
Extended SQL for Manipulating Clinical Warehouse Data

Stephen B. Johnson, PhD

Department of Medical Informatics
Columbia University

Health care institutions are beginning to collect large
amounts of clinical data through patient care

applications. Clinical data warehouses make these
data available for complex analysis across patient
records, benefiting administrative reporting, patient
care and clinical research. Data gatheredfor patient
care purposes are dificult to manipulate for analytic
tasks; the schema presents conceptual difficulties for
the analyst, and many queries perform poorly. An
extension to SQL is presented that enables the analyst
to designate groups of rows. These groups can then
be manipulated and aggregated in various ways to
solve a number of useful analytic problems. The
extended SQL is concise and runs in linear time,
while standard SQL requires multiple statements with
polynomial performance. The extensions are

extremely powerful for performing aggregations on

large amounts ofdata, which is useful in clinical data
mining applications.

INTRODUCTION

There has been a continual increase in the amount of
computerization in health care, in clinical,
administrative, and ancillary settings. Following
trends in other industries, health care institutions are

beginning to realize the value of pooling these data
into large, integrated databases (data warehouses),
and discovering knowledge within them (data
mining) [1-4]. Analysis of health care data across

patient records has tremendous potential to benefit
patient care, administration and clinical research.

Relational databases developed for patient care have
benefited from a generic design in which there are a
small number of general-purpose tables [Johnson
1996]. While this design facilitates flexibility and
high performance for patient care tasks, it is difficult
to use in decision support applications [Johnson
1994] and in data analysis tasks [Nadkarni].

In data mining applications, the preparation of data
for analysis constitutes at least 80% of the total effort
[Adriaans]. This is because most data mining tools
require that data be organized into a single table with
specific, named columns. Typically, clinical data are
distributed across several tables, and have generic
columns with coded values. The transformation of
raw warehouse data requires considerable intellectual
effort, as well as intensive computer processing.

The principal difficulty of generic database designs is
the use of coded values instead of specific column
names. This results in a schema that is conceptually
difficult for users to manipulate and which performs
1091-8280/99/$5.00 1999 AMIA, Inc.

Damianos Chatziantoniou, PhD

Department of Computer Science
Stevens Institute of Technology

very poorly for queries involving multiple patient
records. A classic example of a generic schema is
shown in Table 1, in which lab data are identified by
codes NA, K, and CL.

MRN Date Test Value
123 03-12-1999 NA 135
123 03-12-1999 K 3.7
123 03-12-1999 CL 109
123 06-01-1999 NA 140
123 06-01-1999 K 5.1
123 06-01-1999 CL 104
123 11-23-1999 NA 145
123 11-23-1999 K 4.2
123 11-23-1999 CL 110
700 02-17-1999 NA 139
700 02-17-1999 K 4.2
700 02-17-1999 CL 106
700 09-22-1999 NA 146
700 09-22-1999 K 4.1
700 09-22-1999 CL 108

Table 1: Lab data in generic schema

In contrast, a specific schema employs distinct
column names for each attribute of interest. Table 2
shows the same data as Table 1, but arranged in a
table in which the value of each lab test can be
identified by its column name. This schema is far
easier to use in decision support and data analysis
applications.

MRN DATE NA K CL
123 03-12-1999 135 3.7 109 l
123 06-01-1999 140 5.1 104
123 11-23-1999 145 4.2 110
700 02-17-1999 139 4.2 106
700 09-22-1999 146 4.1 108

Table 2: Lab data in specific schema
One approach to working with generic database
designs is to build a software layer that insulates
users from the schema, and enables them to name the
clinical attributes in which they are interested
[Nadkarni]. While such tools can aid a certain class
of users, some users will still need to work with
clinical databases directly, e.g. database
administrators and analysts proficient in SQL. In
addition, the SQL generated by such tools will still
suffer from tremendous performance problems, due
to the limitations of standard SQL.

A different approach is to allow users to name the
attributes in which they are interested while still
using SQL. This can be accomplished if users have a
way to name and manipulate horizontal sections of

819

relational tables, which are known as "groups".
Standard SQL currently has a limited facility to
define groups. If it were possible to assign names to
groups, they can be "picked up", moved around and
aggregated over.

This paper describes Extended Multi-Feature (EMF)
SQL [9-10], and demonstrates its application to a
number of difficult operations on clinical data. This
approach yields queries that are simpler to understand
and more efficient to execute.

METHODS

EMF SQL enables a user to define groups of rows in
a table, and to assign names to these groups. The
attributes of each group can then be used in other
conditions in the query and in the "select" clause.
The ability to refer to attributes of a group allows
tables to be "pivoted"(described below), and provides
a novel mechanism for complex aggregations.

The syntax of EMF SQL is shown in Figure 1. The
clauses are the same as standard SQL, with the
addition of one or more "grouping variables" in the
group by clause, and the "such that" clause which
defines what rows of the table are in each group.

select <grouping columns>,
<aggregate functions>

from <table name>
where <conditions>
group by <grouping columns>

<grouping variables>
such that <defining conditions>
having <conditions>

Figure 1: ExtendedSQL Syntax

EMF SQL was used to construct a number of queries
which occur frequently in analysis of clinical data,
but which are known to be difficult to formulate in
standard SQL. The queries were run on data in the
Clinical Data Warehouse at Columbia-Presbyterian
Medical Center, which contains 10 years worth of
administrative and ancillary data.

The clinical queries that were studied were the
following:

* Pivoting: transforming lab data in a generic
schema (Table I) to a specific schema (Table 2).

* Flattening: transforming nested mammography
data (findings with modifiers that in turn have
modifiers) in a generic schema into a specific
schema with named columns.

* Sequencing: finding cardiology procedures in a
generic table of longitudinal data, and returning a

specific schema in which rows have a particular
temporal sequence.

Aggregation: determining the median value of a
series of lab values.

Each of these queries was expressed in both standard
and extended SQL, and executed on data in the
warehouse.

RESULTS

Pivoting Lab Values

The pivot operation converts particular coded values
in tables (such as codes for laboratory tests) into
specific, named columns, which are filled with the
data of interest (such the numeric values of the tests).
Any number of selected values can be pivoted in this
manner. The pivot operation applies to any clinical
database table that contains groups of coded
attributes. The groups are often defined by having
the same patient identifier and a common time, as in
laboratory or medication data.

The data in Table 1 can be pivoted into the schema in
Table 2 using the standard SQL shown in Figure 2. In
this query there are three coded values of interest
(NA, K, CL), representing three measures of these
elements in patient specimens. There are several
ways of constructing this query, but Figure 2 shows a
straightforward method in which a view is
constructed for each of the three lab tests. The fourth
SQL statement joins these three views together in
order to arrange the values of the lab tests into the
same row as shown in Table 2. The conditions in the
"where" clause are required to ensure that only lab
tests from the same specimen occur together (they
must have the same MRN and Date). In the general
case, m lab tests require m views and an m-way join.
If the lab table contains n rows, execution time is
proportional to nm (polynomial time).

An alternative approach to pivoting laboratory data is
shown in Figure 3, using EMF SQL. In this query
the "group by" clause specifies that laboratory tests
that belong together have the same MRN and date.
Within each group, three subgroups are named (x,
y,z), corresponding to the three lab tests of interest
(NA, K, CL). The defining conditions for each group
are given in the "such that" clause. Once there is a
way to name the three different rows, they can be
pivoted in the "select" clause, which pulls out the
values for sodium, potassium and chloride tests,
respectively.

820

Create
select
from
where

Create view Sodium as
select MRN, Date, Value,
from lab
where Test = "NA"

view Potassium as
MRN, Date, Value,
lab
Test = "K"

Create view Chloride as
select MRN, Date, Value,
from lab
where Test = "CL"

select NA.MRN, NA.Date,
NA.Value, K.Value, CL.Value

from Sodium NA, Potassium K,
Chloride CL

where NA.mrn = K.mrn
and NA.date = K.date
and NA.mrn = CL.mrn
and NA.date = CL.date
Figure 2: Standard SQL to pivot lab data

The EMF query in Figure 3 makes a single pass
through the laboratory table. In the general case, m
laboratory tests require m grouping variables and m
defining conditions. If the table has n rows,
processing time is proportional to men (linear time).

select mrn, any(x.value),
any(y.value),any(z.value)

from lab
group by mrn, date ; x, y, z
such that

x.mrn = mrn and x.test = "NA",
y.mrn = mrn and y.test = "K",
z.mrn = mrn and z.test = "CL"

Figure 3: ExtendedSQL to pivot lab data

Pivoting Nested Data

Some clinical information systems are beginning to
capture data that is more complex in structure than
simple numeric data. A typical example of complex
clinical data is mammography findings. Each finding
can have various modifiers that in turn have
modifiers. Data with this structure are often called
"nested". One source of nested clinical data is natural
language processing (NLP) [11]. For example, an
excerpt from a mammogram report, "Possible mass
right breast. No calcifications in breasts." could be
presented in tabular form as in Table 3:

MRN Id Parent Attrib Value

123 1 --- FND mass

123 2 1 BOD breast

123 3 2 LAT right
123 4 1 CRT poss

123 5 --- FND calc

123 6 5 BOD breast

123 7 5 CRT no

Table 3: mammographicfindings in generic schema

In this representation, each finding (FND) and
modifier has a unique identifier. The "parent"
column is used to indicate how modifers are related
to particular findings. For example, the certainty
modifer (CRT) can indicate that the mass finding is
possible, while calcifications are negative. Modifiers
can have their own modifiers, e.g. the attribute
laterality (LAT) modifies body location (BOD).

This tabular structure is effective for capturing the
variable nature of natural language data, but is very
inconvenient for analytic tasks. A more appropriate
view makes each distinct finding a separate row, with
specific, named columns for each possible modifier,
as in Table 4:

Standard SQL is completely ill-equipped to deal with
nested data like that shown in Table 3. Generating
the flattened view in Table 4 would require five SQL
statements with complex join conditions. As with the
laboratory query, the query would have polynomial
time requirements.

EMF SQL makes the manipulation of nested data
somewhat more feasible. The query for flattening the
data from Table 3 into Table 4 is shown in Figure 4.
This query is similar to the query in Figure 3 used to
pivot laboratory data. Here the grouping attributes
are finding, certainty, body part, and laterality. As
with the laboratory query, the defining conditions
associate these variables with the appropriate
attribute codes. The additional conditions for nesting
are defined using the parent and id columns. The
values of the grouping variables are "flattened" using
the "select" clause.

821

Select mrn,
any(f.value), any(c.value),
any(b.value), any(l.value)

from mammo
group by mrn,id,attrib ; f,c,b,l
such that

f.mrn=mrn and f.attrib="FND"
and f.id=id,
c.mrn=mrn and c.attrib="CRT"
and c.parent=any(f.id),
b.mrn=mrn and b.attrib="BOD"
and b.parent=any(f.id),
l.mrn=-mrn and l.attrib="LAT"
and l.parent=any(b.id)

Figure 4: ExtendedSQLfor mammographic data

Analyzing Temporal Sequences

Frequently, analysts are interested in sets of clinical
events that have certain temporal relationships.
Often, events of different types are stored in the same
table, each with a date attribute. For example, Table
5 shows the date of performance for various types
procedures of particular encounters.

MRN Encounter Type Date

123 03-17-1995 angiogram 03-17-1995

123 03-17-1995 angioplasty 03-18-1995

123 03-17-1995 CABG 03-25-1995

700 06-13-1995 angiogram 06-13-1995

700 06-13-1995 angioplasty 06-14-1995

Table 5: procedure data in generic schema

An analyst might be interested in encounters in which
angioplasty precedes CABG. The above generic
table makes this analysis very difficult. Table 5 can
be "pivoted" into Table 6 in which there are specific
columns for the attributes of interest. In this view it
is easy to verify that patient 123 meets the criteria,
while patient 700 does not.

Standard SQL can handle this query fairly well, but
does not perform efficiently as the number of
procedures and temporal conditions increases. This
is another example of pivoting (like the laboratory
and mammography queries above), with additional
restrictions on the temporal relationships among the
various events of interest.

This query is easy to express in EMF SQL, as shown
in Figure 5. The grouping variables are used to
identify the procedure codes of interest (angioplasty
and CABG) in the "such that" clause, and to pivot the
respective dates in the "select" clause.

Without the "having" clause in Figure 5, all
combinations of angioplasty and CABG dates would
be shown for each patient. When the temporal
restriction is added, only patient 123 in Table 6 would
be retrieved. The extended syntax makes it a simple
matter to add additional events of interest, and
additional time ordering conditions.

select MRN, any(x.Date),any(y.Date)
from procedure
group by mrn, type ; x,y
such that x.mrn = mrn

and x.type = "Angioplasty",
y.mrn = mrn and y.type = "CABG",

having any(x.date) < any(y.date)
Figure 5: ExtendedSQLfor procedure data

Aggregating Lab Data

Raw clinical data are frequently inappropriate for
decision making and analysis tasks. Various methods
for summarizing data are required in order to draw
conclusions. This is particularly true when preparing
data for data mining applications.

Standard SQL provides a variety of "aggregation"
functions that have a variety of common clinical
applications. Examples include: counting volumes of
procedures (COUNT), determining total charges for
encounters (SUM), finding the minimum, maximum,
and average values for laboratory tests (MIN, MAX,
AVG).

There are many aggregation functions that are very
difficult to express in standard SQL. A good
example is determining the median value of a
laboratory test for each patient. Table 7 shows the
median values for sodium tests extracted from Table
1. In standard SQL this can require 11 SQL
statements using 4 temporary tables [7].

MRN NA
123 140
700 139

Table 7. Median values ofsodium tests

EMF SQL provides an extremely compact solution
for complex aggregation queries. A query to find the
median value of sodium tests is shown in Figure 6.
The grouping variable x is fixed to each sodium test.
In order to determine how many lab tests there are for
each patient, the grouping variable y ranges over all
tests for each patient. For each test x, the group

822

named z contains those rows whose values are less
than the value of x. By restricting the size of z to be
half the size of y, we know which x is the median
value.

select MRN, Value
from lab
where Test = "NA"
group by mrn, value ; x, y, z
such that

x.mrn = mrn and x.value = value,
y.mrn = mrn,
z.mrn = mrn and
z.value < any(x.value),

having
count(z.value) = count(y.mrn)/2

Figure 6. Extented SQLfor median sodium values

DISCUSSION

The above EMF queries are far simpler in structure
than their corresponding implementations in standard
SQL, especially for complex aggregations like
finding the median value. In addition, EMF SQL
tends to be far more efficient. The execution time of
EMF SQL is always a linear function of the number
of grouping variables (e.g., the number of types of
lab tests we want to pivot), while standard SQL tends
to have a polynomial function [9-10].

EMF SQL has superior performance because it
makes a single pass through a table. Groups and
aggregate values such as COUNT and AVG are
calculated in an incremental manner as the table is
scanned. This implementation is appropriate for
large warehouse tables that may contain millions of
rows. In standard SQL, many of these queries would
require days to execute, or be computational
intractable. Performance of standard SQL can be
improved through use of indexes, but these are not
always available for ad-hoc queries [12].

Many users of clinical warehouse data will not want
to use SQL of any kind to access the database, and
will prefer tools that hide the structure of the
database. Even so, the database administrator will be
responsible for creating the views exploited by those
users. Standard SQL makes these tasks very difficult
and time consuming. If SQL is generated
automatically, it may have very poor performance.

CONCLUSION

The present state of the art of data analysis and data
mining requires a high degree of sophistication on the
part of the analyst. Tools that allow the user to get a
hold on data and manipulate them flexibly encourage
creativity and discovery. The ability to name
horizontal slices of tables provides new "handles" by

which data can be grasped. These methods offer
considerable promise when calculating complex
aggregations of large amounts of data.

References

1. Berndt DJ, Hevner AR, Studnicki J. CATCH/IT:
a data warehouse to support comprehensive
assessment for tracking community health. Proc
Amia Symp. 1998;:250-4.

2. Prather JC, Lobach DF, Goodwin LK, Hales JW,
Hage ML, Hammond WE. Medical Data mining:
knowledge discovery in a clinical data
warehouse. AMIA Annual Fall Symposium,
1997:101-5.

3. Nigrin DJ, Kohane IS. Data mining by clinicians.
Proc Amia Symp. 1998;:957-61.

4. Bellazzi R. Magni P, Larizza C, Nicolao GD,
Riva A, Stefanelli M. Mining biomedical time
series by combining structural analysis and
temporal abstractions. Proc Amia Symp.
1998:160-4.

5. Johnson SB. Generic Data Modeling for Clinical
Repositories. JAMIA, 1996:3(5).

6. Johnson SB, Hripcsak G, Chen J, Clayton PD.
Accessing the Columbia Clinical Repository.
Proceedings of the Eighteenth Annual
Symposium on Computer Applications in
Medical Care, 1994 November 5-9; Washington
(DC). New York: McGraw Hill, 1994.

7. Nadkarni PM, Brandt C. Data extraction and ad
hoc query of an entity-attribute-value database. J
Am Med Inform Assoc. 1998 Nov-Dec;5(6):511-
27.

8. Adriaans P, Zantinge. Data Mining. New York:
Addison-Wesley, 1996.

9. Chatziantoniou D, Ross K. Querying multiple
features of groups in relational databases.
Proceedings ofthe 22nd Very Large Database
Conference, Bombay, India, 1996.

10. Chatziantoniou D. Ad hoc OLAP: expression
and evaluation. IEEE International Conf. on Data
Engineering (ICDE), Sydney, 1999.

11. Friedman C, Alderson PO, Austin JH, Cimino JJ,
Johnson SB. A general natural-language text
processor for clinical radiology. JAMIA
1994;1(2): 161-74.

12. Chatziantoniou D. The PanQ Tool and EMF
SQL for complex data management.
International Conference on Knowledge
Discovery and Data Mining. San Diego, CA,
August 15-18. Assoication for Computing
Machinery, 1999.

823

