Assurance: the power behind PCASSO security
'Dixie B. Baker, Ph.D., *Daniel R. Masys, M.D., 'Russell L. Jones, and 'Robert M. Barnhart
'Science Applications International Corporation (SAIC) and
*University of California, San Diego (UCSD)
La Jolla, CA

The need for security protection in Internet-based
healthcare applications is generally acknowledged. Most
healthcare applications that use the Internet have at least
implemented some kind of encryption. Most applications
also enforce user authentication and access control
policies, and many audit user actions. However, most fall
short on providing strong assurances that the security
mechanisms are behaving as expected and that they
cannot be subverted. While no system can claim to be
totally "bulletproof,” PCASSO provides assurance of
correct operation through formal, disciplined design and
development methodologies, as well as through functional
and penetration testing. Through its security mechanisms,
backed by strong system assurances, PCASSO is
demonstrating "safe" use of public data networks for
health care.

INTRODUCTION

For the past three years, the Patient Centered Access to
Secure Systems Online (PCASSO)"** project has been
developing and evaluating a model system that enables
patients and providers to access medical records through
any Internet Service Provider (ISP). In some ways, the
PCASSO model is similar to many other technical
implementations of secure Internet access. PCASSO uses
the Secure Sockets Layer (SSL)’ to achieve client-server
authentication and to establish a secure channel. PCASSO
uses a combination of a system-generated password and a
challenge-response token for user authentication. The
application is contained in a Java applet that is stored in a
server and executes within a confined execution space
("sandbox"). PCASSO enforces a role-based access-
control policy, and it audits user actions. From a functional
perspective, the primary difference between PCASSO and
many other "secure" healthcare applications is that it uses
label-based access control to provide strong isolation
between levels of sensitivity (low, standard, public
deniable, guardian deniable, and patient deniable) within
the server. What sets PCASSO apart from other
implementations is its level of assurance.

METHODS

The international Common Criteria for Security
Evaluation’ defines assurance as "ground for confidence

1091—8280/99/$5.00 © 1999 AMIA, Inc.

that an entity meets its security objectives" and identifies
seven assurance classes: 1) configuration management; 2)
delivery and operation; 3) development; 4) guidance
documents; 5) life-cycle support; 6) tests; and 7)
vulnerability assessment. This paper describes PCASSO's
assurances in these classes.

Configuration management

The PCASSO development environment includes
sophisticated tools, based on the UNIX Revision Control
System (RCS), that organize and provide accountability for
all changes to the source code used to build the
distribution. All changes to the source code are tracked,
and each release includes a “signature” file indicating the
ownership, permissions and checksum for all files in the
release. This facilitates detection of any files that may be
intentionally or inadvertently modified.

Delivery and operation

PCASSO must be installed by the privileged installer role
defined in Data General's DG/UX B2 Security Option
operating system (OS). DG/UX's advanced label-based
access control mechanism protects PCASSO executables
from virus infection, and patient data from access by
unauthorized software. The server uses host and packet
filters that prohibit administrative access from any machine
other than trusted local machines. Advanced logging
capabilities monitor critical aspects of PCASSO execution,
and administrative tools allow the system administrator to
query and analyze the audit trail to review system behavior,
to identify potential system misuse and intrusion, and to
view statistical reports. Finally, because the Internet is not
sufficiently trustworthy to be used for the distribution of
user accounts, passwords, certificates or challenge-
response authenticators, more secure channels, such as
personal communication or public mail, are used.

Development

Developmental assurances, which include both processes
and architectural principles, provide confidence that the
behavior of the system entity is well understood and that it
can be maintained securely throughout its life cycle.

Policy modeling. A simple, yet powerful security policy
model forms the foundation for the PCASSO design. To aid

in the development and validation of this model, formal

666

methods were used to express the model in Prolog, using a
state-machine approach. Key aspects of the security policy
model that enhance PCASSO’s assurance are: role-based
access control (individuals may access patient information
in ways commensurate with their relationship to the
patient); least privilege (individuals have only the
authorizations they require); and explicit authorization
(individuals have no default authorization).

Design simplicity. Security policy enforcement is allocated
to a single component (the PCASSO server) that mediates

all accesses, cannot be bypassed, and is small enough to be
subjected to rigorous analysis, testing, and validation.
PCASSO's object-oriented design minimizes complexity in
both the server and Graphical User Interface (GUI) to
enhance system integrity and assurance by controlling
access to information through abstractions with well
defined semantics and interfaces.

Least-privilege enforcement. A system entity should be

able to perform only those actions, and to access only
those data, required in performing its assigned functions
assigned. Many systems authorize their security
mechanisms far more privilege than they require (e.g., most
UNIX servers run as roof). PCASSO's system servers run
with the minimal set of capabilities they require. The
DG/UX operating system and the Trusted Oracle database
management system confine the system access of users
and processes by assuring that only those data and
applications to which they are authorized are visible to
them. The label-based access control mechanism separates
and isolates individual sensitivity levels, resulting in the
equivalent of seven execution domains separated by
"virtual firewalls." Thus, if malicious code were to
penetrate the server, its actions would be confined to a
single level. The actions of each PCASSO user are
contained within a single user process. PCASSO allows
only two network-visible services: the Hypertext Transfer
Protocol (HTTP) service and the PCASSO service itself. In
the client, the Java Virtual Machine (JVM) mechanism is
used to confine the Graphical User Interface (GUI) code
(Java applet) to a well-defined execution domain
("sandbox"), with access limited to those resources to
which it is authorized (e.g., diskette containing encryption
keys).

Minimal reliance on untrusted components. PCASSO

minimizes its dependency on untrusted components that
have low assurance with respect to security, such as the
Web server, client OS, and Web-browser. For example, the
Web browser just issues the URL, and the Web server’s
sole function is to download the PCASSO applet.

Software certification. Software certification involves
attaching the digital signature of a trusted certifier to a data
file or application. PCASSO's own certificate authority is
used to digitally sign the public-private key pairs issued to
users, thus certifying their authenticity. The GUI (Java
applet) is contained in a signed Java ARchive (JAR). The
signing provides assurance that the applet originated from
a trusted entity and enables the applet to assume the
capabilities required for reading the diskette containing the
X.509 certificate and the private key. The diskette is used
to minimize costs while maximizing flexibility. Asmartcard
could be used to store keys and certificates, but would cost
more and would require that users have smartcard readers.

Protection commensurate with risk. Because PCASSO is
designed to provide access to highly sensitive information
within an extremely hostile environment (the Internet), it
incorporates protective measures aimed to counter known
and anticipated threats in that environment. The PCASSO
server runs on the DG/UX B2 Security Option OS, which
was developed to meet the Class B2 requirements of the
Department of Defense Trusted Computer System
Evaluation Criteria.® B2 requires a modular architecture
and penetration testing by a team with access to the full
source code. In contrast, the more common C2 (e.g., NT,
standard UNIX) does not impose any architecture
requirements or penetration testing. The DG/UX OS enables
PCASSO to incorporate all the features of a strong Internet
firewall. PCASSO also incorporates specific measures to
counter OS vulnerabilities in the client environment; these
are described in an earlier paper’.

Safe failure. Multiple techniques are used to ensure that no
failure in a single security mechanism will result in a
violation of the system security policy. Login requires user
identification and authentication through 1) possession of a
PCASSO SSL certificate disk, 2) knowledge of a valid
PCASSO account/password pair, and 3)
possession/knowledge of challenge-response
authenticators. Certain security checks are redundantly
incorporated into the GUI, network servers, and the Clinical
Data Repository (CDR) code to ensure that no single failure
will result in violation of the security policy. Moreover,
despite the fact that all client-server communications are
encrypted, PCASSO does not divulge patient identity in its
client-server protocol. Patient identities are translated to-
from nonce “context-IDs” when exchanged between the
server and the client. Should the encryption fail, no
datagram would contain both data and the patient's

identity. Should an attacker incorrectly attempt to guess a
context-ID, the session would terminate.

667

Tests

Functional testing, or "positive" testing, provides

assurance that an entity conforms to its specification. That
is, it performs the actions specified in its functional
contract, and it provides the user the feedback described in
its user documentation. Functional testing attempts to
exercise the system under normal, expected circumstances
and is often performed by walking through usage scenarios.
Functional testing was performed at the component level
and at the system level. For the servers, special test
harnesses (typically written in C++) were used to allow
rigorous unit testing of critical or security-relevant
components. End-to-end functional testing was performed
in the laboratory for each build. A combination of Java code
and shell scripts was used to simulate users interacting with
the system in specific use cases or scenarios. This software
was used for automated regression testing of code
modifications and performance testing of the system as a
whole. Regression testing assures that the modified system
performs as intended and that changes do not introduce
new security vulnerabilities.

Vulnerability assessment

Vulnerability assessment consists of the identification and
attempted exploitation of vulnerabilities in the system.
Vulnerabilities may result from flaws in the design or
implementation of a particular component, or they may arise
from interactions among components. Potential
vulnerabilities are assessed through penetration testing,
which determines whether they could, in practice, be
exploited to compromise the security of the system.
Penetration testing exercises the system in ways that may
not be expected or described in the documentation.
Because penetration assesses whether a system can be
forced to do something it is not supposed to do, it is
considered a "negative" testing method. Our risk
assessment’ for PCASSO indicated that the greatest risk by
far was a "hacker" penetrating the server and successfully
assuming a privileged role (e.g., system administrator,
provider), thereby gaining access to the medical information
for hundreds of thousands of patients. Thus we focused
our penetration testing on the PCASSO server and its
connection to the Internet.

All of the penetration tests were performed by SAIC
personnel with specialized expertise in system vulnerability
assessment. The attackers used a combination of
commercial assessment tools, underground "hacker" tools,
and tools developed by SAIC. To ensure the independence
of the assessments, none of the attackers were directly
associated with the PCASSO project; the only knowledge
they were given was the Universal Resource Locator (URL)
of the server.

We report here the results of the most recent penetration
testing, which was performed on the "live" PCASSO system
installed at UCSD. At the time of the test (March 1999), the
system supported over 165 users and contained the records
of over 174,000 patients. The test was performed from
SAIC's vulnerability assessment lab in McLean, VA.
Because the penetration test focused on a specific target
(PCASSO) with a visible Internet Protocol (IP) address
(132.239.78.176), many of the tools needed for a “zero-
knowledge” attack were unnecessary. So the attacker
started with a determination of what services were active
and waiting for session initiation.

The first tool used for service identification was UltraScan
Version 1.5, a very efficient shareware port scanner
developed by Michael Marchuk. The attacker scanned all
ports from 1 through 65000 and discovered that the only
active services were on ports 777 and 8000. Port 777 is a
privileged port, meaning it usually runs under the
ownership of a privileged account (such as root on a UNIX
system). However, port 777 is not a standard privileged
port such as port 23 for Telnet or port 25 for Simple
Message Transport Protocol (SMTP). With only ports 777
(privileged) and 8000 available, the attacker quickly realized
PCASSO provided very little to work with.

The next step was to determine whether another host, such
as a firewall, was blocking access to the PCASSO server.
From his NT 4.0 workstation, the attacker ran a traceroute
program that revealed the IP address of the last node the IP
datagram passed through before reaching the server. This
IP address was determined to be a Cisco router, indicating
that the router (which may or may not have employed
packet filtering) was the only barrier between the attacker
and the PCASSO server.

Packet filtering is good for blocking packets based on
allow/deny rules such as "allow only SMTP traffic from the
Internet" or "deny all inbound Telnet sessions." However,
packet filtering cannot make decisions based on the
payload (i.e., content) of the packet. Therefore, the attacker
was free to attempt to make connections, using ports 777
and 8000, using Transport Connection Protocol (TCP) and
User Datagram Protocol (UDP) services that were not meant
to connect on those ports. The attacker hoped he would be
able to get these services to do something that they were
not intended to do; but he was not successful.

The attacker next used two commercial security
vulnerability scanners to attempt to exploit vulnerabilities
via ports 777 and 8000: Internet Security Systems' (ISS)
Internet Scanner Version 5.4 and Network Associates'
CyberCop Version 2.4. These tools include tests for most
of the known vulnerabilities that "hackers" commonly

668

attempt to exploit. To help the attacker to decide which
modules of the tools to use, he needed to determine the OS
on which PCASSO was running. Some modules exploit
vulnerabilities commonly seen in certain classes of OSs
(e.g., UNIX), while others exploit vulnerabilities in specific
OSs. (e.g., AIX specific vulnerabilities). The attacker
executed ISS and CyberCop against PCASSO to determine
the OS and its version, and both tools failed. The only
information that CyberCop was able to provide was the
Ethernet address of the network card. At this point, the
attacker realized that PCASSO was going to be far more
difficult to penetrate than most of the systems his clients
ask him to test.

Recognizing that blind penetration was not going to work,
he decided to see what he could find out about the
PCASSO architecture. On the PCASSO Web site, he found
an abundance of information about the architecture and
design. After learning that the server was running on a B2
version of Data General's DG/UX OS, he recognized that
penetrating it was likely to be a futile exercise.

From information available on the Web site, he concluded
that port 8000 was what PCASSO was using for HTTP
instead of the standard HTTP port (port 80). So his next
step was to execute ISS and CyberCop in their Web-
scanning mode. This mode (on both tools) attempts to
exploit known vulnerabilities in the Common Gateway
Interface (CGI) and other Web scripting languages. Poorly
written CGI, Internet Server Application Programming
Interface (ISAPI), and Perl scripts can be exploited to gain
privileged access to an OS or back-end database (such as
PCASSO's CDR). So the attacker executed the ISS CGI tests
identified in Table 1 against port 8000. ISS found no
vulnerabilities. The attacker then proceeded to execute the
CyberCop CGI tests identified in Table 1 against port 8000.
CyberCop found no vulnerabilities.

The attacker next tried a brute-force password attack. From
his Web browser (Microsoft Internet Explorer 4.0), he
attempted to login as a registered user. First, PCASSO
loaded onto the attacker's computer a Java applet that
launched the client, which contained a "virtual" keyboard
(i.e., keyboard displayed on the screen), thus forcing the
attacker to enter a user identifier (ID) and password using
this virtual keyboard. Noticing that a radio button option
labeled “PCASSO Card” under the Additional
Authentication section was checked, the attacker attempted
to uncheck it, but was not successful. The attacker realized
that to be successful, he would need to guess a legitimate
user ID, that user's password, and the value expected in the
PCASSO Card frame.

After the attacker entered what he thought might be a valid
user ID and a guessed password (ignoring the PCASSO

Card frame), he clicked the “Login” button and immediately
received the message “Please Insert Your PCASSO diskette
and press OK when ready.” This meant that beyond having
a valid user ID, password, and PCASSO Card, the user must
possess a diskette containing some secret value stored in
software. Thus the attacker realized that a brute-force
password attack using ISS, CyberCop, or any other
automated password-guessing tool would be pointless.

Realizing that he was not likely to gain access to the
PCASSO server to ultimately compromise its information,
the attacker decided to try to attempt to disrupt its services
via a denial-of-service attack, the most difficult type of
attack to avert. He first executed ISS in its Denial-of-Service
(DoS) mode by running the DoS attacks identified in Table
1 against ports 777 and 8000. These DoS attacks attempt to
consume so much of the OS’s resources that it effectively
becomes paralyzed, disrupting any subsequent connection
attempts as well as processes currently in execution.
Successful DoS attacks can cause an OS to crash, reboot,
and even corrupt data and critical system binaries.
However, the ISS DoS attacks were unsuccessful. The
attacker then executed the CyberCop attacks in DoS mode.
Again the attacker was not able to interrupt PCASSO’s
ability to function properly and continuously.

The attacker was still determined to ascertain the service
represented by the mysterious port 777 so that he could
attempt to exploit it. Knowing that he could connect to
some services using a telnet client such as SMTP, the
attacker tried to telnet into port 777. Again, success eluded
him. During each of his three telnet attempts, he got no
response in terms of text characters, and his telnet client
froze. Without knowing what service port 777 represented,
the attacker was unable to identify and exploit known
vulnerabilities in that service. At this point, he concluded
his penetration attempts.

CONCLUSION

The objective of the PCASSO project was to build a model
system strong enough to protect very sensitive medical
information accessible over a highly threatening public
network, the Internet. We used developmental practices
known to produce robust software. We built PCASSO on a
very strong OS. We have shown through several
penetration attempts that the PCASSO server is stronger
than the vast majority of Web servers and firewalls on the
Internet today. But have we actually proven that PCASSO
is impenetrable?

As stated so succinctly by our attacker, "Any information
security professional worth his/her salt will tell you that
there is no such thing as 100% security. To approach 100%

669

Table 1. Penetration Tests Run Against PCASSO Server

ISS CGI Tests: ISS Denial-of-Service Tests:
PHF (CGI program) Check Webcrawler Index Check Ping Bomb
Guess CGI Bin Check Accessing Above the WWW Server Root Out of Band Check
List CGI Bin Check Directory Check SYN (TCP connection request) Storm
CGI Echo Check URL Password Integrity Check Data Flood
Root Dot-Dot Check NCSA (National Center for Supercomputer Open Close
HTTP Basic Authority Check Applications Webserver Buffer Overflow Check Log Flood
HTTPD Type Check Nph-Test-CGl (CGI script) Check ICMP (Internet Control Message
Vuinerable HTTPD Check AnyForm CGI Check Protocol) redirects to PCASSO
Index Check FormMail Check
Unresolved Links Check ScriptAlias Check
Default Names Check Guestbook CGI Check CyberCop Denial-of-Service Tests:
Test-cgi "™" Check ICMP Unreachable Check
CyberCop CGlI Tests: PHP.cgi File Printing Bug Routed Append Check
Test CGI Check PHP.cgi Buffer Overflow Check In.comsat Check
VWWV perl Check Glimpse HTTP Check PASV (File Transfer Protocol "Passive"
VWWW PHF Check Website Uploader CGI Check mode) Check
Shell Interpreter Check PHP Mlog Example Script Test Portmaster Reboot Check
PHF Bash Vulnerability PHP Mylog Example Script Test Ping DoS Check
VWWW Finger Check WWWcount Stack Overrun Check

assurance that a system is impenetrable would be cost
prohibitive and resource intensive." This penetration
exercise showed that PCASSO is not vulnerable to the
numerous attacks that are well documented in the public
domain. PCASSO has done this by significantly limiting
the number of services that are available and by
implementing a strong authentication sub-system.

A server that makes only two TCP/UDP services
available is what security professionals call a “hardened”
system. The attacker commented that from the "hacker's"
perspective, PCASSO looks more like a firewall than a
state-of-the-art system designed to allow providers and
patients secure access to patient information over the
Internet. Other commercial vulnerability scanners and
custom-built tools might successfully thwart PCASSO's
security. However, to successfully gain unauthorized
access to PCASSO, the attacker would need to be
extremely skilled, well funded, and have a lot of time. At
the same time, PCASSO has an intrusion detection
system that is constantly watching for unusual activity
and attack signatures, so the attacker would need to
break in very quickly to avoid detection.

The PCASSO team set out to prove that we could build a
system that was "safe and effective." So far PCASSO
has shown itself to be safe. The determination of
effectiveness, which includes the usability and
acceptability of PCASSO’s client interface and its
performance in delivering patient-specific data to
authorized users, is currently underway.

Acknowledgements
This work is supported by a Health Information

670

Infrastructure research contract NO1 LM63537-00
from the U.S. National Library of Medicine.

References

1. Masys, DR and Baker DB. “Patient-Centered Access
to Secure Systems Online (PCASSO): A Secure
Approach to Clinical Data Access Via the World
Wide Web,” In Masys, DR, ed. Proceedings of 1997
AMIA Annual Fall Symposium, American Medical
Informatics Association, Nashville, TN, p. 340-3, Oct
1997.

2. Masys, DR, and Baker, DB. "Protecting Clinical Data
on Web Client Computers: The PCASSO Approach,"
In Chute, C, ed. Proceedings of the AMIA '98 Annual
Symposium, Orlando, FL, Nov 7-11, 1998.

3. Baker DB, Barnhart R, and Buss T. “PCASSO:
Applying and Extending State-of-the-Art Security in
the Healthcare Domain,” Proceedings of the Annual
Computer Security Applications Conference, San
Diego, CA, Dec 1997.

4. Netscape Communications Corporation. The SSL
Protocol. Dec 1994.

5. Common Criteria for Information Technology
Security Evaluation, Version 2.0, Common Criteria
Implementation Board. Distributed through the
National Institute of Standards and Technology.

6. Department of Defense Trusted Computer System
Evaluation Criteria, DoD 5200.28-STD, Dec 1985.

7. Baker DB. "PCASSO Risk Assessment." internal
white paper, May 1997.

