
Delivering Labeled Teaching Images over the Web
Harold P. Lehmann MD PhD, Bach Nguyen MEE, Joan Freedman MS

Office of Medical Informatics Education, Johns Hopkins School of Medicine, Baltimore, MD
hlehmann@jhmi.edu

Abstract
The Web provides educators with the best
opportunity to date for distributing teaching images
across the educational enterprise and within the
clinical environment. Experience in the pre-Web era
showed that labels and information linked to parts of
the image are crucial to student learning. Standard
Web technology does not enable the delivery of
labeled images. We have developed an environment
called OverLayer that succeeds in the authoring and
delivering ofsuch images in a variety offormats.

OverLayer has a number offunctional specifications,
based on the literature and on our experience, among
them, the following: Users should be able to find
components by name or by image; to receive
feedback about their choice to test themselves.. The
image should be of arbitrary size; should be re-
usable; should be linked to further information;
should be stand-alone files. The labels should not
obscure the image; should be linked to further
information.. Images should be stand-alone files that
can be transferred among faculty members.

Implemented in Java, OverLayer
(http://omie.med.ihmi.edu/overlaver) has at its heart
a set of object classes that have been reused in a
number of applets for different teaching purposes
and a file format for creating OverLayer images. We
have created a 350-image histology library and a
500-image pathology library, and are working on a
400-image GI endoscopy library.

We hope that the OverLayer suite of classes and
implementations will help to further the gains made
by previous image-based hyperlinked technologies.

Introduction
Since the days of videodiscs [1] and, later, authoring
applications like HyperCard, SuperCard, and
ToolBook [2], medical educators have valued the
ability to provide students with active labeled image
sets. These are images where the identifying labels
can be hidden or displayed, as the student desires.
This ability is crucial for the student to learn to
distinguish important features from unimportant

features. We shall call the features the instructor wants the
student to identify components. They might be histological
structures, endoscopic appearances, or electrocardiogram
features.

The World Wide Web has swept through medical education,
but its core specifications do not make it easy to implement
the labeling functionality. For instance, image maps
(ISMAPs) can be used to click on a pre-defined component
of an image as a means of navitation. However, this
navigation does not provide basic visual feedback and its
management is cumbersome.

In this paper, we shall discuss the features attendant to the
ability to provide labeled images, we shall discuss our design
for these functions, we shall present our implementation, and
we shall discuss the variety of possible implementations in
the age of the Web.

Features
Our perspective regarding labeled images is colored by our
students' use of computer-based atlases in a number of areas,
primarily histology and pathology. For instance, in 1995 we
created Histology Imagebase, a Macintosh application [3]. It
contained 350 digitized slides from the teaching collection.
On each slide, significant structures were outlined. The
following features were identified as important to the user:
* to find components by selecting its name
* to find the name by selecting the component
* to choose when to display labels
* to be able to test oneself on the identities of different
components
* to view the image from a number of semantic viewpoints

(e.g., phenomenological, nosological, functional)

The last specification was a result of a factorial, controlled
trial of an earlier implementation, at our institution [4].

These simple desiderata have their own implications. If the
user should be able to explore an image, then the labels must
be attached to each instance of the component on the image,
and not just on convenient examples that make sense when
an image is displayed on a printed page. Similarly, as much
of an image should be labeled, precisely to encourage this
sort of data-driven exploration. The first and last functions

1091-8280/98/$5.00 © 1998 AMIA, Inc. 418

are related in that, if a user is to select a component

by name, then the semantic of naming should be
displayed.

In thinking about the use of computer-based images,

we developed further specifications. The principles
were as follows:

1. Labeled images should be re-usable in differently
authored Web sites. For example, an image of an

infarct of the kidney could be used to teach the
identification of necrotic tissue as well as general
kidney anatomy. Labeled images might be used in
atlases, in virtual slide carousels, in lecture notes, or

in quizzes.

2. The labeling should be independent of the purpose
of the label. This desideratum is a corollary of the
preceding specification and argues against the
traditional use of arrows or circles, in favor of
outlines of the component itself.

3. The label should not obscure the image, or, it
should not be part of the image. This results from the
previous specification, and also argues against
arrows, on-image labels, and the like.

4. The user should getfeedback that she has selected
a component of the image. For example, the outline
might flash or the name of the component highlights.

5. Authors should be able to link a labeled area to
arbitrary information. For instance, a histology atlas
might link a cytological structure to a Web site about
mitochondria, while an endoscopy structure might be

linked to a virtual-reality (VRML) model of the GI tract,
locating the position of the endoscope in the viscus.

6. Users should be able to test themselves based on a corpus

of labeled images. This feature has been the most popular
among students. Further issues arise here. Users should be
able to specify the scope of the test to include or exclude any

material they wish. They should be able to specify whether
they want to be asked to identify a highlighted component by
clicking on its name or to be asked to locate a named
component by clicking on its image.

7. Images should be stand-alonefiles that can be transferred
among faculty members. This specification supports the
current way in which teachers assemble most teaching sites:
as Web sites comprising files of pages. This specification
argues against ISMAP-type solutions, which would entail
creating a folder of files, because if a single file in the folder
were deleted or left behind by mistake, the site would not
function properly. On the other hand, a more efficient
architecture would be to make each image a record
in a database and each page, dynamically generated from that
database, but most educators do not have the database
capability or the programming abilities to make such sites
work.

8. Finally, the size of the image is not well specified. On the
one hand, it should be as large as possible, since the
information is in the picture. On the other hand, it should be
as small as possible to ease transfer from server to client. At
the least, then, the size should be flexible and arbitrary. This
specification allows for displaying many different image
types, like photomicrographs, pictures of gross specimens,
radiographs, endoscopy photographs, and EKG tracings.

Design
While the Web is a client/server environment by definition, it
leaves us with degrees of freedom about what functions are

performed where. Our solution is to create a proprietary file
format for the image, its layers, its labels, and its ancillary
information. This file is read into one of a set of Java applets,
one applet for each of its intended uses. Fig. 1 shows this
system architecture. In the Critique Section we discuss why
other solutions were rejected.

File Format
The file must contain a variety of elements: the image, the
layers, the text associated with each. The ideal file format for
this conglomerate would be GIF 89, as used in animations,
because the file could be repurposed as a non-OverLayer file,
which would help instructors. However, the GIF89 format is
proprietary to CompuServe, and there are no Java classes to

419

Server

Images Applets

LIELI LII
Network t

Browser

Figure 1. OverLayer system architecture.

[Metadatal
Group=Heart
Filename=lla Myocarditis
Species=Human

Description=http://.../10la.html
NumberOfLayers=2
ImageName=htp://.../10lamain.jpg
Question=

[Layerl]
Filename=Myocytes
Description="These eosinophilic..."
ImageName=http://../Myocytes.jpg

[Layer2]

Figure 2. An example of a configuration file.

deal with it. Thus, we are forced to create a
proprietary file format, but based on a standard image
format.

Our approach is to append together a number of files
into a single Java archive file (jar). The files include
the image JPEG file, the layers' black-and-white
JPEG files, and the text file containing the rest of the
information. The text file is called the config file.
This file has the format suggested in Fig. 2. The text
is parsed by the applets to fill in the Image and Layer
objects (see "Implementation," below). Note that
descriptions may be strings or URLs. Also, the fields
themselves may be domain dependent: A clinical
radiology image set would not use the field
"Species," and those files would not have that field
entry. So, a radiology -specific applet could be
created that can read files of a minor modification.
The open format of the config file allows for novel
features, like multi-dimensional labeling.

Applets
The core applet comprises four classes. The
OverLayerFrame presents images and layers. The
FileBrowserDialogue presents the image
names, the layer names, and the associated
information. The LayerObj ect comprises the
layer JPEG image, the associated information, and its
position in the "stack" of layers associated with the
Image, the fourth class.

In the core applet, the FileBrowserDialogue instance
seen by the user is a separate window from the
OverLayerFrame. In other applets, they share a space that
is in-line to the text. The user can specify the relative widths
of the two major interface components, depending on screen
and image sizes. A third applet permits viewing of two
images simultaneously, for comparison purposes.

Implementation
Fig. 3 shows a screen shot of an OverLayer image (see
http://omie.med.jhmi.edu/overlayer), using the core applet.
Key points are as follows: The panel on the left-an instance
of the FileBrowserDialogue class--contains a
hierarchical list of the images (if there are more than one),
and of labels. Clicking on a label brings up the associated
layer in the Image panel. The current default method of
highlighting is to flash the target layer in black-to draw the
user's attention to the component-and then to present the
parts of the image not in the layer as "washed out." This
method satisfies the specifications that the labeling does not
appear on the image itself nor does it obliterate any of the
images. It has been well received by users.

The bottom section of the FileBrowserDialogue panel
is a truncated Web browser that can display text from the
config file or can display a full Web page, as specified by a
URL in the config file.

The code for the applets is written in 100% Pure Java, using
JDK 1.1, which runs on Netscape Navigator versions 4 and
up, and on Microsoft Internet Explorer, versions 4 and up.

Typical html to invoke an OverLayer applet is as follows:
1. <APPLET CODE= OverLayerApplet.class
2. CODEBASE= "/OverLayerApplet"
3. HEIGHT = 413 WIDTH = 633
4. ALT= "JAVA Applet">
5. <PARAM NAME= "COUNT
6. VALUE= 2>
7. <PARAM NAME= "NAMEO"
8. VALUE= "http:/I .. /101/lOla">
9. <PARAM NAME= "NAMEl"
10. VALUE= "http:// .. /101/lOib">
ll.</APPLET>

Lines 1 through 4 invoke the applet. Lines 5 and 6 establish
that 2 OverLayer files will populate this instance of the
applet. Lines 7 and 8 define the first file: the name is a
placeholder, while the URL in Line 8 defines the location of
the OverLayer file. Lines 9 and 10 repeat this information for
the second file.

420

Figure 3. Screen shot from the OverLayer-based Histology Imagebase. The FileBrowserDialogue panel on the left
can present multiple images within a single OverLayer file (the FileBrowser) and can present multiple layers within

an image (the ImageTree).
We are currently working on three atlases with this
environment. The Histology atlas is a port of the
Histology Imagebase [3] developed previously for
the Macintosh. This is a set of 350 images. We are
constructing a Pathology atlas comprising 500
images, and a GI endoscopy atlas of 500 images. The
time to create an OverLayer image is about 1 hour: 5
minutes of scanning, 10 minutes of faculty review for
choosing what areas to label and to create the
ancillary text, 30 minutes of an assistant (medical
student, etc.) to label, 5 minutes of faculty review,
and 10 minutes to port to OverLayer format.

Performance of the OverLayer environment has been
primarily on PCs with 200 MHz Pentium chips.
Compared with downloading and viewing of a
standard JPEG images, viewing OverLayer files is
about 4 times as long. On the Macintosh,
performance has been worse. However, downloading
a second or third OverLayer file is faster, because
only the image needs be transmitted; the code is
already resident.

Conclusion
In this paper, we have presented a reasoned approach
for dealing with labeled images over the Web. The
approach is designed to meet the needs of students
and teachers, including flexibility, generalizability,
scalability, and future changes in the Web.

The approach is flexible because it uses the Web standard in
images-JPEG-so any content can form the basis of an
OverLayer image. The system is generalizable because there
are no implicit assumptions about the subject domain. The
system is scaleable because its heart is the single-file design
of the Web. The system should work in future versions of the
Web, because it relies on Web standards: Java and JPEG.

The primary problem with our implementation concerns
download time. The main cause of this bottleneck is the large
size of the files we are currently using: 640 x 480 8-bit
images. We expect that, for other domain areas, like GI
Endoscopy, with much smaller image sizes, the download
time will shrink. Further, as the Web matures, this temporal
overhead will be overcome. The other disappointment
concerns the Macintosh performance. However, the slow
download and run-times there should be obviated by the use
of Microsoft Internet Explorer and the new Macintosh Java
Virtual Machine.

We are not the only developers to tackle the problem of
delivering Web-based labeled images. McEnery and
colleagues [5] delivered images with static images as part of
a self-teaching module. This approach does not enable to
student to explore the image. In the same year, Bradley and
colleagues [6] used a database to present images with
structures pre-selected. While their technique used a database
to present the labeled images, ISMAPs can be used, with
static links from the ISMAP to static, labeled images. While

421

these last two approaches both give user feedback
and permit exploring the image, they are
cumbersome for teachers and rely on a sophisticated
back-end.

Hagler and colleagues [7] have developed a
pathology case-teaching environment, using labeled
images. Their impelementation uses Javascript that
enables students to click on a label and to see
feedback on the image. This approach is either very
labor intensive, since each page must be hand coded,
or requires a sophisticated environment for creating
those pages from a meta-script.

Dennis and colleagues (S. Dennis, personal
communication) have implemented a java-based
applet with apparently similar specifications to
OverLayer, providing visual feedback when clicking
on the label and has a testing aspect. It does not
enable asking where a structure is and does not
display ancillary information.

Labeled images will always be a part of education via
the Web. The technology is still not straightforward.
We are planning on tightening up performance and
on creating an editor, enabling easy creation of
OverLayer files. Other developers are invited to use
the OverLayer format and applets.

Acknowledgments
Thanks to faculty members Renee Dintzis, Lorraine
Racusen, Gyongi Nadasdy, and William Ravich for
help in specifying OverLayer and in working on
content. Thanks to Bonnie Cosner for managing
machines and content throughput. This work was
funded by NLM grant G08 LM06232-02.

References
1. Stensaas SS. Animating the curriculum:
integrating multimedia into teaching. Bulletin of the
Medical Library Association 1994;82(2):133-139.
2. Spencer K. HyperCard: Teaching
technology for successful learning. J Audiovisual
Media Med 1990;13(1).
3. Lehmann HP, Wachter MR. Delivering
structured educational images over a network. In:
Gardner RM, editor. Nineteenth Annual Symposium
on Computer Applications in Medical Care; 1995;
New Orleans, LA: American Medical Informatics
Association; 1995. p. 989.
4. Lehmann H, Freedman J, Massad J, Dintzis
R. A controlled trial on the use of a computer-based
histology atlas during a laboratory course. .

5. McEnery K, Roth S, Kelley L. A method for
interative medical instruction utilizing the World Wide Web.
In: Gardner R, editor. Nineteenth Ann Symp Comp Appl
Med; 1995; 1995. p. 502-507.
6. Bradley S, Rosse C, Brinkley J. Web-based access
to an online atlas of anatomy: The Digital Anatomist
Common Gateway Interface. In: Gardner R, editor.
Nineteenth Ann Symp Comp Appl Med Care; 1995; 1995. p.
512-516.
7. Hagler HK, Kumar V, editors. University of Texas
Southwestern Pathology Case Studies: Thomson Science;
1997. http://pathcuricl.swmed.edu/PathDemo/MainTofC.htm

422

