
A Programmable Rules Engine to Provide Clinical Decision Support
Using HTML Forms

John Heusinkveld, MD, Antoine Geissbuhler, MD, David Sheshelidze, MD,
Randolph Miller, MD

Division of Biomedical Informatics, Vanderbilt University Medical Center,
Nashville, TN

ABSTRACT

The authors have developed a simple method for
specifying rules to be applied to information on
HTML forms. This approach allows clinical
experts, who lack the programming expertise
needed to write CGI scripts, to construct and
maintain domain-specific knowledge and
ordering capabilities within WizOrder, the order-
entry and decision support system used at
Vanderbilt Hospital. The clinical knowledge
base maintainers use HTML editors to create
forms and spreadsheet programs for rule entry. A
test environment has been developed which uses
Netscape to display forms; the production
environment displays forms using an embedded
browser.

INTRODUCTION

In order to bring useful decision-support
capabilities to the clinician, a Provider Order
Entry (POE) system must draw on the
knowledge of experts in a wide variety of
medical specialties and allied health professions,
ranging from hematologists to nutritionists to
social workers [1]. The designer of such a system
is therefore confronted with the problem of
providing a scheme for maintaining this diverse
knowledge base; ideally, the system's knowledge
about each field should be maintained and
updated by experts in that field, with minimal
assistance from those responsible for
maintaining the core software [2].

Since few clinical experts are also programmers,
a means must be found to allow non-
programmers to format and present complex,
patient-specific information to system end-users.
The expert also needs to be able to specify rules
for how the system is to present and utilize
clinical information for the user. The emergence
of HTML as an international standard for Web
pages and submission forms has provided a large
part of the solution to this problem. Since many
tools are available for constructing and editing

HTML documents, field experts do not even
need to know HTML in order to construct
informative documents and even create forms to
solicit information from the user. However, an
additional mechanism is needed to tell the
system how to operate on the data. This includes
importing of dynamic patient-specific data into
"static" Web forms, and after a form is
completed by the user, applying bounds
checking, completeness checking, and post-
processing rules. CGI scripts can perform these
tasks, but writing a CGI script requires
knowledge of a programming language such as
C or Perl.

Vanderbilt University Medical Center makes
extensive use of HTML as a means for
presenting and obtaining information to and from
users of its POE system, known as WizOrder.
The original OS2 version of the WizOrder client
incorporated a simple Web browser [3], which
was capable of displaying documents and forms
in an HTML-subset; the newer (1998-1999)
Java-based WizOrder client ("JavaWiz")
incorporates ICE, a commercially available class
which implements a browser for HTML 3.0.

DESCRIPTION OF RULE SCRIPTING
LANGUAGE

In the new environment, the processing of a
clinical form containing business rules consists
of two phases: the INIT phase, in which
specified fields are set to their initial values
according to rules that relate "blank" fields to
environment variables, and the EDIT phase, in
which values form forms completed by
WizOrder users are processed with values and
actions returned to the "calling" WizOrder
program. All rules are specified as belonging to
the INIT or EDIT phases.

A rule consists of a phase descriptor, a
command, a variable with optional type
specifier, an operator, an operand, and an
optional connector. The phase descriptor can be

1091-8280/99/$5.00 © 1999 AMIA, Inc. 800

either INIT or EDIT. The command can be any
of the values listed in table 1. The variable can
be any input field named in the form, and the
operator can be > ,>=" <=

or "TO". The value field contains a string or
numeric constant. Connectors include THEN,
AND, OR, AND NOT, and OR-NOT; this field
may also be blank A simple example would be
as follows:

INIT: SET form_title TO "Hello World"

This rule belongs to the INIT phase and is
therefore applied before the page is displayed,
causing a variable named formtitle in the
relevant HTML form to be initialized to the
value "Hello World". A more complex example
would be:

EDIT: IF input field= "quit" THEN
EXIT

This rule is applied after a form has been
submitted, and states that if the variable
inputfield contains the value "quit" (presumably
because the user entered that value), the
processing of that form is finished.

Several scopes for variables are defined. "Local"
variables correspond to form fields whose values
are not saved between sessions. Persistence
variables can be stored and retrieved in different
sessions and are divided into two subclasses:
patient-specific (PSPV) and user-specific
(USPV). PSPVs are tied to the patient identifier
and retain their stored values across all sessions
relating to one specific patient. USPVs are tied
to the user ID and retain their stored values
across all sessions involving one specific user. A
further class of variable, PUSPV, is tied both to
the patient identifier and the user ID and is
visible across all sessions involving that patient
and that user. Finally, environment variables
contain information imported from other
systems, such as demographic or laboratory data.

APPLICATION OF METHODOLOGY:
BLOOD-PRODUCT ORDERING

One of the early uses of this technology involves
enforcing the institutional policies on blood
product transfusions. These policies are
formulated by the blood bank and Blood
Products Committee in accordance with national
guidelines for the therapeutic use of blood
products. The first version of the rules and forms

have been developed by the authors in order to
pilot initial development and testing of the
approach. At a later time, without knowledge of
any programming language, an individual at the
blood bank can create or modify an HTML form
that will be displayed every time a given blood
product is ordered; the physician ordering the
blood product fills in such required information
as the reason for the transfusing. The individual
at the blood bank also uses the simple rules
language to specify how the system interprets the
contents of these fields. Figure 1 contains a
screenshot showing a portion of the form used to
order Red Blood Cells (RBCs).

To illustrate the use of the rules language, a
fragment of the HTML source code for the page
is included in Figure 2, which causes the first
input field ("RBC Units to
CROSSMATCH/RESERVE:") to be displayed.

By selecting one of the checkboxes, the user
assigns a value to the variable
PSPV.rbcadult crossreser amt. The rules
associated with this page include the following:

EDIT:
IF PSPV.rbcadult crossreser amt >20

THEN DISPLAY WARNING
"To order more than 20 units of RBCs,
call the Blood bank for approval"

This will cause the page to be redisplayed with
the specified warning if the user attempts to
order more than 20 units of RBCs. Similar forms
and rules are being developed for the ordering of
platelets and plasma.

Rules are stored in a tabular form for easy
parsing by the program that applies them to the
information submitted in HTML forms. An
internal symbol table is constructed from the
variables in the form; variables designated as
PSPVs can be placed in long-term storage so that
the next time a given form is displayed in the
context of the same patient, the fields on the
form will be initialized to their stored values.
This feature prevents clinician users from having
to repeatedly select the same reason to order the
same product. For example, in the case of a
patient with ongoing blood loss, the justification
for the transfusion ("acute blood loss > 15% of
estimated blood volume") need only be selected
for the initial transfusion orders; for subsequent
orders for the same patient, this will be the
default value.

801

The end result of the interaction between the user
and the HTML form is one or more orders which
are confirmed by the POE and then released to
the relevant hospital units and ancillary services.
In the case of the blood products order form,
orders may be generated to reserve, crossmatch
and transfuse blood products. The use of the
form and rules guarantees that all of the required
information is provided, and allows easy
updating as rules and requirements change.

CREATION OF A TEST ENVIRONMENT
FOR RULE DEVELOPMENT

In order to facilitate rule and form development,
a test environment was created which utilizes the
form-processing modules developed for the
WizOrder client. Because the Web browser
window implemented within WizOrder is not
available in the test environment, forms are
displayed using the Netscape browser.

When the test environment starts up, it loads a
template for the HTML form to be displayed,
and, from a separate file, the rules relating to that
form. The rules engine control logic sets the
fields in the form to their initial values by
applying all the rules with the INIT phase
descriptor. NetscapeTM is then launched as a
separate process to display the form. The user is
then able to interact with the form in the
Netscape environment; when the user submits
the form, it is sent to a socket to which the rules
engine control logic is listening, arriving as raw
HTTP data which is parsed by the control logic.
The values of all variables in the form are
extracted and placed in the internal symbol table.
After the rules with the EDIT phase descriptor
have been applied, a new form is constructed and
returned to the browser. This test environment
allows forms and rules to be developed and
tested on workstations that do not have the
WizOrder client installed.

DISCUSSION

The problem of maintaining a distributed
knowledge base is by no means unique to the
WizOrder system at Vanderbilt. For example, the
OPADE system, developed in Europe for
outpatient prescribing, incorporates several
knowledge bases on several different servers

including a drug information server, a patient
information server, and a thesaurus server. The
drug information server a implements a simple
language for specifying rules about prescriptions
for the drugs in its knowledge base [4].

The approach taken here, utilizing HTML forms
for static information and a simple rule language
for specifying dynamic relationships between
different pieces of information, makes no
assumptions about what type of information is to
be stored and is therefore generalizable to a
variety of distributed knowledge base
applications. It could be argued that this rule
language is in fact a programming language, and
that the claim that it obviates the need for clinical
domain experts to learn a programming language
is therefore inaccurate; however, preliminary
experience at Vanderbilt indicates that the
amount of time needed to master the rule
language is significantly less than that required
to learn C or Perl. It seems likely that, in time,
commercial products will become available that
can perform the same task; however, until a
standard emerges, the approach described here
will provide an interim solution.

References

1. Geissbuhler A, Miller RA. A new approach
to the implementation of direct care-
provider order entry. Proc AMIA Annu Fall
Symp. 1996; 689-93

2. Geissbuhler A, Miller R. Distributing the
knowledge maintenance for a clinical
decision support system: the "knowledge
library" model. Submitted to AMIA Annu
Fall Symp. 1999.

3. Geissbuhler A, Grande JF. Embedding a
Web-browser in an order entry system to
improve the distributed maintenance of
decision-support resources. Proc AMIA
Annu Fall Symp. 1997; 939

4. De Zegher I, Venot A, Milstein C et al.
OPADE: optimization of drug prescription
using advanced informatics. Comput
Methods Programs Biomed. 1994; 131-6.

802

Table 1: Scripting Language Commands

NOTE: The RESERVE order defaults to PACKED RBC unless special preparation indicatedBELOW
RBC Units to CROSSMATCH(RESERVE: (use 0 ifONLY TRANSFUSING new &RBC prwsusly reserved)

(CiJ)(e 1)(C2)(CJ4(O6)(C 1)(C 20) COther: f.

RBC Units to TRANSFUSE NOW(use 0 ifONLYRESERVINGnwwithoutcumxtfrasfiusien)
(CO) (l) (0 2)(04) (C 6) (CO1)(20) OOther:

Pick one:

ONLY Reserve RBC (HOLD hbr later Unamfsiea - i.e., crossmatch& add to patient's unused RBC store)
Reseive &TRANSFUSE RBC as spiedfied. abve

REASONfbr TRANSFUSION: [NO Transfusion Ordered

Other Transfusion Reason:

ire i. ocrIelesi oi put)uu prouuci.s oruer

Figure 2: HTML for part of blood products order form

803

DISPLAY: displays a message. Messages are inserted at the top of the next HTML form to be displayed.
EXIT: exits the current VGR. 11/17: add type=RESTORE (similar to THIS) and RESTART (reruns the
INIT phase)
IF: evaluates a condition; execution of next rule is contigent upon condition evaluating to true.
LOAD: loads a new VGR or a new form. Local symbols represent the current VGR (current VGR) and form
(current-form).
MAP: maps a local variable to an environment variable. Environment variables cannot be changed directly.
SET: sets the value of a variable
STORE: force a permanent storage of a set of persistent variables.
USE: declares that a persistent variable is going to be used as a variable. If the variable does not exist yet, it
is set to FALSE. Changes to variables are saved using the STORE command

Frm

RBC Units to CROSSMATCH/RESERVE: (use 0 if
ONLY TRANSFUSING now & RBC previously reserved)

<input type="radio" name="PSPV.rbcadultcrosoreser_amt" value="0">0)
(<input type="radio" name="PSPV.rbc adult crossreser amt" value="1">1)
(<input type="radio" name="PSPV.rbcadultcrossreseramt" value="2">2)
(<input type="radio" name="PSPV.rbcadultcrossreser amt" value="4">4)
(<input type="radio" name="PSPV.rbcadultcrossreser amt" value="6">6)
(<input type="radio" name="PSPV.rbcadultcrossreser amt"
value="10Q">10)

(<input type="radio" name="PSPV.rbcadultcrossreser amt"
value="20">20)

(<input type="radio" name="PSPV.rbcadultcrossreser amt"
value="other">)Other:

<input type="text" size="2" maxlength="2"
name="PSPV.rbcadult crossreser text">

........... ~.......;

