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Introduction.-For the past several years, this laboratory has employed virus-
infected cells to examine the nature of the mechanism involved in transcribing infor-
mation from DNA for the protein-synthesizing apparatus. The data obtained
are consistent with the simplest of transcription devices, namely, that RNA strands
complementary to homologous DNA are the informed intermediaries. The ex-
perimental steps leading to this conclusion may be briefly noted, since they served
as an operational guide in the present attempts to extend this mechanism to unin-
fected cells.

Existence proof of RNA homologous to DNA: The existence of a "T2-specific
RNA" inferred from the P32 experiments of Volkin and Astrachan' was established
by Nomura, Hall, and Spiegelman.2 The proof was attained by separating the
newly synthesized RNA from the bulk of the cellular RNA using both zone elec-
trophoresis in starch columns and centrifugation in sucrose gradients. The T2-
specific RNA was found to have a higher electrophoretic mobility and a greater
heterogeneity in size than the three principal normal RNA components (23S,
16S, and 4S). It was further shown that T2-specific RNA was ribosome-bound
but with a linkage very sensitive to disruption by low magnesium levels.

Sequence complementarity: Having established T2-specific RNA as a physical
entity and provided methods for its selective enrichment, it was possible to proceed
to an inquiry into the significance of the homology in base ratios between it and
T2-DNA. To examine this question, Hall and Spiegelman3 employed the device
described by Marmur and Lane4 and Doty et al.5 for the reconstitution of double-
stranded structures. It was possible to show that RNA-DNA complexes were
indeed formed in mixtures of single-stranded T2-DNA and purified T2-RNA sub-
jected to a slow cooling process. The success of the hybridizing experiment sug-
gested immediately that the original observation' of a similarity in base composi-
tion between T2-RNA and DNA was indeed a reflection of a more profound ho-
mology. The fact that hybrid formation was found to be unique to the homologous
pair led to the conclusion that the nucleotide sequences of T2-RNA and DNA are
complementary.

Existence of natural RNA-DNA complexes: If continued formation of comple-
mentary RNA is a necessary concomitant, it should be possible to find RNA-DNA
hybrids in any cell actively engaged in protein synthesis. Again, the T2-E. coli
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complex was chosen. By the use of suitable labeling and detecting devices, Spiegel-
man, Hall, and Storck6 showed that natural RNA-DNA complexes do indeed exist.
The experiments with the T2-E. coli system accomplished two things. They

lend evident support for the supposition that information transport from DNA
is accomplished via a complementary RNA strand. They provide an operational
definition of what we mean by informational RNA. From both the theoretical
and empirical viewpoints, the necessary and sufficient criterion is complementarity
of base sequence with homologous DNA as revealed by the hybridization test.3
Other features of T2-RNA may or may not be shared by other informational RNAs.
We come now to the question of universality, which is the primary concern of

the present paper. Can the observations and conclusions derived from the study
of the T2-E. coli system be generalized to non-infected cells?
The detection and study of the properties of the informational RNA formed in

T2-infected cells was greatly facilitated by the fact that the synthesis of the ribo-
somal RNA components is suppressed. This advantage is not generally present
in uninfected cells, which, consequently, complicates the search for normal infor-
mational RNA. That it is, nevertheless, feasible is indicated by some recent
experiments. Ycas and Vincent7 infer the existence in yeast of a metabolically
unstable and homologous RNA from p32 experiments similar to those of Volkin
and Astrachan.' Astrachan and Fishers preliminarily report they have similar
findings with bacteria. Finally, Gros et al.9 confirm an earlier2 observation that
short pulses in E. coli lead to the appearance of RNA species in the size ranges which
characterize T2-informational RNA. Many of these studies involve very short
pulses and the consequent synthesis of rather small amounts of RNA. In no case
was a rigorous identification of complementary RNA completed.

It would clearly be of great advantage if a circumstance could be found or de-
vised in normal cells which would be analogous to that which occurs on infection
with T2. Essentially, what we are demanding is a condition which suppresses
ribosomal RNA synthesis and permits the prolonged formation of the informational
variety. The possibility that a situation of this sort might, in fact, be realizable
was suggested by recent studies'0-"2 on RNA and protein synthesis during passage
from fast to slow growth.

Several features emerged from these experiments which encouraged us to look
more carefully into such transitions as pertinent to the purposes we had in mind.
It has been known for some time that the RNA content of a cell is positively corre-
lated with its growth rate. Since the bulk of the RNA is.ribosomal, cells growing
at higher rates possess more ribosomes.'3 Consider then the situation when one
subjects a culture to a "step-down" transition by transferring cells from a rich to a
synthetic medium. The growth rate is decreased by a factor of about 2. More
important, at the moment they are introduced into synthetic medium and for
some time thereafter, the cells have more ribosomes than they can usefully employ.
From the viewpoint of selective advantage, it is perhaps not surprising to find"0-12
that such step-down transitions are accompanied by a dramatic cessation of net
RNA synthesis. Nevertheless, protein synthesis proceeds for a while at near
normal rates. In their relative rates of net protein and RNA synthesis, such cul-
tures are completely analogous to T2-infected cells. It seemed probable that the
remaining residue of RNA synthesis would be restricted to the variety immediately
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necessary for the fabrication of new protein molecules, i.e., the normal informational
RNA for which we were searching. Experiments were, therefore, undertaken to
see whether these expectations were realizable.

It is the purpose of the present paper to describe the results obtained. The
data show that informational RNA is indeed preferentially synthesized for con-
siderable periods of time in such step-down transitions. The RNA, thus formed,
is analogous in all tested characteristics to the T2-specific RNA studied in previous
investigations.1-3, 6

Methods and Materials.-Bacterial strains: The bacteria chosen covered the available range of
DNA base composition. The following strains were used: E. coli, C-122 and B; Ps. aeruginosa,
ATCC-10197; B. megaterium, KM.
Media buffer and conditions for growth: The conditions for preparing cells for an experiment

are similar to those described previously.6 The minimal medium (SC) used for E. coli was medium
C of Roberts et al.'4 modified by lowering the phosphate concentration to 10-3 M and including
0.1 M tris (hydroxymethyl) aminomethane (Tris) buffered at pH 7.3. Pseudomonas aeruginosa
and B. megaterium were grown in a modified SC medium (FC) in which ferric chloride was re-
-placed with ferric citrate at 3 X 10-4 M and 1-glutamate was added to a level of 3.5 X 10-2 M.
The enriched medium was a modified2 Penassay medium (MPM).
The general buffer used, designated by TM, is Tris at 0.01 M and 0.005 Mg++ buffered at 7.4.
Radioactive pulses with "step-down" and control cultures: To obtain "step-down" cultures,

logarithmically growing cells in MPM were collected and washed with minimal medium twice.
The washed cells were then resuspended in minimal medium and aerated at 300. Control (non-
step-down cultures) were obtained by taking log phase cells growing in minimal medium, subject-
ing them to the same washing procedure, and resuspending them in minimal medium.

P32 (20-200 uclml) was added at the indicated times and intervals. When tritium was the
label, H3-uridine (1,600 ,uc/,M) was used. The duration of the pulse determined the amount of
cold uridine added as a carrier. The final level of uridine ranged from 0.5 to 2 -y/ml in the various
experiments. At the end of the pulse, cells were dumped into equal amounts of cracked ice
made by freezing the appropriate minimal medium to -70°. The cells were centrifuged, col-
lected, and washed with pre-cooled TM buffer. They were then resuspended in the same buffer
at a concentration of about 1 X 1010 cells per ml.

Preparation of extracts and lysates: To the cells and buffer, lysozyme (200 -y/ml) and DNAase
(50 y/ml) were added. The mixture was next frozen at -70° and then thawed by holding it at
370 for one min. The procedure was repeated twice, then duponol (to a final concentration of
0.4%) was added and the lysates were kept at room temperature for five min. The time of de-
tergent treatment of the lysate was extended to 15 min for B. megaterium. The lysates were then
chilled and the RNA purified by the phenol procedure of Gierer and Schramm.140 After removal
of the ether, the RNA in the water layer was precipitated with three volumes of cold ethanol, the
precipitate redissolved in TM buffer and reprecipitated once more. After a final solution, the
RNA was dialyzed against TM for 12 hr in the cold and again reprecipitated with ethanol.

Ultracentrifugational analysis: The characterization of size distribution in RNA preparations
was made by centrifugation in linear sucrose gradients using swinging bucket rotors as described
previously.' The sucrose was buffered with TM. The only modification made in the present
study was the use of rotor #SW25. The centrifugation was carried out at 25,000 rpm for 12.5 hr
with a rotor temperature of 10'C.
The identification and separation of RNA-DNA hybrids was achieved by equilibrium centrif-

ugation in CsCl gradients as detailed in earlier publications."3 6 In all cases, at the end of the
centrifugation, the tubes were removed, the bottoms pierced with a needle, and the contents of the
tubes collected as separate fractions.

Optical density and radioactivity measurements: After suitable dilution, the UV absorption at
260 mM of each fraction was taken and aliquots removed for precipitation with trichloracetic acid
and the addition of 100 y of salmon sperm DNA as a carrier for filtration. Counting of radio-
activity was carried out as described previously" 3using trichloracetic acid washing on millipore
membranes and the Packard Tri-Carb scintillation counter, which permits the counting of either
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p32 or H3. p32 content of fractions eluted from Dowex columns was determined with the Nuclear
thin window gas flow counter.

Base composition analysis ofRNA: To the RNA preparation, sodium hydroxide was added to a
final concentration of 0.3 N and the mixture incubated for 20 hr at 30°. The resulting 2'-3'
nucleotides were separated using a Dowex formate column with a cross linkage of 8% and a
column size of 1 X 5 cm. Eluents used were as follows: 0.005 N HCOOH to remove traces of
nucleosides and free bases, 0.025 N HCOOH to elute cytidilic acid, 0.1 N HCOOH for adenylic,
0.05 N HCOOH + 0.05 N HCOONH4 for uridylic, and 0.1 N HCOOH + 0.2 N HCOONH4 for
guanylic. Unlabeled RNA (2-3 mg) of known base composition was added to each sample prior
to the hydrolysis step to obtain sufficient O.D. in the four nucleotide regions and provide controls
on losses of individual nucleotides. The amount of each nucleotide was calculated using known
molecular extinction coefficients. The radioactivity of each fraction was determined with the aid
of a nuclear gas flow counter. Since the added carrier was of known base composition, the data
permit the calculation of base compositions in terms of both the distribution of the counts in the
relevant peaks and the specific activities in the peak regions.

Experimental Results.-Base ratios of RNA synthesized during a step-down transi-
tion: As a first step, the base composition of the RNA synthesized during a step-
down transition was examined. The analysis was carried out by the P32-labeling
procedure described under Methods and Materials. To make the comparison with
the control culture valid, the p32 pulse was not started until the "step-down"
culture had begun logarithmic growth. Two periods of labeling were examined,
the first lasting for 10 min and the second for 20 min. Table 1 summarizes the

TABLE 1
BASE RATIOS OF RNA IN CONTROL AND "STEP-DOWN" CULTURES OF Ps. aeruginosa

Time after transfer Moles per cent G + C
Culture and interval of pulse C A U(T) G A + U Pu/Pyr.

Control 20-30 25.9 23.5 22.4 28.2 1.18 1.07
20-40 24.3 23.2 22.5 29.9 1.18 1.13

Step-down 20-30 31.2 19.5 18.0 31.3 1.68 1.03
20-40 29.1 21.0 20.2 29.7 1.43 1.03

DNA 32.0 18 18 32 1.77 1.00
Bulk-RNA 22.3 23.1 23.6 31.0 1.14 1.21

Both cultures were transferred in log phase to synthetic medium. Control came from synthetic, the "step-
down" from complete medium. They were subjected to p32 pulses at the times and for the intervals indicated.
The RNA was removed, purified, and hydrolyzed with alkali in the presence of added carrier RNA. The nucleo-
tides in the resulting hydrolysate were separated on Dowex columns and counted and their O.D.s at 260 mp were
determined. The numbers given are derived from the distribution of the counts and isotope dilution calculations.
For purposes of comparison, the total RNA base composition determined from UV absorption data are included for
each organism along with the homologous DNA base composition.

data obtained for both the control and the step-down cultures of Ps. aeruginosa.
Comparison of the two sets of data shows clearly that there is indeed a preferential
synthesis of RNA homologous to DNA in the step-down culture and that this
synthesis proceeds for extended periods of time subsequent to the transition. The
control culture during the same period of time synthesizes an RNA which is very
similar in its base composition to the pre-existent bulk RNA.
To examine the generality of this phenomenon, experiments were carried out

with several organisms of widely differing DNA base composition. Table 2 sum-
marizes experiments with three different organisms in which p32 pulses were carried
out at various periods following a transitional transfer from enriched to minimal
medium. It will be noted that in each case the RNA synthesized during the
transition mimics the homologous DNA in its per cent GC and purine to pyrimidine
ratio. Again, the length of time during which this selective synthesis of homologous
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TABLE 2
BASE RATIOS OF RNA IN "STEP-DOWN" CULTURES

Moles per cent -

Minutes after
Organism Transfer C A U(T) G %GC Put/Pyr

E. coli 5 24.7 24.1 23.5 27.7 52.4 1.07
60 25.2 24.1 22.1 28.6 53.8 1.12

DNA 26 24 24 26 52.0 1.00
Bulk-RNA 24.3 25.0 19.7 31.0 54.3 1.27

Ps. aeruginosa 5 29.0 21.3 20.2 29.5 58.5 1.03
60 27.1 21.8 21.2 29.9 57.0 1.07

DNA 32 18 18 32 64 1.00
Bulk-RNA 22.3 23.1 23.6 31.0 53.3 1.21

B. megaterium 5 19.7 27.9 29.0 23.4 43.4 1.05

DNA 19 31 31 19 38 1.00
Bulk-RNA 21.9 22.4 23.6 32.0 53.9 1.19

All cultures were transferred in log phase from complete to synthetic medium at 30'C. At times indicated,
they were subjected to a 3-min pulse with P22. The RNA was removed, purified, and hydrolyzed with alkali in
the presence of added carrier RNA. The nucleotides in the resulting hydrolysate were separated on Dowex
columns and counted, and their O.D.s at 260 my were determined. The numbers given are derived from the
distribution of the counts and isotope dilution calculations. For purposes of comparison, the total RNA base
composition determined from UV absorption data is included for each organism along with the homologous DNA
base composition.

RNA continues should be noted. In the case of Pseudomonas aeruginosa, even
60 min after the transfer a readily detectable fraction of the RNA formed is homolo-
gous to its DNA.

Size distribution of RNA formed during step-down transitions: The data sum-
marized in Tables 1 and 2 appeared to confirm our expectation that informational
RNA is preferentially synthesized. It was of obvious interest to see whether the
other properties of complementary RNA revealed by the study of the T2-E. coli
complex obtained in the present instance as well.

Informational RNA constitutes a quantitatively minor component and is more
heterogeneous in size than the three major components.3 15, 16 Consequently,
the preferential synthesis of the informational variety is readily revealed as dis-
cordancies between radioactive and optical density profiles observed when total
RNA from pulsed cells are subjected to density gradient centrifugal analyses.
Two cultures, control and "step-down," were treated identically after removal
from their respective media. Each was washed and transferred into minimal
media. Fifteen min after the transfer, they were subjected to a 15-min H3-uridine
pulse. The RNA was isolated, purified, and centrifuged on linear sucrose gradients.
Figure 1 compares the results obtained in the two cases. In each instance, the
O.D. profile readily identifies the 23S, 16S, and 4S RNA components uniformly
found in the cells. The parallelism between counts and O.D. in the control is
excellent in the 23S and 16S regions. Below this region, we see evidence of dis-
crepancies, a situation which is not surprising, since the control culture would also be
expected to make informational RNA. Its presence would not be masked in
regions which lack the more stable ribosomal variety. In the step-down culture
we find discordancies in all the size ranges of the RNA. It is clear from the radio-
active profile that the RNA synthesized in the "step-down" culture is extremely
heterogeneous, ranging in size all the way from above the 23S region down to 4S.
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FIG. 1.-Swinging-bucket analysis in 2.5-15 per cent sucrose gradients of phenol purified RNA.
Cells were exposed to a 15-mmn H3~-uridine pulse 15 min after transfer into synthetic medium. The
upper set comes from cells growing in complete medium before the transfer, the lower from cells in
synthetic. In each case, closed circles identify pre-existent and open circles newly synthesized
RNA.

This is in agreement with what has been seen in T2-infected and non-infected cells
of E. coli examined by the procedures employed in the present study.'6

Base ratios of the various sizes of RNA synthesized in a step-down culture: To
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investigate the relation to informational RNA of the various size ranges synthesized
during the step-down transition, it was desirable to determine the base compositions
of the relevant fractions. In this case, a step-down culture, Ps. aeruginosa, was
subjected to a 3-min P32 pulse 5 min after log-phase growth had begun, which
corresponds to 25 min after the transfer. The ribonucleic acid was purified and
examined in a sucrose gradient. The optical density and radioactivity profiles
are given in Figure 2. Again, we note a lack of correspondence between the two
profiles indicating the preferential synthesis of RNA differing from the three major
components.
The fractions indicated by arrows in Figure 2 were analyzed for base composition.

For purposes of ready comparison, numbers corresponding to the per cent GC
and the purine to pyrimidine ratios characterizing each region are recorded in
parentheses. Further details on the base-ratio analyses are given in Table 3.

TABLE 3
Ps. aeruginosa: BASE COMPOSITION OF VARIOUS SIZES OF RNA 3-MIN P32-PULSE OF "STEP-

DOWN" CULTURE
Moles per cent-

Fraction No.
(Fig. 8) Region C A U(T) G %GC Pu/Pyr
10,11 23S 25.9 22.4 23.4 28.3 54.2 1.03
16,17 16S 27.0 21.5 21.8 29.7 56.7 1.05
23,24 10-12S 30.3 20.9 19.0 29.8 60.1 1.02
26,27 6-8S 31.2 19.8 20.6 28.4 59.6 0.94

DNA 32 18 18 32 64 1.00
P-RNA 22.4 26.8 20.7 30.1 52.5 1.30

Conditions of experiment and analyses similar to those described in Table 2. The fractions taken are those
indicated by arrows in Figure 2. P-RNA means purified ribosomal RNA, and the base composition was obtained
from UV absorption data of the nuclerotides.

Comparison of the parameters reveals that DNA-like RNA of all size classes have
been synthesized, confirming the findings recorded in the previous sections. As
one proceeds to the smaller size ranges (16S to 6S), the homology between the
RNA and the DNA becomes excellent.

Metabolic stability of RNA synthesized in step-down cultures: One of the features
thus far found to be characteristic of complementary RNA is a high turnover rate.
This question was examined with respect to the RNA synthesized during a step-
down transition. A culture of Ps. aeruginosa was subjected to a p32 pulse in
exactly the same manner as that detailed in the experiments described by Figure 2
and Table 3. However, twice as much radioactivity was used. Following the 3
min of labeling, the culture was centrifuged, washed, and reintroduced into the
same medium containing PI'. It was then allowed to "chase" for 0.7 generations.
Figure 3 describes the optical density and radioactivity profiles observed when the
purified RNA from this preparation was centrifuged in a sucrose gradient in the
usual manner.
Comparison of the radioactive profiles in Figures 2 and 3 provides clear evidence

of the metabolic instability of the heterogeneous RNA synthesized during the
transition period. The chasing interval in the p31 medium eliminated almost
completely the discordancies between the optical density and radioactivity profiles
observed in the initial pulse (Fig. 2). To provide further information on this
question, the fractions indicated by arrows in Figure 2 were taken for base-composi-
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tion determinations. The numbers in parentheses give the results in terms of per
cent GC and purine to pyrimidine ratios. Table 4 provides further details on the

TABLE 4
BASE COMPOSITION OF RNA OF DIFFERENT SIZES SUBSEQUENT TO CHASE OF THE CULTURE OF

TABLE 3
Ps. aeruginosa

Mole per cent.
Fr Re- . C - -A-- .-U -,-- -%GC- -Pu/Pyr--
No. gion CPM UV CPM UV CPM UV CPM UV CPM UV CPM UV

12 23S 22.2 22.1 26.0 26.9 22.1 20.8 29.7 30.2 51.9 52.3 1.26 1.33
19 16S 22.2 22.8 25.5 26.7 21.7 20.5 30.6 30.0 52.8 52.8 1.26 1.31
32,33 4S 31.9 29.2 19.4 24.4 18.8 20.5 29.9 25.9 61.8 56.1 0.97 1.03

DNA 32 18 18 32 64 1.00
P-RNA 22.4 26.8 20.7 30.1 52.5 1.30
S-RNA 29.2 24.4 20.5 25.9 56.1 0.97
A culture treated similarly to the one used in the experiment of Table 3 and Figure 2 was taken after the 3-min

P 2-pulse, washed, and allowed to grow for 0.7 generations in an unlabeled medium. The RNA was prepared and
analyzed in the usual way. The data from the UV absorption are included to permit a comparison of the degree of
correspondence between the radioactive and UV calculation on the same samples. The fractions taken are indi-
cated by the arrows in Figure 3. The data obtained on P-RNA and S-RNA were from UV absorption data on
separately purified material. P-RNA has the same meaning as in Table 3. S-RNA is the RNA remaining in the
supernatant after removal of ribosomes by means of a 38K spin for 6 hr.

base ratios determined by both the ultraviolet absorptions derived from the added
carrier and the distribution of radioactive counts among the 2'-3' nucleotides as
eluted from a Dowex column.
The cold carrier added to each sample examined consisted of RNA isolated from

the region corresponding to the radioactive fraction being analyzed. As is evident
from the data detailed in Table 4, the compositions of the labeled RNA in the 23S
and 16S regions are now typically ribosomal. The base ratios determined by
distribution of radioactive counts and ultraviolet absorption are now in excellent
agreement.

It should be noted that despite the fact that the chase extended for a period of
0.7 generations there is still a detectable discrepancy in both the profiles of Figure
3 and the base compositions in the 4S region (Table 4). This may be a reflection
of the difficulty of completely removing the informational RNA from the 4S region.
These observations would be consistent with a mechanism which involves a com-
paratively rapid breakdown of the larger informational RNA pieces to 4S size and
the slower conversion of these to the level of nucleotide derivatives.
One other point of interest may be briefly mentioned. The total amount of

acid-precipitable radioactivity found in the RNA at the end of the chase period
corresponded to 150 per cent of that which was incorporated during the 3-min
pulse. Consequently, of the total amount of labeled ribosomal RNA synthesized
during the chasing period, 30 per cent came from a nucleotide pool and 70 per cent
was derived from the informational RNA which had been synthesized during the
initial labeling period. Nevertheless, the radioactive base compositions of the 23S
and 16S regions are indistinguishable from those normally found for ribosomal RNA.
This suggests that the informational RNA does not enter as intact polynucleotide
into the ribosomal components.

Hybridizability of RNA synthesized in step-down transitions: The experiments
described thus far establish that step-down cultures preferentially synthesize a
type of RNA which is heterogeneous in size and metabolically unstable and possesses
an over-all base composition analogous to its homologous DNA. These are fea-
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tures expected of informational RNA on the basis of our previous experience with
the T2-system. To complete the identification, it was necessary to test for sequence
complementarity by the hybridization procedure. An extensive studyl7 was made
on this question, which will be detailed elsewhere. We cite here a few representa-
tive experiments illustrating the principal features and findings. The general
procedures employed may be outlined as follows:

(1) Step-down cultures were pulsed with tritiated uridine to label the RNA
synthesized during transition.

(2) The RNA was isolated and purified by the phenol method.
(3) The purified RNA was separated according to size on sucrose gradients.
(4) Different regions of the radioactive profile were collected and concentrated.
(5) Hybridizing tests were carried out by exposing mixtures of the labeled RNA

and single-stranded DNA to a slow cool from 550 to 280C in 25 hr.
(6) The resulting mixtures were then subjected to an equilibrium centrifugation

in cesium chloride gradients according to the methods described by Hall and Spiegel-
man. 3

Figure 4 shows the outcome of a hybridization carried out between single-stranded
E. coli DNA and 8-12S tritiated RNA labeled with H3-uridine during a step-down
transition. It will be noted that excellent hybridization occurs. The shoulder
in the optical density profile on the light side corresponds to marker double-stranded
DNA. That the interaction is specific is shown in Figure 5, in which a similar
hybridizing attempt was made between the same RNA fraction and single-stranded
DNA derived from Pseudomonas aeruginosa. There is no suggestion of any de-
tectable mating.

Similar experiments were carried out with Ps. aeruginosa. The RNA again was
labeled with H3-uridine during a step-down transition. Figure 6 shows the out-
come of a hybridization carried out with homologous single-stranded DNA and
H3-RNA isolated from the 16S region. Here again, we note excellent hybrid
formation as demonstrated by the peak of tritium in the DNA region. This same
figure illustrates a feature which is extremely useful in attempts at detecting hybrid
and distinguishing it from non-specific aggregation. Aliquots from each of the
tubes were taken and treated with 5-y/ml of RNAase for 15 min at room temperature.
Carrier DNA was then added and the material reprecipitated, washed, and counted.
It will be noted that the radioactivity corresponding to uncombined RNA is
almost completely removed by the RNAase treatment. However, the counts in
the region of the hybrid are clearly much more resistant to hydrolytic cleavage.
It should be noted in passing that hybridized RNA is not completely resistant,
since exhaustive treatment with RNAase can result in complete loss of acid-pre-
cipitable counts.

Specificity tests with informational RNA from Ps. aeruginosa yielded results
similar to those described for E. coli. No interaction with heterologous single-
stranded DNA was observed.
The experiments summarized in the present section establish that RNA mole-

cules preferentially synthesized in step-down cultures possess base sequences
complementary to their homologous DNA.

Discussion.-It is apparent from the data presented that the choice of cultures in
"step-down" transition was a happy one. They obviously provide almost ideal
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experimental material for the study of non-ribosomal RNA synthesis. In particu-
lar, they permitted the ready demonstration of RNA molecules in non-infected
cells which satisfy the complementarity criterion established with the T2-E. coli
complex.
Noteworthy is the fact that other features of T2-complementary RNA are shared

by the bacterial informational RNA revealed by the present investigation. These
include homology of base composition with the relevant DNA, metabolic instability
and heterogeneity in size. Caution should, however, be exercised in accepting
any of these as diagnostic of an RNA complementary to a specific DNA. None
of them, including homology of base composition, need universally characterize or
be unique to informational RNA. A few examples may be cited. T2-RNA is
homologous in base ratio but not complementary to T5-DNA.3 Conversely, a
complementary RNA might exhibit non-homologous base ratios if it represented a
copy of sufficiently small DNA segment. Further, one need only recall hemoglobin
synthesis in the reticulocyte to entertain some doubts concerning the universality
of metabolic instability for all informational RNA. Obviously, neither size range
nor magnesium-dependent adsorbability to ribosomes can be accepted as uniquely
identifying characteristics of RNA types. The point being emphasized is that
none of these secondary properties can either alone, or in combination, be accepted
as substitutes for complementarity as the criterion for informational RNA. Find-
ing an RNA with one or more of these features suggests, but does not establish, that
a complementary RNA has been identified.
Along similar lines, a few clarifying comments on terminology may be made.

The terms "complementary" and "informational" have been used interchangeably
both in the present and previous discussions3' 6, 15 of the RNA molecules with
which we are concerned. Every complementary RNA is informational in at least
one sense. Even if it is a complementary copy of a nonsense sequence, it never-
theless contains the information necessary to specify the base order of its parental
DNA.

It is evident from the experiments described that these terms have well defined
operational definitions. A given RNA molecule is defined as falling within the
informational class if its sequence is complementary to a specific DNA molecule.
At present, the most sensitive available test for sequence complementarity is the
hybridization experiment of Hall and Spiegelman.3

It is important to emphasize that the word "informational" is not suggested as a
substitute for the term "messenger" introduced in the elegant theorizations of
Jacob and Monod.'8 It seems likely that both terms will be useful. Thus, a
given messenger RNA is presumed to constitute the structural program for the
synthesis of a particular protein. It obviously must, therefore, be informational.
However, not all informational RNA need operate as messengers. It is conceivable
that complementary RNA molecules will be found which serve regulatory rather
than programming functions. At the present time, there exists no operational
definition of "messenger" RNA. This will presumably emerge from the in vitro
systems being developed by Nisman et al.19 and Novelli20 and his collaborators.
Over the past several years, considerable progress has been recorded on the

enzymological aspects of DNA-dependent RNA synthesis.21-27 It seems likely
that we will soon be in possession of the enzymatic details operating in the syn-
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thesis of complementary RNA.
It is comforting that a number of laboratories, using experimental approaches

similar'9 to and different28 from ours, are arriving at equivalent views of the genetic
transcription mechanism. The pleasant air of agreement thus generated should
not lull us into forgetting that no one has as yet proved that complementary RNA
molecules perform the functions we hope they do.
Summary.-The primary purpose of the present paper was to determine whether

normal cells synthesize the type of informational RNA which had been detected
in T2-infected cells. The defining feature of this RNA is that it be capable of
forming hybrids with homologous single-stranded DNA. For reasons which are
detailed in the text, it was suspected that cells subjected to a shift from a rich to a
synthetic medium would preferentially synthesize such complementary RNA.
This expectation was fully realized. Use of such "step-down" cultures facilitated
the ready exhibition of an RNA in uninfected cells having all the properties which
had been established for the T2-complementary RNA. This normal informational
RNA exhibits a base ratio analogous to its homologous DNA, is metabolically
unstable and very heterogeneous in size, and possesses the ability to hybridize
specifically with its homologous DNA.

It would appear from the results summarized here that the synthesis of poly-
ribonucleotide strands complementary to homologous DNA is a generalized feature
of normal and virus-infected bacterial cells. With respect to the genetic transcrip-
tion mechanism, the present data are consistent with the conclusions drawn from
our previous experiments with T2-infected cells. It would appear that complemen-
tary RNA strands are the intermediaries between DNA and the protein-synthesiz-
ing apparatus.

* This investigation was aided by grants from the U.S. Public Health Service, the National
Science Foundation, and the Office of Naval Research.
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CHARACTERISTICS AND STABILIZATION OF DNAASE-SENSITIVE
PROTEIN SYNTHESIS IN E. COLI EXTRACTS

BY J. HEINRICH MATTHAEI* AND MARSHALL W. NIRENBERG

NATIONAL INSTITUTES OF HEALTH, BETHESDA, MARYLAND

Communicated by Joseph E. Smadel, August 3, 1961

It has been assumed for many years that in protein synthesis the base sequence
of DNA specifies the base sequence of RNA and that RNA in turn controls the
amino acid sequence of protein. In accord with this notion, several groups recently
have observed an inhibition of amino acid incorporation into protein by DNAase in
cell-free extracts.1-3 One object of the present investigation was to study this
phenomenon further.
A major difficulty in the study of cell-free protein synthesis in E. coli systems

has been the necessity for preparing fresh enzyme extracts for each experiment.
Techniques have not been available for stabilization and storage of enzyme ex-
tracts comparable to the techniques available for mammalian systems.4 In the
present communication, an amino acid-incorporating system stable to storage for
several months will be described. The characteristics of amino acid incorporation
into protein by the stored extracts were investigated also. A part of these data
has been presented in a preliminary report.2

Methods and Materials.-E. coli W3100 cells, harvested in early log phase, were washed by
centrifugation and disrupted by grinding with twice their wet weight of alumina A301 (Aluminum
Corporation of America) for 5 min at 5°. All subsequent steps were performed at this tempera-
ture. The enzymes were extracted with buffer containing 0.01 M Tris(hydroxymethyl)amino-
methane, pH 7.8; 0.01 M magnesium acetate; 0.06 M KCl; and 0.006 M mercaptoethanol
(standard buffer) equivalent to two or three times the wet weight of cells. The extract was
centrifuged three times at 30,000 X g for 20, 20, and 60 minutes, respectively. The pellets were
discarded after each centrifugation. The final supernatant fluid (S-30) was centrifuged at 105,000
X g for 2 hr in the Spinco Model L ultracentrifuge to sediment thee ribosomes. The supernatant
solution (S-100) was aspirated, and the ribosomes were suspended in standard buffer by gentle
homogenization in a Potter-Elvehjem homogenizer and were washed by centrifuging again at
105,000 X g for 2 hr. The supernatant fluid was decanted and discarded, and the ribosomes
(W-Rib) were suspended in the original volume of standard buffer. Fractions S-30, S-100, and
W-Rib were dialyzed against 60 volumes of standard buffer overnight at 50 and were stored in
small aliquots at - 15° until needed.
DNAase I, RNAase, and trypsin were crystalline preparations obtained from the Worthington


