IL-6 which can act by auto-
crine, paracrine, and endocrine routes, may con-
tribute to the development of a variety of human
tumors.

STAT Activation in Nonhematologic Tumors

Extensive evidence suggests that STAT activation
is important in the pathogenesis of hematologic
malignancies such as leukemias and lymphomas.
However, recent studies have shown that STAT
activation may play an important role in the
function of nonhematopoietic cells as well. As
noted, transformation of fibroblasts by a number
of mechanisms is associated with STAT3 activa-
tion. In addition, many of the cytokines that
signal through STATs have receptors on mesen-

D. A. Frank: STAT Signaling and Cancer 439

chymal and epithelial cells, and widely expressed
polypeptide growth factor receptors, such as
those for insulin, EGF, and PDGF, can activate
STATs. Analogous to the findings in hematopoi-
etic cells, it would be expected that inappropriate
activation of STATs in nonhematopoietic tissue
could lead to tumorigenesis.

BREAST CARCINOMA. The observation that pro-
lactin, a hormone with major effects on mam-
mary growth and differentiation, activates
STATS5, raised the possibility that inappropriate
activation of STATs might be a component of the
pathogenesis of breast cancer (57,58,103,159).
Using nuclear extracts derived from human
breast carcinomas and normal mammary tissue,
it was found that activated STATs, principally
STAT1 and STAT3, were present in the malig-
nant tissue (160). Furthermore, in five of nine
breast cancer cell lines, but not in normal mam-
mary epithelium, STAT3 was found to be consti-
tutively activated (161). Since EGF receptor
overexpression has been found in breast and
other carcinomas, one hypothesis is that the con-
stitutive activation of STAT3 is mediated by the
EGF receptor pathway. In fact, in a cell line de-
rived from a minimally invasive breast carci-
noma, constitutive STAT3 activation is driven by
the autocrine stimulation of an EGF-like mole-
cule (162). However, in other mammary cell
lines, an inhibitor of the EGF receptor kinase
does not eliminate STAT3 activation, suggesting
that a distinct tyrosine kinase is involved in this
process (161). In another model of mammary
carcinogenesis, overexpression of ornithine de-
carboxylase (ODC), the rate-limiting enzyme in
polyamine biosynthesis, contributes to cell trans-
formation. Overexpression of ODC leads to acti-
vation of STAT3, bypassing the need for EGF
(163). Thus STAT3 activation may be a common
event in mammary transformation induced by
diverse stimuli.

OTHER NONHEMATOLOGIC MALIGNANCIES. Recent
evidence has suggested that STAT3 is activated in
primary squamous carcinomas of the head and
neck (164). Such activation is also found in the
normal mucosa of these patients, but not in the
mucosa of controls, suggesting that it may be an
early change in the transformation of these cells.
STAT3 appears to be activated through the EGF
receptor and may mediate the increased survival
of these cells conferred by EGF family members
(165). Similarly, STAT5 has been shown to be



440 Molecular Medicine, Volume 5, Number 7, July 1999

activated in squamous carcinoma cells and ap-
pears to promote the growth of these cells (166).

Activation of STAT3 has also been found in
cell lines derived from human prostate cancer
and ovarian cancer (167). Although Jak acti-
vation is not found in these cell lines, activa-
tion of various src family members is observed,
and these kinases may be mediating the phos-
phorylation of STAT3. Using both microscopic
and biochemical techniques, it has been shown
that STATI and STAT3 are activated in atypical
nevi, lesions that are precursors to melanoma
(168). Thus abundant evidence suggests that
inappropriate STAT activation is present in ep-
ithelial and mesenchymal tumors.

AUTOCRINE LOOPS IN NONHEMATOLOGIC MALIG-
NANCIES. Although IL-6 is often viewed as a he-
matopoietic cytokine, it can affect the biology of
epithelial cells as well. Increased expression of both
IL-6 and the IL-6 receptor has been seen in colo-
rectal carcinoma, suggesting that an IL-6 autocrine
loop may play a role in the pathogenesis of this
disease (169). IL-6 can activate STAT1 in colorectal
carcinoma cells in vitro (117). While IL-6 does not
affect the growth or differentiation of these cells, it
does promote their survival, and in this way may
contribute to the genesis of colorectal tumors. The
presence of an IL-6-mediated autocrine loop may
have relevance to the prevention of these neo-
plasms as well. It has been suggested that people
who consume a diet high in fiber have a decreased
risk of colorectal cancer (170-173). Butyrate, a
short-chain fatty acid found in the bowel lumen of
people who consume a high-fiber diet, down-reg-
ulates expression of the IL-6 receptor in vitro, and
in this way breaks the IL-6 autocrine loop (117).
Whether this mechanism is important in the de-
velopment of colon malignancies remains to be
determined, but it is a potentially attractive target
for developing chemoprotective agents for these
cancers. IL-6 can affect the biology of other epithe-
lial malignancies as well. For example, in renal cell
carcinoma (174) and prostate cancer (175) IL-6
decreases the sensitivity to chemotherapeutic
agents. Thus, cytokine-driven STAT activation may
play a major role in the biology of both hemato-
logic and nonhematologic malignancies.

Mechanisms for STAT Kinase Activation in Cancer:
Formation of Kinase Fusion Proteins

An important question that arises from these
findings is the identification of the kinase(s)
catalyzing STAT phosphorylation in tumors. As

in the case of Bcr-Abl, recent molecular and
genetic evidence has indicated that fusion pro-
teins formed as a result of chromosomal trans-
locations can lead to activation of this path-
way. Chromosomal translocations between the
short arms of chromosome 9 and chromosome
12 have been described in hematologic malig-
nancies, most commonly, childhood ALL
(176-178). Subsequently, it has been shown
that as a result of this translocation, Jak2 (on
chromosome 9) becomes fused with a member
of the Ets family of transcription factors (on
chromosome 12) (179,180). Ets transcription
factors form complexes physiologically
through a specific oligomerization domain
(181). The fusion proteins contain the kinase
domain of Jak2 and the oligomerization do-
main of the transcription factor. This results in
oligomerization of the Jak2 kinase, which re-
capitulates the activation of Jaks by cytokine-
induced dimerization, and leads to constitutive
kinase activity (180,182). Since Jak-mediated
STAT phosphorylation normally requires the
presence of a cytokine receptor, it might not
follow that independent Jak activation in the
cytoplasm would induce STAT phosphoryla-
tion. Nonetheless, in hematopoietic cell lines,
the introduction of Tel/Jak2 results in the ac-
tivation of STAT1, STAT3, and STATS, and cy-
tokine-independent growth, and in animal
models Tel/Jak2 fusions can induce myelopro-
liferative disorders (183).

Other examples of fusions between kinases
and transcription factors have been described,
including those of Tel/Abl (184,185), NPM/
ALK (186), and ZNF198/FGFRI (187). In sev-
eral leukemias, fusions have been found be-
tween the PDGF receptor (PDGFR) and
proteins that can mediate dimerization (188-
190). The PDGF receptor is one of the polypep-
tide receptor tyrosine kinases that can induce
STAT activation (191,192). In Tel/PDGFR fu-
sions, analogous to Tel/Jak2, the PDGFpR is
activated by dimerization mediated by the oli-
gomerization domain of the transcription fac-
tor Tel (193,194). Hematopoietic cells trans-
formed with TEL/PDGFBR become growth
factor independent, and display constitutive
activation of STAT family members (195), pro-
viding further evidence that the forced consti-
tutive activation of STAT family members may
be critical to the pathogenesis of these leuke-
mias.



Mechanisms for STAT Kinase Activation in Cancer:
Activated Cellular Tyrosine Kinases

Kinases that phosphorylate STATs under physi-
ological conditions, such as Jaks and growth fac-
tor receptors, can be activated by mutations to
induce STAT phosphorylation continuously. Ki-
nases that may not normally phosphorylate
STATs can also become activated through muta-
tions to phosphorylate STATs in models of neo-
plasia and in human cancer (196). With physio-
logic stimuli, STAT activation is a transient event.
Two key unanswered questions related to STAT
signaling in cancer are the following: Why are
the mechanisms that normally turn off STAT
activation not functioning in these cells? Also,
what is the difference in gene induction between
continuously activated and transiently activated
STATSs?

ABL. Given that c-abl is a nuclear protein, it is
unlikely that it is a physiologic STAT kinase.
Nonetheless, the altered activity and subcellular
localization of Bcr-Abl clearly allows abl to acti-
vate STATs. Pre-B cells transformed with the
oncogenic tyrosine kinase v-abl also show con-
stitutive STAT activation (197). In contrast to
Bcr-Abl-mediated transformation, v-abl associ-
ates with Jak1l and Jak3, both of which are acti-
vated in these cells. Several lines of evidence
suggest that the ability of v-abl to induce the
activation of Jak1 is critical for its ability to trans-
form hematopoietic cells (198). Thus, transform-
ing tyrosine kinases may lead to STAT activation
by direct phosphorylation, or indirectly by acti-
vating Jak family members.

SRC. In contrast to abl, which is unlikely to be a
physiologic STAT kinase, src may be involved in
mediating some cytokine-induced STAT phos-
phorylation. Evidence from a model system in
which STAT3 phosphorylation is induced by IL-3
indicates that activation of c-src rather than Jak2
is critical for STAT3 activation (64). This suggests
that src family kinases may be important in me-
diating STAT activation in response to cytokines
under physiologic conditions. It is clear that mu-
tated forms of src and related kinases can lead to
STAT activation and cellular transformation. In
models of fibroblast transformation, many ty-
rosine kinases have been found to lead to STAT3
phosphorylation, including v-src and v-fps, poly-
oma middle T antigen (which activates several
non-receptor tyrosine kinases), and v-sis, which
activates the PDGF receptor (161,199-201).
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STAT3 activation is not common to all forms of
fibroblast transformation, as SV40 large T anti-
gen, v-raf, and v-ras, all of which operate
through other mechanisms, fail to lead to STAT3
activation (161).

A key question that arises in studying neo-
plastic transformation, especially that induced by
a potent tyrosine kinase, is whether the STAT
activation seen is integral to the physiologic
changes that occur or merely reflects the pres-
ence of an activated kinase with a broad sub-
strate range. In the case of src, strong evidence
suggests that STAT3 activation is critical for
transformation. Wild-type STAT3 enhances the
transforming potential of v-src, and dominant
interfering forms of STAT3 inhibit src-mediated
transformation (202). STAT3B, a naturally oc-
curring splice variant of STAT3, lacks the trans-
activation domain and the site of serine phos-
phorylation, and it also functions in a dominant
inhibitory capacity (203). Introduction of
STAT3f blocks STAT3-mediated gene activation
driven by src (204). Furthermore, STAT3p inhib-
its src-mediated cellular transformation, but not
that induced by activated ras, providing addi-
tional evidence that STAT activation is central to
the mechanism of cellular transformation medi-
ated by some, but not all, dominant transforming
oncogenes. These experiments suggest that
STATS3 is not necessary for fibroblast transforma-
tion, but represents one pathway by which these
cells can become malignant. src associates with
STAT3 and can phosphorylate this protein in
vitro (200,201). However, in contrast to Bcr-Abl,
src may also act through Jak kinases. src-trans-
formed cells have been reported to display acti-
vation of Jak1 and, to a lesser extent, Jak2 (205),
although this finding may be cell type dependent
(201). Since the Jaks themselves are activated
through tyrosine phosphorylation, it is possible
that src-mediated STAT activation can occur ei-
ther directly or through the activation of the
Jaks. Although STAT1 and STATS are also phos-
phorylated in src-transformed cells, these pro-
teins do not coprecipitate with src (201). Thus,
distinct mechanisms may govern the phosphor-
ylation and activation of various STAT proteins
in src-transformed cells.

LCK. Another src family member is the Lck ty-
rosine kinase, which is important for T cell de-
velopment and function. In a mouse T cell lym-
phoma characterized by Lck overexpression,
STAT3 and STATS5, as well as Jakl and Jak2, are
constitutively activated (206). Lck-induced
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STAT3 activation also seems to be important in
transformation mediated by the DNA tumor vi-
rus herpesvirus saimiri (207,208). The trans-
forming tyrosine kinase-interacting protein Tip-
484, which is encoded by the virus, directly
interacts with and activates Lck, and leads to the
phosphorylation of STAT1 and STAT3. Thus the
Lck tyrosine kinase, which is critical for normal T
cell activation, can be co-opted in the process of
cellular transformation either directly, by over-
expression, or indirectly, through a protein that
enhances its kinase activity.

EYK. c-Eyk encodes a receptor tyrosine kinase,
which can become mutated to form a dominant
transforming oncogene. The activated Eyk ty-
rosine kinase associates with STAT1, STAT3, and
Jakl, and leads to the constitutive activation of
these STATSs (209). Although STAT3 activation is
critical for src-mediated transformation, in the
case of Eyk, cellular transformation correlates
more closely with the activation of STAT1 rather
than STAT3 (210). Thus, inappropriate STAT ty-
rosine phosphorylation can occur in transformed
cells as a result of a mutation involving a kinase
that may not normally phosphorylate STATSs
(such as abl) or kinases that do phosphorylate
STATs under physiologic conditions (such as Jaks
and PDGFfR), or by the inappropriate activation
of apparently normal kinases (as with HTLV-I
transformation).

Activation of Specific STATs in Tumors

Among the STAT family members involved in
experimental and primary human tumors,
STATI, STAT3, and STATS5 appear to be inappro-
priately phosphorylated most often. This may
reflect the fact that these proteins are activated
by the widest array of cytokines and may have
relatively broad effects in promoting cell growth
and/or survival. The three STAT family members
that do not play a major role in tumors appear to
have more limited and defined actions. STAT2 is
activated in response to IFN-a, but generally not
in response to other stimuli. Since IFN-« appears
to have largely a growth-inhibitory effect, it is
not surprising that activation of STAT2 has not
been defined as an abnormality in tumor cells.
STAT4 and STAT6 are activated by a small num-
ber of cytokines, and they appear to play a role
largely in regulating the function and differenti-
ation of T lymphocytes and natural killer (NK)
cells (35,106,108,109,211,212). Thus, the ab-

sence of abnormalities of these transcription fac-
tors in malignancy is to be expected.

Anti-Cancer Therapy Targeting
STAT Transcription Factors

General Considerations

Given the wide array of tumors in which inap-
propriate tyrosine or serine phosphorylation of
STATs is found, inhibition of STAT signaling is an
attractive approach for anti-cancer therapy. In
selecting targets for therapeutic intervention,
several requirements must be met: (1) the target
must be expressed or regulated differently in ma-
lignant cells compared to normal cells; (2) it must
be amenable to manipulation that can reverse
the abnormality; and (3) its modulation in nor-
mal cells must not cause undue toxicity. Recent
evidence suggests that STATs fulfill each of these
criteria. They are clearly activated inappropri-
ately in tumor cells, compared to normal cells,
and a variety of approaches can be taken to
inhibit their function. However, the most diffi-
cult aspect of cancer therapeutics is the issue of
selectivity, specifically how to inhibit or kill tu-
mor cells while leaving normal cells unscathed.
Although STATs mediate important processes in
a variety of cells, it does not follow that inhibi-
tion of STAT function will induce toxicity in
normal tissue. Both quantitative and qualitative
data provide insight into the effects of STAT in-
hibition. From a quantitative standpoint, the
magnitude of STAT activation is considerably
greater in models of neoplastic cell growth com-
pared to normal cell growth. Using an IL-2-de-
pendent cell line such as NKL (213), it can be
shown that prominent tyrosine phosphorylation
of STATI1 and STATS5 occurs after the cells are
starved, then stimulated briefly with IL-2 (214).
If, however, the cells are allowed to grow con-
tinuously in the presence of IL-2, the magnitude
of activation of these STATs is greatly reduced
(Fig. 3). This may reflect the transient nature of
cytokine-induced STAT activation and additional
factors such as cell cycle asynchrony. By con-
trast, the magnitude of STAT activation in tumor
systems is usually comparable to that seen in the
starvation—stimulation model of STAT activation,
which is many-fold higher than that found un-
der physiological growth conditions. It may be
that in malignant cells high levels of phosphor-
ylated STATs are required, perhaps to overcome
compensatory regulatory pathways. Thus, even
partial inhibition of STAT activation might be
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Fig. 3. The magnitude of STAT activation var-
ies with physiologic conditions. IL-2-dependent
NKL cells were cultured in IL-2 containing growth
medium (lanes 1 and 3) or were starved of IL-2 for
16 hr (lanes 3 and 4). Cells were left untreated
(lanes 1 and 3) or were stimulated with supplemen-
tal IL-2 (lanes 2 and 4). Tyrosine-phosphorylated
STATI1 and STAT5 were determined by performing a
Western blot with an antibody that recognizes the
activated, tyrosine-phosphorylated form of both pro-
teins. IL-2 treatment of starved cells, which mimics
the signaling response in transformed cells, leads to
a much greater level of STAT1 and STATS activation
than that seen in cells growing under physiologic
conditions.

sufficient to inhibit tumor cell growth without
causing toxicity in normal cells.

A second argument for the feasibility of tar-
geting STATS in anti-cancer therapy makes use of
findings from animals in which specific STATSs
have been eliminated by gene targeting. For ex-
ample, STAT5 has been found to be activated
inappropriately in a number of leukemias and
lymphomas. Animals that do not express STAT5a
and STATS5b, despite defects with growth hor-
mone and prolactin signaling, are viable and rel-
atively healthy (215). Thus, although STATS is
involved in mediating the effects of a number of
cytokines, there appears to be sufficient redun-
dancy to allow normal processes to occur in its
absence. Animals that lack STATI also develop
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normally. However, these animals manifest a de-
fect in cell-mediated immunity, suggesting that
targeting of STAT1 may lead to immunosuppres-
sion as a side effect. STAT1 null mice may also
have an increased susceptibility to malignancies,
perhaps through a defect in immune surveillance
(216). However, it is unclear whether a similar
mechanism is active in humans, as suppression
of cell-mediated immunity is generally not asso-
ciated with epithelial malignancies. The loss of
STAT4 (108,109) or STAT6 (106,211,212) affects
fairly defined immune functions, but does not
lead to widespread abnormalities. One difficulty
in interpreting experiments performed in knock-
out animals is that a defect may result from the
absence of a protein during a developmental
phase, while the protein itself may be dispens-
able in adult tissue. In addition to STAT1 and
STATS5, the other STAT found to be activated
commonly in malignancy is STAT3. Animals that
lack this protein die early during embryogenesis
(217), making it difficult to predict how inhibi-
tion of STAT3 might affect the physiology of an
animal in which developmental processes have
been completed. Nonetheless, it appears that tar-
geting the activation of STAT proteins in malig-
nancy need not induce intolerable toxicity to
normal tissue.

Finally, it is recognized that STATs are not
the only transcription factors that may be re-
sponsible for malignant cell growth, and neoplas-
tic transformation likely requires abnormalities
in more than one pathway. Nonetheless, direct
inhibition of STATs may be sufficient to restrict
the growth or survival of tumor cells. Further-
more, many of the cellular abnormalities that
induce STAT activation, such as the formation of
the Bcr-Abl oncoprotein, lead to the activation of
other signaling pathways. Thus, targeting mole-
cules upstream of STATs may have multiple ben-
eficial effects in inhibiting tumor cell growth.

Targeting of Receptors

Given our detailed understanding of STAT acti-
vation in malignancies, a number of therapeutic
strategies can be devised to target this pathway at
one or more points (Fig. 4). One mechanism
leading to inappropriate STAT activation is the
autocrine or paracrine activation of cytokine re-
ceptors. As noted earlier, IL-6 plays a role in such
pathways in both hematologic and nonhemato-
logic malignancies. If the malignant nature of
cells is being driven, even in part, by such stim-
ulation, then the development of antagonists
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Fig. 4. Strategies for STAT inhibition in tumor
cells. STAT-mediated cell growth and survival can
be inhibited through the use of receptor antagonists,
inhibitors of endogenous or mutated tyrosine ki-
nases, STAT SH2 inhibitors (which would block both
STAT recruitment to a tyrosine kinase and STAT
dimerization), STAT depletion through anti-sense or

that can block these loops might be effective.
Both natural product IL-6 receptor antagonists
(218) and genetically modified IL-6 variants, so-
called super-antagonists (219,220), have been
developed, and evidence in multiple myeloma
suggests that IL-6 antagonists inhibit cell growth
and make tumor cells more susceptible to cell
death (156). Complete absence of IL-6 is com-
patible with normal existence in mice (221), and
antibodies to IL-6 have been used in patients
(222), demonstrating that this approach is clini-
cally feasible.

Since IL-6 autocrine loops may play a role in
the genesis of colorectal neoplasms, inhibitors of
the IL-6 receptor may be useful in the treatment
or prevention of colon tumors (117). For exam-

Protein inhibitors of
Activated STATs

pharmacologic approaches, protein inhibitors of acti-
vated STATs which can be introduced genetically or
activated through biologic therapies, decoy oligonu-
cleotides (which can compete for STAT binding to
the promoters of target genes), and serine kinase
inhibitors.

ple, an enteric coated form of an IL-6 antagonist
could block IL-6 autocrine loops within the lu-
men of the colon, while causing no systemic
effects. Butyrate, which may mediate the protec-
tive effect of a high-fiber diet in preventing colon
cancers, appears to work by down-regulating the
IL-6 receptor and disrupting this autocrine loop.
Similarly, aspirin and other nonsteroidal anti-
inflammatory agents that lower the risk of colon
cancer also specifically interfere with IL-6 signal-
ing in these cells (H. Yuan, S. Mahajan, D. Frank,
unpublished observations). Thus, inhibition of
IL-6-induced STATI activation might be an ef-
fective assay to screen compounds that could
prevent colorectal cancer.

Finally, in T cell lymphomas there is evi-



dence that STAT phosphorylation mediated
through autocrine (or paracrine) activation of
the IL-2 receptor may be central to the patho-
physiology of these tumors (145). These studies
indicate that targeting cytokine receptors may be
a useful intervention for a variety of hematologic
and nonhematologic malignancies.

Targeting of Kinases

Since phosphorylation is required for STAT acti-
vation, the inhibition of kinases is an attractive
strategy for disrupting STAT function. This can
include the tyrosine kinases that are necessary
for dimerization, nuclear localization, and DNA
binding of STATs and/or the serine kinases that
can amplify the transcriptional response medi-
ated by a STAT. Evidence has already accrued
suggesting that such a strategy may be beneficial.
In ALL, Jak2 activation and STAT activation has
been found. A small-molecule inhibitor of Jak2,
AG490, specifically decreases Jak2 tyrosine ki-
nase activity and inhibits the growth of ALL cells
in a mouse model (223). Normal hematopoiesis
is unaffected by this drug. AG490 also inhibits
both the spontaneous and IL-2-driven growth of
mycosis fungoides cells, a T cell malignancy char-
acterized by constitutively activated STAT3
(144). Similarly, small-molecule inhibitors of
growth factor receptor tyrosine kinases and of
the abl kinase block the growth of cells trans-
formed by Bcr-Abl, Tel-Abl, and Tel-PDGFR
(224-230). Such agents may be effective in ma-
lignancies by inhibiting the activation of STATs
and potentially other pathways as well. In addi-
tion, endogenous Jak inhibitors, which likely
serve as part of a homeostatic mechanism to limit
the signaling response triggered by cytokine
stimulation, are inducibly expressed in normal
cells (25-30). The introduction of such proteins
or the genes encoding them into tumor cells
could potentially have anti-cancer activity.

Finally, serine phosphorylation of STATs
may be important to the biology of CLL (83),
cutaneous T cell lymphomas (144), and other
malignancies. Although serine phosphorylation
does not activate STATs per se, by amplifying
physiologic signals received by a cell, it may alter
the growth or survival characteristics of a cell
sufficiently to cause a tumor. This may be par-
ticularly important in relatively low-grade can-
cers like CLL. Thus, identification of the kinases
that mediate STAT serine phosphorylation and
the subsequent development of their inhibitors
may be an important therapeutic strategy.
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Targeting STAT Activation

The mechanisms by which STATs become ac-
tivated and transduce signals suggest several
possible strategies for targeting STATs them-
selves. STATs become phosphorylated when
they are recruited to an activated tyrosine ki-
nase through their SH2 domain (10,11). In
addition, the STAT SH2 domain is essential for
STAT dimerization, which occurs through re-
ciprocal interactions between the phosphory-
lated tyrosine of one STAT and the SH2 domain
of its dimerization partner (13,14). Thus,
small-molecule inhibitors of SH2 domains
could interrupt STAT signaling at two points of
the pathway: recruitment to an activated ki-
nase and dimerization. With advances in delin-
eating the structural requirements for SH2 in-
teractions, the development of relatively
specific inhibitors of this site is feasible.

A second method to inhibit STAT signaling
directly is to reduce the concentration of a
STAT within a cell. One approach is the use of
anti-sense oligonucleotides to directly reduce
STAT production. The half-life of a STAT pro-
tein is relatively short, less than 24 hr for
STAT1 (unpublished observations), making de-
pletion of STATSs through anti-sense an appeal-
ing and feasible strategy. Such an approach has
been used to decrease STATI levels in human
cells in vitro, with a concomitant reduction in
the mitogenic response to growth factors such
as EGF and PDGF (101). In addition, recent
evidence suggests that drugs currently used as
anti-cancer agents might work at least in part
through the depletion of STATI1. For example,
the purine analog fludarabine is an effective
agent in CLL. Although fludarabine was hy-
pothesized to act through incorporation into
DNA, relatively few CLL cells are traversing the
cell cycle at any given time, making such a
mechanism unlikely. Given that inappropriate
STAT serine phosphorylation is a hallmark of
CLL (83), it was hypothesized that fludarabine
might work by interfering with STAT signaling.
In fact, fludarabine leads to a pronounced and
specific loss of STATI1 (231). This may underlie
both the anti-neoplastic actions of fludarabine
and the immunosuppression that accompanies
the use of this drug, which is similar to that
seen in STATI-deficient animals. These find-
ings strengthen the hypothesis that STAT inhi-
bition is a potentially important target in can-
cer therapy.
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Targeting STAT DNA Binding

Even if STATs become phosphorylated within a
cell, they cannot exert their biological effect until
they bind to specific DNA sequences in the pro-
moters of target genes. Thus, inhibiting the abil-
ity of an activated STAT dimer to bind to its
target DNA is an effective strategy to inhibit
STAT-mediated transcriptional activation. Sev-
eral approaches can be envisioned. The first in-
volves inhibiting the translocation of activated
STATs from the cytoplasm, where they are phos-
phorylated, to the nucleus, where they exert
their effects. However, the mechanisms that reg-
ulate the process of nuclear localization are
poorly understood, and thus its inhibition would
be a distant goal. More practically, it is conceiv-
able that the ability of an activated STAT to bind
to a target sequence in a promoter region can be
inhibited. One approach involves the develop-
ment of small-molecule inhibitors that could in-
teract with the DNA binding sites of activated
STATSs, thereby preventing the binding to a pro-
moter sequence. A second approach, which
could be developed more easily, involves the
introduction into the cell of short stretches of
double-stranded DNA which mimics the target
STAT binding sequence. These “decoy oligonu-
cleotides” would be present in great molar excess
over the endogenous sequences within promoter
regions. When a STAT becomes activated, it
would bind to the decoy oligonucleotide, pre-
cluding its interaction with the target gene pro-
moters. Such a strategy could diminish the ability
of STATs to activate genes critical for neoplastic
cell growth, and might be particularly useful in
combination with inhibitors of STAT phosphor-
ylation.

Dominant Inhibitory STATs

STATs can also be inhibited by dominant inhib-
itory forms. Such STATs, which lack a DNA bind-
ing domain or a transactivation domain, can still
from dimers with endogenous STATs. However,
the dimer is functionally inactive, and thus the
mutant STAT can suppress STAT function in a
cell in which it is expressed (99,203,232). Al-
though potentially cumbersome to use clinically,
this approach has been useful in demonstrating
the importance for STAT signaling in a variety of
systems and can inhibit malignant cell growth in
in vitro models (140,202,204).

STAT Modulation by Biological and Physical Agents

Biological agents in current clinical use may act
by modulating STAT function. For example,
IFN-a can decrease the rate of recurrence of ma-
lignant melanoma after the primary tumor has
been removed (233). Although melanoma pre-
cursor lesions demonstrate constitutive activa-
tion of STAT1 and STAT3, when patients are
treated with systemic IFN-a, the DNA binding of
these STATSs is lost (168). Although IFN-« itself
can induce STAT activation acutely in melanoma
cells (234), chronic systemic administration may
decrease constitutive STAT activation through an
independent mechanism. One attractive hypoth-
esis is that the chronic presence of a stimulus for
STAT activation induces inhibitors of activated
STATs as part of a homeostatic feedback process
to limit STAT-mediated transcription (25-30).
Thus, chronic systemic IFN-a may be able to
suppress the function of STATs that have been
activated by another pathway. However, an
added complexity to the role of STAT signaling in
melanoma is the finding that melanoma cell lines
that become resistant to the cytostatic effects of
IFNs show a loss of IFN-activated proteins, most
commonly STAT1 (235). Similarly, in cutaneous
T cell lymphoma, resistance to the growth-inhib-
itory effects of IFN-« is associated with the loss of
STATI1 (236). These results suggest that on the
one hand, STATI activation is present in mela-
noma precursors and decreases with IFN-a treat-
ment, but that on the other hand, the loss of
sensitivity to IFN correlates with a loss of STATI.
The resolution of this paradox may depend on
one or more differences between the systems,
such as the use of atypical nevi versus melano-
mas, or the use of primary human tissue versus
cell lines. In addition, other modifications that
affect STAT activity, such as the concomitant
presence of activated STAT3 or the state of phos-
phorylation of ser-727 of STAT1, may also ex-
plain these differences. This is not an inconse-
quential issue, as activation of STAT1 can lead to
growth arrest in response to cytokines other than
the IENs (237). For example, in A431 cells, EGF
leads to STAT1 activation and growth inhibition
(232). The introduction of a dominant interfer-
ing form of STAT1 abrogates the growth-sup-
pressive effects of EGF, indicating that STAT1
mediates this inhibition. Thus, a key unanswered
question in the role of STATs in malignant cell
physiology concerns this discrepancy between
growth-stimulatory and growth-suppressive ef-
fects.



STAT activation can be used therapeutically
for the induction of cellular differentiation,
which may underlie the actions of another class
of biological agents, the retinoids. Among this
class of compounds, all-frans retinoic acid
(ATRA) has potent abilities to induce the differ-
entiation of acute promyelocytic leukemia cells
(238). Among the effects of ATRA is the up-
regulation of STATI and STAT2, the two STATSs
activated in response to IFN-a. In addition,
STAT1 becomes tyrosine phosphorylated for pro-
longed periods following ATRA treatment, and
ATRA potentiates the growth-inhibitory effect of
IFN-a (239-243). These studies lend further sup-
port to the importance of STAT modulation in
the mechanism of anti-tumor activity mediated
by biological agents.

The inhibition of STAT activation can also
occur through nonpharmacologic means. Physi-
cal and biological agents that induce immune
suppression may act by blocking cytokine-medi-
ated STAT activation. For example, UV light
(244) and the adenoviral protein E1A (245) can
each prevent the activation of STAT1 induced by
IFN-v. These findings suggest that modulation of
STAT activity is an important target for altering
cellular behavior and can be achieved through a
variety of modalities.

Summary

Extensive work in the last several years has high-
lighted the importance of the STAT family of
transcription factors in mediating the actions of
cytokines and growth factors. Because these
molecules transduce physiologic signals regulat-
ing growth, differentiation, and apoptosis, it is
not surprising that inappropriate STAT activation
has been found in a wide range of human tu-
mors. The goal now is to translate this enhanced
understanding of the molecular pathogenesis of
malignancies into effective strategies to treat can-
cer with more specificity and less toxicity. Re-
agents developed for this purpose may be useful
not only in the treatment of malignancies but
also in further dissecting the role that STAT sig-
naling plays in normal and neoplastic cellular

physiology.
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