Component Architecture For Web Based EMR Applications.

David A. Berkowicz M.D., G. Octo Barnett M.D. and Henry C. Chueh M.D.
Laboratory of Computer Science,
Massachusetts General Hospital, Boston, MA.

ABSTRACT

The World Wide Web provides the means for the
collation and display of disseminated clinical
information of use to the healthcare provider.
However, the heterogeneous nature of clinical data
storage and formats makes it very difficult for the
Pphysician to use one consistent client application to
view and manipulate information. Similarly,
developers are faced with a multitude of possibilities
when creating interfaces for their users. A single
patient$ records may be distributed over a number
of different record keeping systems, andlor a
physician may see patients whose individual records
are stored at different sites. Our goal is to provide
the healthcare worker with a consistent application
interface independent of the parent database and at
the same time allow developers the opportunity to
customize the GUI in a well controlled, stable
application environment.

INTRODUCTION

The integration of clinical computer systems both
within and across institutions is a very difficult
problem'?. The heterogeneous nature of data storage

structures and the myriad user interfaces designed to
access them contribute seriously to this problem.
Physicians are often required to gain familiarity with
numerous applications, and developers are similarly
challenged to rewrite code to reproduce

functionality. The advent of the World Wide Web
(WWW) and the Common Gateway Interface (CGI)

has made the process of data retrieval somewhat akin
to the process of publishing a dynamic document.
The web browser application provides a uniform and
familiar user interface and enables the user ready
access to review data*’. However, no matter how

intricate, web pages are still inherently static and
data manipulation is clumsy. Additionally, each web
site may have different layouts, color schemes, and
organizational plans, features that reduce the utility
of a simple site as a viable option for clinical record
keeping. In particular, the problems posed by the
stateless nature of the hypertext transfer protocol

(HTTP) connection require that complex, rapid, and
interactive data editing and entry be performed
within a web-based applicatiod. A web-based
application can be defined as a collection of scripted

1091—8280/98/$5.00 © 1998 AMIA, Inc.

routines (Javascript™ VBScript™), with or without
Java™ applets or ActiveX™ components, contained
within a web page. The application so formed creates
an environment inside the browser that can provide
mechanisms to overcome the limitations of the
stateless connection.

The Laboratory of Computer Science has developed
a number of clinical databases and the applications
used to access them. Interfaces are being written for
some of these legacy systems to allow web access by
authorized users. We wanted to simplify the creation
of these interfaces by establishing a library of
components that could be combined on a web page
and function as an interactive electronic medical
record (EMR). It was our mission to create a
template for component design that would result in
the sharing and reuse of software components across
different databases and provide a uniform, yet
customizable web interface.

DESIGN AND IMPLEMENTATION

A component is an encapsulated functional element
that can be used as a building block in application
construction. Components can be reused if the
format of the data upon which they operate is fully
specified, and if a consistent environment for
application operation can be provided.

Our approach to realizing the goal of reusable

components in the browser environment therefore

hinged upon two major challenges:

e The definition of a standard content and format
for data transfer between the web server and the
browser client.

e The creation of an application programming
interface (API) in the client browser that would
enable a ‘plug-and-play” mechanism for
application creation.

Content and Format:

Standard content and format for medical data has
long been a goal of medical informatics. HL7 was
founded in 1987 to develop standards for the
electronic interchange of clinical, financial and
administrative information between health care
oriented computer systems®. It is a messaging format
with comprehensive content definitions, but it
utilizes its own flexible syntax for messages, and it
can be difficult to validate the structure of a

<LASTNAME>PATIENT</LASTNAME>
<FIRSTNAME>TEST9</FIRSTNAME>
<MIDNAME></MIDNAME>
<SEX>M</SEX>
<PATIENTID>0001</PATIENTID>
<DOB>6/12/65</DOB>
<SSN>000000000</SSN>
<MEDICATIONLIST>
<MEDICATION>
<CONCEPT>Pepcid</CONCEPT>

<DATE>12/9/96 7:01:59 PM</DATE>
<STATUS>ACTIVE</STATUS>
</MEDICATION>
</MEDICATIONLIST>
</PATIENT>
</CHARTS>

A. Chart XML B. Component XML
<CHARTS> <HTMLCONTENT>
<PATIENT> <COMPONENT NAME="myName"></COMPONENT>

<COMMENT?>: Pttaking... <COMMENT>

<FUNCTION NAME="init" PARAMETERS="c">
var listeners = new Array();
var problemList = new Object();
var name ="";
function start(a, aname){

}
function doSomeThing(){

}
</FUNCTION>
<HTML>
<FORM NAME=fTest>
<INPUT TYPE=button>
</FORM>
<HTML>
</HTMLCONTENT>

Table 1. Sample XML files. A. Patient data in the PCF. B. A clinical component.

particular HL7 message. We opted to use the
extensible markup language (XML) as the syntax for
data exchange, and used the document type
definition (DTD) inherent in the XML specification
to define and validate data structures. XML is a
subset of SGML and has recently been accepted by
the W3 consortium as a standard’. HL7 has a special
interest group (SIG) for SGML/XML representation
of health care information and we expect this and
other future efforts will contribute collaboratively to
consensus standards for XML-based health care data
structures.

The content definition we defined for the
transmission of clinical data represents a variable
time-slice of the patient chart. This Portable Chart
Format (PCF) (ongoing laboratory initiative as yet
unpublished) is database independent and acts as a
packaging medium between the stored data
structures and the application components. A simple
example of a chart with some patient data can be
seen in Table 1, column A. The order of the data
elements within a particular level is unimportant as
each data element is defined by its wrapping tags.
There are a few mandatory elements in the PCF
which are related to identifying the patient record
(PATIENTID in the above example). Otherwise, the
type of data included over a selected time span
determines the size of a chart. Further detail about
PCF is beyond the scope of this discussion, but will
be presented in other publications.

An XML format was also defined for the
transmission of software components (Table 1,
column B). This enabled the reuse of parser routines
and allowed us to leverage a common syntax of
communication between client and server.

117

API

We needed to create a functional shell on the client
browser inside of which the components could
operate. This shell, or application framework, would
supply services such as component loading, data
saving, and messaging. In keeping with the idea of
reusable objects making up the application, the
framework was specifically designed to load and
bind components together to form the final program.

Application Framework

The Dynamic Application Builder (DAB)
framework, written in Javascript™ , controls
component loading and provides essential

functionality to the components. The framework
manages client server communication through a Java
applet so as to provide greater flexibility in dealing
with different protocols such as HTTP, Remote
Method Invocation, and IIOP/CORBA. This applet
parses XML formatted data and generates an XML
tree whose elements can be accessed by Javascript™
We used a Java-based XML parser available freely
from Microsoft Corp, but any of a number of Java-
based XML parsers would have been suitable. The
application framework performs a number of
sequential operations to instantiate the EMR
application that then assumes control of program
flow.

Component Loading:

Components are loaded once the HTML page
containing the DAB has finished loading into the
browser. Components are stored on a web server in
the XML format, and their universal resource

N 4

K N A I
o]

B

gent
Ty, |
Adapter Object %

/

Server

Event Object

Properties:
-srcElement
-data

.type
Figure 1. Component Messaging.

locations are conveyed to the application by the
values of specific tags on the main page.

Example:

<DIV ID="ProblemList”
URL="http://Ics-jupiter/components/ ProblemList.xml”>
</DIV>

When all the components constituting the EMR
application have loaded, they are initialized and
bound together by the DAB. The binding operation
establishes the relationships between different
components and is expressed as a messaging system.

Messaging:

The transfer of data between components is handled
by the DAB in an event model similar in concept to
that implemented in Java 1.1. Components designate
themselves as data listeners for particular event types
and event sources. This information is stored in a
DAB object, the Adapter, which acts as an event
router (Figure 1.). All data is packaged in an Event
object that has properties and methods to ensure the
accurate targeting and unpacking of information.
The Adapter object enables components to function
without specific knowledge of the structure of the
application. However, it is clear that components
registered to receive an event of a particular type
need know something of the structure of the data
being transmitted. This knowledge constitutes a
component specific reference that is separate from
and independent of the application framework.
Events are also monitored by a DAB component, the
Auditor, which tracks changes to data so that an
accurate record of user actions can be maintained
(Figure 1.).

118

Components:

The component model we defined requires the
creation of tightly encapsulated independent objects
that receive and transmit data through a standard
interface. The internal processing of data is
component specific and does not rely on the
existence of any other code. Components also adhere
to an internal design pattern and are thus similar in
concept to the JavaBean™®, Components may extend

the functionality of the API (application
components), or they may interact with data (clinical
components). Clinical components can be

functionally divided into two broad classes those
that interact directly with the XML data tree (data
components), and those that do not (visual
components). The data components are responsible
for the extraction of data from the XML document
and therefore some knowledge of the PCF is needed.
Any changes to the chart structure would mandate a
change in these components. The second group of
components provides a visual representation of the
data that they receive from the data components. The
visual components are thereby insulated from any
changes in the PCF.

RESULTS

The overall architecture of the application can be
seen in Figure 2. The application framework (DAB)
runs in a web browser and communicates with the
server through the Java XML parser applet.
Components are dynamically loaded via the applet
and bound into an EMR application. Clinical data in

ViewPort | ViewPort User Interface

R e T

Component
X

BROWSER

Component Application Framework

Component
- —=
e

XML Parser
—5—

PRSI Y
Web Server
————

ASP, CFusion, CGI
- —%

SERVER

Database

Figure 2. Overall Architecture.

7 e
|:’ Components

Figure 3. Data Translation.

= d. XML Branch e. Data Object f. DHTML
== () =
1 c. XML Chart
™
b. XML Tree
I Events
a. XML Document
Server

the PCF is retrieved by the applet on user request
and made available to the EMR components.
Components may display data themselves or they
may transfer the data to other components.
Components that display data use Dynamic HTML
to write directly to select portions of the screen. We
called the area into which a component targets
HTML a viewport. The specific appearance of each
viewport was easily modified through the use of
HTML style sheets. The database can take any
structure and there is also no mandate for the type of
web-server or CGI as long as the document
transmitted contains data that conforms to the PCF.
In our sample applications the middle layer was
developed in the Microsoft Active Server™
environment.

Data Flow

A sequence of data transformations occur when a
patients chart is selected for review. Data is

extracted from the database and wrapped with XML
tags to form the PCF. This is sent as an XML
document from the server to the client via HTTP
(Figure 3, a.). This document is parsed by the Java
applet into an XML tree (b), which is then retrieved
and cached by the Chart object (see below) (c). The
Chart object broadcasts an event to a clinical
component (d) that further pares down the data and

generates Javascript data objects (e). The data objects

are relayed to the visible clinical components that
translate them into HTML strings that are written to

the screen (f).

Clinical Components
A number of components have been created and
successfully tested in the DAB. These include

119

components to handle problem lists, medication lists,
allergy lists, past medical and social history, patient
lookup, chart management, and visit notes. Figure 4
is a screen capture showing two views of problem list
data. Two identical visual clinical components’
viewports were placed side by side to highlight
different aspects of the component architecture:

a. Both views are synchronized in the display of a
deleted item; this is a reflection of a common
data source.

b. The component on the left has sorted the
problem list by date and the problems appear in
a different order to those on the right. In
addition, the component on the right displays a
collapsed view of the list. This demonstrates the
encapsulation of function within a component
and the internal handling of user events.

API Extensions

A Chart management object was created to enable
off-line browsing of clinical data. Downloaded PCF
documents are cached by this object and all requests
for patient charts are first routed through it before

going onto the server. An Auditor object was created

to monitor all data modifications. These changes are
stored in the form of an XML tree whose structure

closely mirrors the PCF.

Applications

Boston Health Care for the Homeless Program

(BHCHP) is an organization that uses an EMR to

manage patient data’. We have successfully used our
components to build a web-based application to
retrieve existing patient information from their
databases. We are working with them to create a

full-featured web-based EMR.

We have also used the same components to retrieve

clinical information from two significantly different
production EMR systems contained in Oracle

databases, and we were also able to retrieve clinical
data from a MUMPS database'. In the latter

example, we reused server-side scripts intended for
static HTML pages by making minimal changes that
added the XML syntax. In each of the above cases

we constructed web applications with distinctly
different visual interfaces by using different
component combinations.

DISCUSSION
Standard browser technology was leveraged to create
an extensible framework in which reusable

components could be assembled to create an EMR.

Problem
List

Select Sort Order :'iﬁ

Problem List

& @ \& A”Pfljl(. Rhlnms
@ 2 -Asthme 787 8
WU ‘meﬂ

F 24— e IR

D040 2-AM—ro TR

@f 2 @& Back Pain
Ci)

hio mva struck by car on bicycle one month ago Q’ “& Bark pa'“

States seen at B and W Hosp and xrays neg. Non 3 W TIVE

radiating. Gets spasms at night in back. Seen UCC ¢

last night; requesurg orr*ethmg stronger than W~ ‘4& Bde ‘stram

Motrin. 11487 8 A 4M 457 11:4D nE

W a2 \l« anchms

@ © < Back strain

here w1 week cfo L sided low back pain , wse J
bending. No hio Iramammurv No weakness or
incontience. Work last week moving furnature. P
C‘tran Le rest ’v!encl Made appointmentw pcp for {77 SETTVE

ffu 4 &
&2) ¢ nroon

Figure 4. Contrasting Viewports.

The component architecture enables application
designers to build complex web-based applications
rapidly with a visual editor. Since the technologies
being used are W3C standards, we were able to use
commercial web editing software instead of designing
a custom layout editor. Web technology is evolving to
support more complex applications and the use of
consistent data markup allows for the reuse of
software across differing databases. Components can
be used to maintain a consistent functional interface
between applications, as well as providing flexible
use within an application''.

The DAB framework can be easily extended to
provide site-specific functionality to the EMR. For
example, we created a component, the Request
Broker, to help manage communication between the
client and the server. This object contains a set of
routines explicitly tailored for a particular web-server
and its role is to translate all client requests into a
database specific call. Any client application wishing
to retrieve data from a participating site, need only
obtain that site’s Request Broker in order to enable
access. This means that site-specific security
information and other communication protocols can
be hidden from the developer and shielded from the
rest of the application.

CONCLUSION

Our current plan is to finish the library of components
needed to construct a complete EMR. These will be
used to create the next version of the BHCHP EMR.
This application will be deployed and evaluated in
both an ambulatory and inpatient environment.

Select Sort Order

W o \& Contaﬂ Dermatitis

120

ACKNOWLEDGEMENTS

This work was supported in part by the National
Library of Medicine Training Grant NLM LM
07092, NLM research Grant LMO05854 and a
research grant from Hewlett Packard.

References

1. Kohane IS, van Wingerde FJ, Fackler JC, et al.
Sharing Electronic Medical Records Across
Multiple Heterogeneous and Competing
Institutions. Proc of the 1996 AMIA Annual
Fall Symposium. 1996: 608-612.

2. Halamka JD, Safran C. Virtual consolidation of
Boston's Beth Israel and New England
Deaconess Hospitals via the World Wide Web.
Proc AMIA Annu Fall Symp 1997;:349-353.

3. Kohane IS, Greenspun P, Fackler J, Cimino C,
Szolovits P. Building national electronic medical
record systems via the World Wide Web. J Am
Med Inform Assoc 1996 May;3(3):191-207.

4. Cimino JJ, Socratous SA, Clayton PD. Internet
as clinical information system: application
development using the World Wide Web. J Am
Med Inform Assoc 1995 Sep;2(5):273-284.

5. Berkowicz DA, Chueh HC, Barnett GO. Design
considerations in migrating an obstetrics clinical
record to the Web. Proc AMIA Annu Fall Symp
1997,:754-758.

6. Health Level-7 Standards. http://www.mcis.
duke. edu /standards/ HL.7/hl7frontpage.htm.

7. World Wide Web Consortium. The World Wide
Web Consortium Issues XML 1.0 as a W3C
Recommendation: XML 1.0 Fact Sheet 1998.
http://www.w3.org/Press/1998/ XML 10-REC-
fact.html.

8. JavaBeans™ Component APIs for Java.
http://www.javasoft.com/products/jdk/1.1/docs/g
uide/beans/index.html.

9. Chueh HC, Barnett GO. Client-Server,

Distributed Database Strategies in a Healthcare

Record System for a Homeless Population.

Journal of American Medical Informatics

Association. 1994;1:186-198.

Rabbani U, Morgan M, Barnett GO. A COSTAR

interface using WWW technology. Proc Annu

Symp Comput Appl Med Care. In press 1998.

Chueh HC, Raila WF, Pappas JJ, et al. A

Component-Based, Distributed Object Services

Architecture for a Clinical Workstation. Proc of

the 1996 AMIA Annual Fall Symposium.

1996:638-642.

10.

11.

