Architecture for a Multipurpose Guideline Execution Engine

Aziz A. Boxwala, MBBS, PhD, Robert A. Greenes, MD, PhD, Stephan R. A. Deibel
Decision Systems Group, Brigham and Women's Hospital, Harvard Medical School
75 Francis Street, Boston, MA 02115

Integration of guideline knowledge into the clinical
workflow is essential, for improving adherence to
guidelines. Guidelines in structured formats can be
utilized by computer programs to provide decision
support in clinical information systems, as well as to
facilitate workflow. We have designed an architec-
ture for a flexible guideline execution engine that can
be utilized in clinical decision support applications.
The engine may be utilized for other applications
such as referral management, medical education, and
conducting clinical trials. The engine executes
guidelines that are defined in an extension of the
Guideline Interchange Format (GLIF). GLIF was
extended to support representation of constructs that
are essential to the execution of the guideline. A
prototype of the engine was implemented based on
this architecture. The engine is being utilized in two
clinical applications that draw on guidelines for
decision support. The engine was also used for
developing an educational application aimed at
testing knowledge of guideline recommendations.

INTRODUCTION

In the current healthcare environment, guidelines are
being promulgated as a primary means to standardize
care, improve quality of care, and increase the cost-
effectiveness of services that are provided [1].
However, studies have found that compliance with
guidelines in practice has not been satisfactory [2, 3].
Better integration of guideline knowledge into the
clinical workflow has been demonstrated to improve
compliance [4-6]. The integration has often taken the
form of computer-generated patient-specific
reminders to clinicians during the encounter with the
patient [7].

A major obstacle in the implementation of guidelines
on a large scale in computer-based decision support
systems is the effort required for creating guidelines
in a structured computer interpretable format. The
guidelines developed for use in such systems usually
tend to be in a proprietary format. This limits the
sharing of guidelines across institutions and even
across different types of applications.

Lobach et al have developed a relational model for
representation of guidelines [8]. The Proforma model
represents the pros and cons of competing

1091—8280/99/$5.00 © 1999 AMIA. Inc.

701

recommendations in a guideline so as to enable
reasoning from such guidelines [9]. Dazzi et al have
developed the Patient Workflow Management
System. The system models guidelines and
organizational characteristics of the institution in
order to enable workflow management based on care
guidelines [10]. Arden Syntax, a published standard
[11] for the representation of clinical rules, does not
yet support representation of guidelines (such as
those for disease management). Shahar et al have
proposed the Asbru representation of guidelines that
emphasizes intentions of guideline decisions and
recommendations [12].

Guidelines so structured have been used in a variety
of applications. The most common use for guidelines
is to provide decision support during the care of
patients. As mentioned earlier, guidelines can also be
used for providing workflow management support. In
this case, recommendation information contained in
the guideline can be used to anticipate clinical
actions. Structured guidelines may also be used for
quality assurance evaluations [13]. These evaluations
can be conducted by measuring compliance to the
guideline. Compliance is measured by comparing
clinical orders noted in the patient record to guideline
recommendations. Protocols in clinical trials may
also be encoded as structured guidelines [14]. These
guidelines are used to improve compliance to
protocols through better data collection and through
reminders for tasks to be carried out during
encounters with study subjects. Structured guidelines
may also be used in simulation programs for
educational purposes.

The Guideline Interchange Format (GLIF) is a
structured representation format for guidelines
created by the Intermed Collaboratory [15], which
included this laboratory. An important goal in
creating GLIF was to enable sharing of guidelines
among institutions and across computer applications,
including their associated documentation.

GLIF specifies an object-oriented model for
guideline representation and a syntax for guideline
transport. A GLIF encoded guideline is essentially a
flowchart representing a temporally ordered sequence
of steps. Different types of steps in the flowchart
represent clinical actions or decisions.

Our hypothesis was that a shareable representation
for guidelines, such as GLIF, could be utilized in
different types of applications. We have developed
an architecture for a guideline execution engine that
utilizes guidelines encoded in GLIF. This execution
engine is intended for use in a variety of applications.
The engine traverses the guideline by evaluating
logic conditions specified in the guideline against
patient data values. The results of the evaluation are
used to generate patient-specific recommendations
from the guideline. The published GLIF
representation [15] (GLIF Version 2.3 or GLIF-2.3)
was inadequate for execution by the engine. Several
enhancements were made to GLIF in order to make it
executable, and which we expect to propose as
formal extensions to the GLIF. The architecture for
the engine was implemented in a prototype system.
We are using the prototype implementation of the
engine in two pilot clinical applications and in a
simulation program that is aimed at testing
knowledge of guideline recommendations.

METHODS AND MATERIALS

Enhancements to GLIF

GLIF-2.3 did not provide a complete definition for
the contents of a guideline, especially as required for
automated execution of the guideline in a computer
program. The representation provided a structure
consisting of slots for describing attributes of a
guideline and its constituent parts such as the steps in
the guideline. However, GLIF-2.3 did not specify a
format for the contents of the slot, an essential
requirement for the execution of the guideline.

We augmented GLIF by specifying the format for the
contents of these slots. The enhancements to GLIF
are divided into the following categories:

Enhanced patient data model. A richer patient data
model was created which supports a number of data
types, and permits specification of cardinality and
temporal and logical constraints on the values of the
data (Figure 2). The new data types were created by
sub-classing from the Patient_Data class of GLIF-2.3
(Figure 1). The guidelines can also contain references
to meta-data in external sources such as data
dictionaries.

Enhanced action model. An object-oriented model
for actions (guideline recommendations) was added
that could support different types of actions (e.g.,
prescription, notification, or referral). An abstract
class called Action_Parameter (Figure 1) was created
to define attributes required for executing an action.
Different action types are described by adding an

702

Guideline

Criterion

0

Conditional Step

7

Action Parameter

y 7

Patient Data Referral Rction

I~

Numeric Data Enumerated Data

Guideline Step

Action_Step

Rction Spec

Figure 1. A simplified object model in UML notation
showing enhancements to GLIF. (A link with
triangular arrow head indicates a generalization
relationship. A link with the diamond arrowhead
indicates an aggregation relationship. A link with no
arrowhead indicates an association).

object of a sub-class of the Action_Parameter class to
the Action_Spec class. The sub-classes add action
specific parameters for execution of the action (e.g.,
drug name, dose, frequency are parameters for the
prescription action).

Syntax for logical constraints. Logical constraints
in GLIF are used to specify decision logic in

Numeric_Data 2 ({
name = "Serum Cholesterol";
scale = "mg/dl";
required = TRUE;

default value = 0;
minimum value = 100;
maximum value = 200;

}

Figure 2. Example of meta-descriptions of patient
data in GLIF. The description is for serum
cholesterol data. Serum cholesterol is stored as a
numeric data type, is measured in mg/d|, is a required
item for this guideline, and has minimum, maximum,
and default values.

conditional steps, eligibility criteria for the guideline
(Figure 1), and constraints on values of patient data.
For specifying such logic, we adopted a modification
of the logic statement grammar in Arden Syntax [16].
The modifications to Arden Syntax logic grammar
were made in order to support reasoning from a
richer patient data model and from knowledge bases
containing more complex data structures (Figure 3).
The modified syntax for the logic statement is
described in more detail elsewhere [17].

Other enhancements. Other features were added to
GLIF that enable use of GLIF encoded guidelines in
large knowledge bases. Attributes were added for
version control and for unique identification of
guidelines. In order to aid retrieval and management
of guidelines, facilities for assigning guidelines to
categories were also added.

An XML-based packaging was created for GLIF as
an alternative to the original Object Data Interchange
Format packaging. XML is fast becoming the basis
of data interchange and we expect that an XML-
based format for GLIF will improve the ability to
share guidelines. The execution engine utilizes the
XML format exclusively.

Architecture for the guideline execution engine

We have developed a system-independent and
application-independent architecture for a guideline
execution engine that utilizes GLIF-encoded
guidelines. The architecture can be used to
implement a decision support engine for clinical
applications.

medication] is-a beta_blocker
bp.systolic > 120

Figure 3. Examples of logic statement syntax in
GLIF. The first line illustrates the "is-a" operator
required for the hierarchical data structure. The
second line illustrates the "." operator, exemplifying
a compound data type with more than one field
(similar to struct in the C language).

The application independence and system
independence are provided by utilizing a component-
based paradigm for the architecture. In order to adapt
the engine to different applications and systems,
some components may be replaced with functionally
different components.

The components comprising the engine are the
Guideline Selector, the Guideline Accessor, the
Guideline Traverser, the Logic Evaluator, the Data
Dictionary, the Action Realizer, and the Patient Data
Accessor (Figure 4). Each of these components is
described next.

Guideline Selector. This component selects
guidelines from a potentially large database of
guidelines. The guideline may be selected based on
automatic matching of patient data with eligibility
criteria for the guidelines. Alternatively, the guideline
may be manually selected, as may be the case in an
interactive application.

Guideline Accessor. This component loads the
selected guideline from the database into the engine.
The Guideline Accessor also provides other

e -
" hcoessor
T e
Action Realizer Guideline - Data Dictionary
<4 Traverser —— Logic Evaluator N Accessor
\ 4 T
Guideline Guideline _
Accessor Selector Data Dictionary
—® Application Guideline
> Database

Figure 4. Components of the guideline execution engine and examples of interfaces with external systems. The
external systems are drawn shaded and the engine components are not shaded. The arrows indicate the direction of
the service request among components.

703

components of the engine with access to the
constituent objects of the guideline.

Guideline Traverser. The Guideline Traverser
provides the engine with capability to navigate a
guideline. This component keeps track of the current
position in the guideline and the path taken through a
guideline, and determines the next step in the
guideline based on patient data.

Logic Evaluator. This component is called by the
Guideline Traverser to evaluate logic statements
against actual values for patient data. The Logic
Evaluator, in turn, calls the Patient Data Accessor to
get values of patient record items needed to evaluate
a logic statement. The Logic Evaluator accesses the
Data Dictionary to validate the patient data values.

Patient Record Accessor. The Patient Record
Accessor component provides the Logic Evaluator
with values for patient data items. This component
would be implemented differently in different
systems. For example, different implementations of
the component would provide access to data from an
electronic medical record than from direct user input
to a form.

Data Dictionary Accessor. This component provides
the engine with access to items from a data
dictionary. The data dictionary contains meta-
information about the patient data. The meta-data are
used to validate values for patient data. This
component may also be used by the Action Realizer
component to implement data collection forms
dynamically.

Action Realizer. The Action Realizer component
actualizes clinical action recommended by the
guideline. The implementation of this component
would vary by system and by application. As part of
a clinical system, the Action Realizer may connect
with the order entry system to assist the care provider
in implementing the recommendations. In an
interactive training application, the Action Realizer
may present a list of guideline recommendations.

A typical sequence of interactions among the
components of the engine and the external systems
starts by an application searching for a guideline
from the guideline database using the Guideline
Selection component. The application now interacts
with the Guideline Traverser. The guideline is loaded
in the engine using the Guideline Accessor. The
Guideline Traverser gets guideline step information
from the Guideline Accessor. The Logic Evaluator is
requested to evaluate any logic conditions by
obtaining patient information via the Patient Record
Accessor. The actions or recommendations are

704

passed on to the Action Realizer from the
application, which implements the action. The Action
Realizer, in turn, notifies the application of change in
status of the action, as when an action is completed.

RESULTS AND DISCUSSION
This architecture was partially implemented in a
prototype engine. The components were

implemented as ActiveX server components on the
Microsoft Windows NT™ platform.

The engine is being used currently to develop two
pilot clinical applications, which provide decision
support from knowledge contained in guidelines. The
clinical applications are in the domains of neurology
and dermatology. An educational application was
also developed with this engine.

The first application is aimed at assisting neurologists
at an academic medical center in managing referrals
for acute stroke from remote hospitals. The
neurologist must assess the most appropriate therapy
for the patient and decide whether the patient should
be transferred to the center. The guidelines for this
application will help select the therapy option
(intravenous or intra-arterial thrombolytics, neuro-
protective therapy, etc), in some cases to decide
whether the therapy should be delivered at the
medical center or at the referring institution, and to
guide in the delivery of the selected therapy.

The second application of the guideline execution
engine is in a dermatology decision support system
for primary care physicians (PCPs). The system aims
at guiding the PCP in the assessment and
management of the dermatological problem. When a
referral to a dermatologist is necessary, the system
will recommend the referral and assist in setting it up
via a telemedicine system. Since the telemedicine
system in use is an asynchronous "store-and-forward"
system, the decision support system will guide the
PCP in gathering and forwarding relevant patient
information to the dermatologist.

The guideline execution engine has also been used to
develop a simulation program. This program
generates patient management options from a
guideline based on a patient profile. The user-
selected option is compared to the correct
recommendation of the guideline for that patient. The
latter recommendation is determined by executing
the guideline execution engine in a batch-mode for
this patient profile.

The three applications described above utilize the
same architecture and the same core component
implementations for the execution engine. However,

due to the varying requirements, different Action
Realizor and Patient Data Accessor components are
being implemented for all these applications.

CONCLUSIONS

We have developed an open architecture for a
guideline execution engine that could be used in
different types of applications including those that
require clinical decision support. The architecture is
based on the GLIF representation, which is intended
as a shared and open format for guidelines.

We intend to further enhance and test the architecture
in order to extend its applicability in other settings.
The GLIF specification needs further refinement. We
will define new Action types and new Patient data
types. The logic specification syntax will be
enhanced to support operations on new data types.
We are enhancing the architecture to provide
improved facilities for mapping from Patient Data
items to electronic medical records. We propose to
use the architecture in other applications such as for
supporting conduct of clinical trials.

Acknowledgments

This research was funded by Contract MDA972-94-
3-0047 from DARPA and in part by Order 467-MZ-
802302 from the National Library of Medicine. We
thank Dr. Ohno-Machado for reviewing a draft of
this paper.

References

1. Woolf SH, Grol R, Hutchinson A, Eccles M,
Grimshaw J. Potential benefits, limitations, and
harms of clinical guidelines. = BMJ.
1999;318:527-530.

2. Weingarten S, Stone E, Hayward R, et al. The
adoption of preventive care practice guidelines
by primary care physicians: do actions match
intentions? J Gen Intern Med. 1995;10:138-44.

3. Wolff M, Bower DJ, Marbella AM, Casanova
JE. US family physicians' experiences with
practice guidelines. Fam Med. 1998;30:117-21.

4. Headrick LA, Speroff T, Pelecanos HI, Cebul
RD. Efforts to improve compliance with the
National ~ Cholesterol ~ Education Program
guidelines. Results of a randomized controlled
trial. Arch Intern Med. 1992;152:2490-6.

Nilasena DS, Lincoln MJ. A computer-generated
reminder system improves physician compliance
with diabetes preventive care guidelines. Proc
Annu Symp Comput Appl Med Care. 1995:640-5.

W

705

10.

11.

13.

16.

17.

Lobach DF, Hammond WE. Computerized
decision support based on a clinical practice
guideline improves compliance with care
standards. Am J Med. 1997;102:89-98.

Zielstorff RD, Teich JM, Paterno MD, et al. P-
CAPE: a high-level tool for entering and
processing clinical practice guidelines. Partners
Computerized Algorithm and Editor. Proc Amia
Symp. 1998:478-82.

Lobach DF, Gadd CS, Hales JW. Structuring
clinical practice guidelines in a relational
database model for decision support on the
Internet. Proc AMIA Annu Fall Symp. 1997:158-
62.

Fox J, Johns N, Rahmanzadeh A. Disseminating
medical knowledge: the PROforma approach.
Artif Intell Med. 1998;14:157-81.

Dazzi L, Fassino C, Saracco R, Quaglini S,
Stefanelli M. A patient workflow management
system built on guidelines. Proc AMIA Annu
Fall Symp. 1997:146-50.

E 1460 Standard Specification for Defining And
Sharing Modular Health Knowledge Bases
(Arden Syntax for Medical Logic Modules).
ASTM Standards v 14.01. American Society for
Testing and Materials, Philadelphia; 1992.

Shahar Y, Miksch S, Johnson P. The Asgaard
project: a task-specific framework for the
application and critiquing of time-oriented
clinical guidelines. Artif Intell Med. 1998;14:29-
51.

Advani A, Lo K, Shahar Y. Intention-based
critiquing of guideline-oriented medical care.
Proc Amia Symp. 1998:483-7.

Musen MA, Tu SW, Das AK, Shahar Y. EON: a
component-based approach to automation of
protocol-directed therapy. J Am Med Inform
Assoc. 1996;3:367-88.

. Ohno-Machado L, Gennari JH, Murphy SN, et

al. The guideline interchange format: a model for
representing guidelines. J Am Med Inform Assoc.
1998;5:357-72.

Hripcsak G. Writing Arden Syntax Medical
Logic Modules. Comput Biol Med. 1994;24:331-
63.

Wang SJ, Ohno-Machado L, Boxwala A, Mar P.
Representing Criteria in Guidelines and Clinical
Trial Protocols: Common Needs and Solutions.

Technical Report, TR-1999-04. Decision
Systems Group, Boston, MA; 1999.
http://dsg.harvard.edu/tr/.

