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ABSTRACT
At AMIA 1997, we reported on the design and
development ofa new computer-based tool, called
QID, for empiric antibiotic decision support. QID
was designed to help physicians identify the
antibiotic regimens with the highest probability of
covering the pathogens that are most likely to be
present in individualpatients. QID creates a list of
antibiotics, ordered bypotential benefit in treatment,
for a patient with a suspected infection before culture
results are available. Since our initial publication, a
"before and after" study has been done using 20
internal medicine residents and the same number of
internal medicine attendings. In order to test the
hypothesis that physician's would make more
appropriate empiric antibiotic choices with the aid of
QID, we chose University ofUtah physicians and had
each evaluatefour infectious disease cases that were
abstractedfrom medical record infectious disease
cases. Immediatelyfollowing their initial review and
determination ofantibiotic therapyfor each case, the
study participants were presented with QID's
antibiotic recommendations on the same case to see
ifthis information would change their initial drug
regimen. The tool was shown to have a greater
impact on the most difficult cases but statistically
improved scores overall (p<. 001). Details ofour
study design and results are presented

INTRODUCTION
Physicians frequently need to prescribe antibiotic
therapy before bacterial culture results and antibiotic
susceptibility tests are available. Empiric therapy
should be chosen on the basis of recent and local
information about the most likely pathogens, the risks
associated with making the wrong choice, and the
potential gain in health quality for each antibiotic.
Additional and secondary factors are drug toxicity
and cost. Each of these factors is represented in our
QID decision support model and described in our
initial paper [1].

Inspired by early concepts in MYCIN [2] and by the
success of the LDS hospital Antibiotic Assistant [3],
our goal in building QID was to:
1) build a modular system that would function

independent of any particular host information
systems,

2) use local knowledge about disease/organism
prevalence,

3) use probabilistic reasoning, Iliad [4], to calculate
a differential diagnosis,

4) take advantage of indigenous susceptibility
patterns, and

5) account for the risk of not treating (using a
construct for measuring "Good Days of life
Saved" or GDS). GDS is similar to other "net
benefit" constructs described in the literature [5-
6].

The QID program first calculates a differential
diagnosis from an infectious disease knowledge base
that we have built over the last three years which runs
on Iliad's inference engine. QID then calculates the
maximum GDS for each of the most likely
disease/organisms (Prob(Disease)) assuming optimal
antibiotic coverage. Using local antibiogram
epidemiology from the last 15 months, QID
multiplies the effectiveness (% susceptible) of each
antibiotic by the maximum GDS score for each of the
most likely disease/organisms. This algorithm
generates a list of antibiotics ordered by GDS and
displayed along with the toxicity and cost/24 hours of
treatment for each drug. Stated another way the
formula: Antibiotic GDS = Sum across most likely
diseases of (Prob(Disease) x Optimal GDS score x
Antibiotic Susceptibility) produces a list of
antibiotics that cover the largest fraction of potential
GDS.

In order to validate this decision support model and
before attempting to further refine and implement
QID in a clinical setting we wanted to first measure
the value of the information content produced by the
program. Our goal in designing QID was not to
compete with but aid physicians in making better
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empiric antibiotic choices. This goal influenced our

study design and will eventually guide the direction
we take future development.

METHODS
Evans et.al. in 1994 reported a 17% (77% to 94%)
improvement in empiric treatment effectiveness
against eventual pathogens, as physicians used their
Antibiotic Assistant in a study performed at LDS
Hospital [2]. Expecting similar gains in performance,
we used Evan's baseline numbers in calculating our

study sample size. However, in addition to judging
how effectively suggested antibiotic regimens did in
covering isolated pathogen(s), as was done in the
Evan's study, we also used infectious disease
specialists to judge how well each study physician's
antibiotics compared to what the infectious disease
(ID) specialists would have done with the same
information. This additional evaluation approach
seemed appropriate given our goal to raise overall
physician performance to the level of an infectious
disease specialist through the use of a decision
support tool. It also required agreement between the
judging specialists regarding optimal antibiotic
therapy.

As an experimental design we chose a "before and
after" study where the same physicians would
evaluate similar randomly selected infectious disease
cases without the decision support tool and then
again immediately afterwards with the aid of the
information generated by QID. This approach
controlled for inter-physician variability in
prescribing patterns and eliminated the temporal
problems introduced when there is long interval
between measurements. Patient charts (inpatients
only) were selected from the University of Utah
Medical Center that met the following inclusion
criteria:
a) The discharge diagnoses had to include an

infection from the list shown in Figure 1, since
the knowledge base used for QID only included
hospital acquired diseases.

b) Only charts for patients discharged between
1992 and 1997 were included since QID is built
from a knowledge base of the most recent
antibiotics and sensitivity data.

Some charts were eliminated from the study because
the patient chart was illegible or because there was no

culture data in the chart. Many charts were
abstracted and used for testing the model over a two-
year period but nine separate charts were abstracted
especially for the study. Since we decided not to use

surgeons in the study (due to difficulty in getting
them to participate), the wound infection cases were

eliminated and we ended up using three bacteremia
cases, three pneumonia cases, two UTI/cystitis cases,
and one meningitis case.

Diseases of interest: % Occurrence
1. Wound Infection 27%
2. UTI/Pyelonephritis 21%
3. Bacteremia 16%
4. Pneumonia 14%
5. Endocarditis 12%
6. Peritonitis 6%
7. Encephalitis 2%
8. Meningitis 2%

Figure 1
(Distribution ofNosocomial diseases, 1997, University of Utah

Medical Center)

Two groups of 'non-infectious disease' physicians
from the University ofUtah were recruited into the
study - 20 internal medicine residents (3rd and 40
year) and 20 internal medicine attendings. Each
physician was paid $50 for participating.

Each participant was presented with abstracts from
four of the nine abstracted cased and asked to analyze
the meningitis case and one of each of the randomly
assigned pneumonia, bacteremia, and cystitis cases.
Each was asked to carefully study the case and note
their suggested antibiotic regimen on the bottom of
the page. This completed, each was then given
QID's recommendations printed on paper (partially
shown in Figure 2) along with a short questionnaire.
Participants were asked to make any modifications to
their initial antibiotic regimen if influenced to do so
by this new information. Additional questions on the
questionnaire attempted to collect feedback on
influencing factors regarding reasons for change. A
total of 160 cases were collected during the study that
spanned 30 days. Of the 160, twenty-one were
eliminated either because the judges could not read
the handwriting or because the participant didn't
follow directions in filling one of the two forms.

Physician antibiotic "before and after" choices were

judged by two ID specialists (gold standard). These
experts evaluated each of the 139 cases

independently using the same scoring mechanism. A
scale from 0 to 100% was used as a distance measure
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Computer Generated Drug List
Class Antibiotic %Coverage Tox Cost/24
Fluoroquinolone Ofloxacin 80% 2 $5.28
TMP/SMX Sulfa & Trimeth 72% 3 $2.76
Vacomycin Vacomycin 61% 4 $12.80
Lincomycin Clindamycin 45% 2 $27.00

Figure 2 (Part of QID output)



against the gold standard. A score of 0 meant that the
antibiotics chosen were completely ineffective
against the mostly likely pathogens while a score of
100 meant that the chosen regimen was expected to
have 100% coverage against the most likely
pathogens. Scores in between indicated partial
coverage.

RESULTS
There are two sets of results. The first analysis
measures how well study participants' choice of
antibiotics matched with the empiric choices of the
infectious disease specialists. The second analysis
measures how well each participant did in covering
the eventual pathogen as isolated by the laboratory.
The same ID specialists judged both analyses. Each
infectious disease specialist (rater 1 and rater 2)
scored all 139 cases independently.

The before and after results of the first analysis in
shown in Figure 3 as a stratified distribution across
cases of before and after scores as the mean of both
raters. Rater 1 scored the participants performance
without QID (termed "before") at an average score of
68.3% and participant's performance using the output
from QID (termed "after") at an average score of
77%, an 8.7% increase. By comparison, rater 2
scored the average "before" performance at 88.2%
and the "after" performance at 93.1%, for an increase
of 4.9%. When combining the two raters the mean
difference in scores from "before" to "after" was
6.8% (78.2% to 85%).

Score
Percent
0%
10%
20%
30%
40%
50%
60%
70%
80%
9000

100%

Mean
Before

3
2
4
5
3

11
11
12
22
24
40

Figure 3

Mean
After

3

32

6

10
21

321
58

Since the distributions of the scores for both raters
appears to be skewed we could not assume normality.
Therefore, we used a Wilcoxin non-parametric
statistic along with a paired t-test to test the null
hypothesis that there is no difference in physician
performance with or without the decision support aid.
Both the paired t-test and Wilcoxin produced p-

values < .001. The number of positive differences
was 57, the number of tied ranks was 77 (i.e., either
the before score was 100% or the after score did not
improve over the before score). There were also 5
negative differences where the participants score
decreased by revising his/her initial antibiotic
choice(s). The antibiotic(s) that QID recommended
covered the isolated pathogen(s) in 8 of 9 test cases
as judged by our two raters. In the one case QID
missed, the organism (E. cloacae) was not included
in the program's knowledge base. This is the most
likely explanation for the 5 negative differences.

The results of the second analysis (against isolated
pathogen), are shown in Figure 4. The overall
"before" and "after" means for the second analysis
were 66.2% and 75.2% respectively - an average
improvement of 9.0%. The Wilcoxin rank-sum
produced 7 negative, 30 positive, and 102 tied ranks.
Both parametric (paired T-test) and non-parametric
tests showed significant improvement at p<.00 1. As
in the first analysis, the greatest improvement in the
second analysis (21.5%, p=.006) was found in the
most difficult case (i.e., meningitis).

Score Mean Mean
Percent Before After
0% 7 6
10% 19 5

20% 14 18
30% 0 0
40% 0 0
50% 8 4
60% 4 3
70% 0 2
80% 10 10
90% 44 37
100% 33 54

Figure 4

When considering the use of human judges as a "gold
standard" it is important to measure their degree of
agreement. This was done using the Kappa statistic
which focuses attention on the cells along the
diagonal of a RxC contingency table (Figure 5). The
numbers along the diagonal represent assignments
agreed upon by the two raters. The numbers in each
of the cells in Figure 5 represent counts ofhow often
each rater scored before/after improvement. The five
cases that had lower after than before scores were
counted as no improvement.
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Rater 2

Rater I No improvement Improvement Total

No improvement 65 22 87

Improvement 22 30 52

Total 87 52 139

Figure 5

This data yields a Kappa of .33 with p < .001, thus
rejecting the null hypothesis that agreement between
the two raters was no better than that predicted by
chance. Where there is disagreement, as measured
by the numbers off the diagonal, there is perfect
symmetry implying random variation or variation due
to chance (in other words the disagreement is not
systematic). In 30 of the 139 cases both raters agreed
that the participant improved using the decision
support tool. Moreover, 74 of the 139 cases or 53%
improved using the tool at judged by at least one of
the raters.

When eliminating the 16 cases where there was no
room for improvement (i.e., cases with a "before"
score of 100%) the mean difference in before and
after scores improved from 6.8% to 7.7%. The
before and after differences were most striking when
we isolated the most difficult or rare cases for
analysis. Most would expect relatively good before
scores for frequently seen cases (e.g., urinary tract
infection (UTI). In our study, UTI's produced only
small percentage improvement gains, but when
isolating the 31 rarely seen meningitis cases the
average difference in scores was 19.2% (66.3% to
85.5%).

Since we had 20 residents and 20 attendings (who
were not ID specialists) in the study, we also looked
at empiric antibiotic performance by education level,
independent of any decision support. To do this we
compared how well each group scored independent
of QID (the "before" score only). Using the Mann
Whitney U statistic (a non-parametric equivalent to
the two sample t-test) the mean ranks were almost
identical between the two groups (67.07 vs. 66.88)
with p=.977. This suggests that education level
(R3/R4 vs. attending) for our test group had no
bearing on the effectiveness of empiric antibiotic
prescribing.

Using a five point Likert scale, with 0 meaning "not
influenced at all" and 5 meaning "highly influenced,"
three additional follow-up questions were asked of
study participants for cases where they changed their
treatment regimen after looking at QID's
recommendations:

1) What was the impact of the GDS scoring metric
on your decision making?

2) How much did knowing about drug toxicity play
a part in your changing your drug regimen?

3) How much did knowing about drug cost per 24
hours influence your decision?

Of the 42% responders to these questions, 93% (54
out of 58) indicated that GDS strongly influenced
their decision to change antibiotics whereas only 16%
(9 out of 58) said that either drug toxicity or cost
played a significant role in their antibiotic choice.

DISCUSSION
A statistically significant difference in prescribing
effectiveness is encouraging but we remain
concerned about the reliability of our gold standard
as well as how to interpret the clinical significance of
these findings. A concern we had from the beginning
of the study was how to establish a reliable "gold
standard" in the face of considerable antibiotic
prescribing variability, even among experts [7]. A
Kappa of .32, while statistically significant, is still
low. However, we were unable to justify using more
raters and unable to come up with a more suitable
gold standard for our purposes. A second concern is
that the physician will feel that their return on
investment is low. In other words, they may feel that
a 10% or 20% improvement in empiric decision-
making is not worth the time they must invest to
enter patient data into the program.

The most challenging problem facing all computer-
based decision support tools is data collection. Most
of the data used by QID in the diagnostic phase is not
available in electronic form in existing databases.
Therefore, the physician must manually enter the
data. This constraint will likely relegate QID use to
difficult cases, but an area of the tool's greatest
impact as indicated by our results. A second
challenge is in validating QID's content both in terms
of what has been defined and what may be missing.
We are in the process of doing sensitivity analyses on
our morbidity/mortality tables but there is further
work required in validating the sensitivities and
specificities used in the program's diagnostic front-
end as well as in overall testing of the tool.

Once the content has been validated, there are a
number of very challenging "human factor" issues
that include logistical (work flow), mechanical (data
input mechanisms), psychological (physician comfort
level and confidence in the tool), legal (will I get
sued for using or not using the tool) and regulatory
(FDA and software oversight) issues that must be
dealt with in order to achieve market penetration. A
final challenge lies in implementation approach and
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marketing focus. Should implementers attempt to
integrate QID into existing applications (like
physician order entry) where it can eventually play a
more "active" role in decision support (e.g.,
Antibiotic Assistant at LDS hospital [2]) or is it better
placed in outpatient settings where there is less
infectious disease decision support of any kind so it
can be used as a consultant on difficult cases.

CONCLUSION
The optimal use of antibiotics in the empiric phase of
treatment involves the decision to use antibiotics at
all, the choice of which antibiotic(s) to use, and
deciding how to administer the drug (e.g., dosing)
once a specific regimen has been chosen. The QID
decision support model provides information to aid
the physician in forming a differential diagnosis and
in providing a rationale for making a treatment
decision that takes into account the "net benefit" of
choosing one antibiotic or antibiotic combination
over another. The "good days of life" (GDS)
construct used in this model uses an estimate of
mortality and both acute and long term morbidity in
its calculation of a score that yields a quantitative
coverage estimate of the most likely pathogens.
Similar approaches have been used in other decision
support models in order to provide appropriate
weight and utility to various treatment options [6-7].

We believe that a valid construct for empiric
antibiotic therapy must take into account the risk of
misdiagnosing as well as provide a quantitative
"goodness of fit" measure. Our use of a diagnostic
front-end (Iliad) combined with a treatment expert
system back-end has the potential of making an
important contribution to clinical practice.

It is tempting to believe that models can be built that
will answer all questions and control for potential
confounding variables. This does not appear possible

in most clinical settings since too much uncertainty
exists. However, since our goal is not to replace the
physician but to improve their decision-making
capabilities, the results of our "laboratory"
experiment and the performance of the initial
prototype are encouraging. Further testing,
refinement and evaluation approaches are required in
taking the next step in understanding the full clinical
utility of our model.
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