Testing and Validation of Computerized Decision Support Systems

R. Matthew Sailors, ME, Thomas D. East, Ph.D. ",

C. Jane Wallace, RN, MS, Debra A. Carlson, BS CIS,

Margaret A. Franklin, RN, BSN, Laura K. Heermann, RN, BSN,

A. Tupper Kinder, BS, Richard L. Bradshaw, BS',

Adrienne G. Randolph, M.D.", Alan H. Morris, M.D.

"Department of Medical Informatics, University of Utah School of Medicine and
Pulmonary Division, LDS Hospital, Salt Lake City, Utah

Systematic, thorough testing of decision support
systems (DSSs) prior to release to general users is a
critical aspect of high quality software design.
Omiission of this step may lead to the dangerous, and
potentially fatal, condition of relying on a system
with outputs of uncertain quality. Thorough testing
requires a great deal of effort and is a difficult job
because tools necessary to facilitate testing are not
well developed. Testing is a job ill-suited to humans
because it requires tireless attention to a large num-
ber of details. For these reasons, the majority of
DSSs available are probably not well tested prior to
release. We have successfully implemented a soft-
ware design and testing plan which has helped us
meet our goal of continuously improving the quality
of our DSS software prior to release. While requir-
ing large amounts of effort, we feel that the process
of documenting and standardizing our testing meth-
ods are important steps toward meeting recognized
national and international quality standards.

Our testing methodology includes both functional
and structural testing and requires input from all
levels of development. Our system does not focus
solely on meeting design requirements but also ad-
dresses the robustness of the system and the com-
pleteness of testing.

- INTRODUCTION

In our experience, few decision support systems
(DSSs) are thoroughly tested before they are released
to general users, a conclusion which others have also
observed (1). Thorough testing requires a great deal
of effort and is a difficult job because tools necessary
to facilitate testing are not well developed. Testing is
a job ill-suited to humans because it requires tireless
attention to a large number of details. For these rea-
sons, the majority of DSSs available are probably not
well tested prior to release. Lack of thorough testing
may lead to low quality output from or malfunction of
the DSS during clinical use.

Systematic test plans and tools that allow thor-
ough structural and functional test scenarios are pre-
requisites for developing quality software. Designers

0195—4210/96/$5.00 © 1996 AMIA, Inc.

234

and testing personnel often feel that “real world” and
“everyday” scenarios are sufficient to completely test
a complex DSS. In most testing scenarios which use
“real world” historical data and events, the majority
of the scenarios test only a small percentage of the
knowledge base and may not test some areas of the
knowledge base at all (2). While this may represent
how the DSS will be used in daily practice, DSS de-
velopers should be wary of taking the chance that a
wrong decision will come from the system because of
inadequate testing prior to release.

For example, a system with only 10 Boolean in-
puts has 2'°, or 1024, different possible combination
of inputs while a system with 10 graduated inputs,
each with 10 different levels has 10'° different com-
binations of inputs. Given this complexity, how many
systems are tested systematically with all of the po-
tential combination of inputs to verify the quality of
the system?

BACKGROUND

Decision Support System

The decision support system for which these test-
ing methods were originally developed is designed to
manage mechanical ventilation of critically ill pa-
tients . The DSS was developed around a finite state
automaton inference engine. The knowledge base
consists of several interdependent modules which
handle the various aspects of mechanical ventilator
therapy (e.g. ventilation, oxygenation assessment, and
weaning) and a map file which controls the order of
execution of the states (3).
Testing

The reasons for testing systems and software can
be divided into three categories: to judge acceptabil-
ity, to judge quality, and to discover problems. Ac-
ceptability testing verifies that the system meets de-
sign requirements. Quality testing is intended to
build confidence in the system. Problem discovery
looks for discrepancies between design specifications
and observed behavior. Traditionally, acceptability
testing and problem discovery are the most commonly
used methods (4, 5).

Functional
Testing

Impementented, but not Tested

Figure 1 Venn Diagram for Realms of Design,
Implementation, and Testing

By testing, we can help avoid falling victim to the
Titanic Principle: ‘The magnitude of a system’s fail-
ure is directly proportional to the designer’s (or
builder’s) belief that it cannot fail’ (5).

There are two main paradigms for testing systems:
structural (clear box) testing and functional (black
box) testing. Structural testing requires information
about the structure of the system, and subjects the
individual elements of the system to independent ex-
amination. Functional testing is concerned only with
the inputs and outputs of the system. While func-
tional testing alone can effectively test a complex
system, it makes it difficult to track down and fix
errors. Structural testing alone cannot test a complex
system because of the interactions between individual
elements. Thus, an efficient testing plan will need to
include both functional and structural testing.

Figure 1 shows the world in which the system
designers, implementation personnel, and testers must
work. The goal of testing is to minimize the opera-
tions which were designed and implemented but not
tested.

Before testing can begin, a test plan must be
drawn up. Ideally, this plan is based on a verification
and validation document prepared during the design
phase of system development. The nature of the test
plan depends on the choice of performance standard.
Examples of performance standards for decision sup-
port systems (DSS) include DSS - expert agreement,
DSS - design agreement, quality improvement, varia-
tion reduction, and outcome improvement. Many
DSSs designed for the health care field are primarily
concerned with agreement between the DSS results
and a “gold standard,” which is often the clinician
whose knowledge was supposed to be captured in the
DSS knowledge base.

Traditional Testing Paradigm

The traditional method of testing a DSS involves
generating scenarios which the designers feel repre-
sent the situations the DSS will encounter in real
world use. The majority of these cases test only the

235

most common pathways. In many instances, entire
branches of the DSS knowledge base will not be
tested by “real world” scenarios (2). This leads to the
dangerous situation of relying on a system which has
not been thoroughly tested, but which has been
“certified” to perform as designed. Thus, when the
one case in a thousand is presented to the DSS, the
DSS’s output is unreliable.

New” Testing Paradigms

Recently more emphasis has been placed on
judging decision support aids on not only accuracy
but also on the “appropriateness of its conclusions
and the scope of its consideration” (6). Wasson,
et.al. proposed standards for validation of systems
that were followed in fewer than 50% of validation
studies (1).

Investigators are now being asked to distinguish
between efficacy (the promise of performance) and
the effectiveness (the delivered performance) of the
decision support aid and to account for the effects of
potential biases in both the system itself and the
methods employed to validate the system (6-8) .

METHODS

Planning

Before testing began, we created a verification
and validation document, which described, in detail,
methods to be used in testing and standards for de-
veloping testing plans. Our testing plan is divided
into several parts designed to test both the knowledge
base and its implementation. The knowledge engi-
neer is responsible for developing the knowledge
base and verifying its function on paper. The pro-
grammer is responsible for verifying that the imple-
mented knowledge base meets design criteria. Fi-
nally, members of our quality improvement team,
other than the knowledge engineers and programmers
who developed the DSS, test the decision support
system to verify that it performs appropriately in a
variety of clinical scenarios.

Testing plans for each module of the knowledge
base are created and maintained as the knowledge
base grows and evolves. The testing plans include
mandatory structural testing of the knowledge base
module and functional testing of the integration of the
module into the rest of the knowledge base. The flow
diagram in Figure 2 shows the steps in our verifica-
tion and validation planning procedure.

Testing Methods

In testing the ventilator management DSS, we
used a combination of structural and functional test-
ing. Each of the states in the protocol underwent in-
dividual structural testing as did each module. Func-

Development of Formal Testing Plan
and Test Cases

* Revise Test Cases

Testing by Software Quaility
Improvement Team

C Continute to Next Stage of Testing)

Figure2 Verification and Validation
Planning Procedure

tional testing extended to the integration of the indi-
vidual modules and the whole protocol system.

Structural Testing: The finite state automaton
paradigm lends itself to structural testing which in-
volves testing the function of the DSS by testing the
method of implementation. Structural testing requires
specific and detailed knowledge of the structure of
the system. To test the DSS modules, we verify the
operation of each state in the automaton at both the
code and functional level using a combination of ro-

>12.5 hours since last
Pa0; input?

bust worst cast testing . For example, to test the logic
shown in figure 3, four tables, one table for the test
cases for each decision state, are needed. Tables 1
and 2 show the robust worst case test cases for state
S08 and S09, respectively.

Table 1. Robust Worst Case Test Cases

(PEEP input>5) AND
(FiO, input>0.4)

>6.5 hours since
ast PaO, input?,

PEEP input>15) AND
FiOy input>0.6

AQ7

for State SO8 in Figure 3

Line Time since last Next

Pa0, input State

1 6:31 S09

2 6:30 A07

3 6:29 A07

4 3:00 A07
Table 2. Robust Worst Case Test Cases

for State S09 in Figure 3
Line PEEP input FiOQ, input Next State

1 10 0.3 A07
2 14 0.59 A07
3 14 0.60 A07
4 14 0..61 A07
5 15 0.59 A07
6 15 0.60 A07
7 15 0..61 A06
8 16 0.59 A07
9 16 0.60 A07
10 16 0..61 A06

These tables begin to illustrate the problem of
increasingly complex decision states. To fully spec-
ify a robust worst case testing plan for a decision with
n parallel conditionals and m;, m,, ... m, boundary
limits (in the State S09 in Figure 3 n=2 and
m; =m;, = 1), there would be 3" I1(m;) + 1 rows and
n + I columns in the logic table (thus for a single
variable two-limit test, you need 7 lines, and for a 2-
variable, two-limit test you need 37 lines).

Yes A06

“"ABG more than ___ hours old;
Insufficient for Pulse ox sat interpretation;

draw ABG"

= xxx.x, Pulse 0x 4pg = xxx, PaO2 = xxx.x, from dd/mm hh:mm, a PaO2 of xxx
has been estimated.

Based on the Pulse ox sat of xxx entered at dd/mm hh:mm and the ABG data: SaO ,

Figure 3. Section of Ventilator Management Protocol. Copyright 1996, Intermountain Health Care, Inc.

236

Functional Testing: Functional testing is concerned
with testing the functionality of a system without re-
gard to the method of implementation. Therefore,
test cases developed solely from the DSS design
specifications can be used to test a variety of different
implementations of the knowledge base. The choice
of test cases for functional testing of the DSS mod-
ules and their integration is more problematic, as all
system inputs and outputs must be identified and
specified or predicted. Test cases for functional test-
ing are often inspired by real-world observations, but
must also be derived from design specifications.

Test Case Design and Selection: Our test cases
were chosen to perform both structural and functional
testing. As previously noted, neither structural nor
functional testing alone is a practical method of veri-
fying the performance of a DSS. Figure 4 shows the
steps used to develop specific test cases and testing
plans

Error Handling and Recovery: Any errors in
either the knowledge base or its specific implementa-
tion are reported to the testing supervisor, program-
mer, and, if appropriate, the knowledge engineer. An
incident report is created which notes the observed
effect, the test conditions which lead to the error and
the probable location of the error. Errors in imple-
mentation are corrected by the programmer who is
also responsible for competing the resolution section
of the incident report noting the exact problem, its
resolution, the date and time of the correction and
attests to the correct operation of the module during a
bench test.

Knowledge base errors are corrected by the
knowledge engineer and approved by either the whole
knowledge base consensus group or, for minor or
emergency changes, the chair of the group. Once the
knowledge base has been corrected the knowledge
engineer completes the incident report and generates
a work order for the programmer to adjust the imple-
mentation. Both the programmer and knowledge
engineer must attest to the correct operation of the
adjusted module.

Testing on all modules which may be affected by
the erroneous module is stopped until corrections can
be made. While this slows the overall testing process,
it does reduce the probability of diagnosing “false
errors” because of erroneous data propagating
through the system.

RESULTS

Our testing of the computerized ventilator man-
agement protocols (approximately 350 total branch
and calculation states) generated more than 2000 test
cases and more than 8000 rows in the corresponding

237

(Newly Implemented Knowidege Base]

Identify all input variables used in newly implemented KB

¥

Generate Logic Tables that will test each input parameter
(See Table 1)

¥

Create Test Cases for each entry in the Logic Tables
(multiple entries may be tested in a single Test Case)

Add scenarios developed solely from design specifications
(Functional Testing)

!

Add scenarios from clinical observations which influence
performance of KB.

v

Create Scenarios which test integration of new KB into
rest of DSS

(Test Implemented KB by Test Plan)

Figure 4. Testing Plan Development Process

logic tables. Recent development and testing of
charting screens for three ventilators required in ex-
cess of 3000 logic table rows and several hundred test
cases.

Testing of the full ventilator management DSS
required more than 900 man-hours of work, but has
led to a system which performs as designed and is
easily maintained. Since the implementation of these
systematic methods for testing our DSS were imple-
mented, the rate of implementation and logic errors
has decreased significantly.

DISCUSSION

Our testing methodology compares favorably with
the principles outlined by other researchers for
evaluating the efficiency of a DSS (1, 7-9). We do
not address the other major concern of evaluating
expert systems, namely their impact on the medical
care process and medical outcomes.

There are two major drawbacks to using this
methodology:

1. itrelies on humans to build logic tables, develop
test cases, enter test cases into computer
2. it tests only the efficacy of DSS

While the reliance on humans is an inconvenience
and an area for future improvement, it is the lack of
effectiveness testing which can be construed as a
weakness of this system. The inherent limitations of

humans are well known, but by having multiple layers
of personnel entering the test cases and reviewing
results, the probability of missing errors are virtually
eliminated.

We have developed and continue to develop some
automated tools which address the aforementioned
drawbacks. An automated scenario testing system
has been developed to reduce the human labor re-
quired for feeding scenarios to the DSS, although
human auditing of the testing results is still required.
We envision that new tools and knowledge base
paradigm standards, such as Arden Syntax, will allow
the intelligent authoring tools which will partially
automate the process of building logic tables and test
cases. These can then be passed to an automated
tester for testing against the knowledge base imple-
mentation.

While this method of testing and validating com-
puterized decision support systems has been very
successful for us, it is only the first step on the road to
software maturity. This process is only the beginning
of the evolution into the realm of Software Process
Maturity. It only addresses the first few steps of the
Capability Maturity Model (CMM) (10).

Many years ago, other industries recognized the
need for systematized software development and
testing plans. Unfortunately the medical computing
industry has only just begun to realize that some sort
of action needs to be taken on this front. Medical
computing is now under increasing pressure to meet
ISO 9000 series requirements internationally as well
as Unites States Food and Drug Administration
(FDA) and U.S. Congress software and medical de-
vice guidelines (11-13).

SUMMARY

We have successfully designed and implemented
a software design and testing plan which has helped
up meet our continuous quality improvement goals.
While it does require large amounts of effort, we feel
that the process of documenting and standardizing the
testing methods are important steps toward meeting
recognized national and international quality stan-
dards. For computerized decision support systems to
fully realize their potential, they must be not only
accurate but robust. Systematic and thorough testing
is the most effective tool to attain this goal.

If medical informatics and medical computing are
interested in improving the quality of DSS software,
their respective communities need to support and
implement systematic software testing practices.

References

1. Wasson J, Sox H, Neff R, Goldman L. Clinical
Prediction Rules. Applications and Methodologi-
cal Standards. N Engl J Med 1985;313:793-799.

2. Sailors RM, East TD. A model-based simulator
for testing rule-based decision support systems for
mechanical ventilation of ARDS patients. Proc
Annu Symp Comput Appl Med Care
1994;1007:1007.

3. Kinder AT, East TD, Littman WD, et al. A Com-
puterized Decision Support System for Manage-
ment of Mechanical Ventilation in Patients with
ARDS: An Example of Exportation of a Knowl-
edge Base. Proc Annu Symp Comput Appl Med
Care 1994:888.

4. Jorgensen PC. Software Testing: A Craftman's
Approach. Boca Raton, Florida: CRC Press,
1995.

5. DeMillo RA. Software Testing and Evaluation.
The Benjamin/Cummings Publishing Compayn,
Inc., 1987.

6. Diamond GA, Pollock BH, Work JW. Clinician
Decsions and Computers. In: Shabot MM, Gard-
ner RM, eds. Decision Support Systems in Criti-
cal Care. New York: Springer-Verlag New York,
Inc., 1994:(Orthner HF, ed. Computers in Medi-
cine;

7. Rossi Mori A, Pisanelli DM, Ricci FL. Evaluation
stages and design steps for knowledge-based sys-
tems in medicine. Med Inf Lond 1990;15(3):191-
204.

8. Miller PL, Sittig DF. The evaluation of clinical
decision support systems: what is necessary ver-
sus what is interesting. Med Inf Lond
1990;15(3):185-90.

9. Ohayon MM. Validation of expert systems: ex-
amples and considerations. Medinfo 1995;8 Pt
2:1071-5.

10. Saiedian H, Kuzara R. SEI Capability Maturity
Model's Impact on Contractors. Computer
1995;28(1):16-26.

11. Office of Device Evaluation, Center for Devices
and Radiological Health , Food and Drug Admin-
stration. Review Guidance for Computer Con-
trolled Medical Devices Undergoing 501(k) Re-
view. Washington, D.C.: Department of Health
and Human Services, 1991.

12. U.S. Food and Drug Adminstration. Good Clini-
cal Practices. Buffalo Grove, IL: Interpharm Con-
sulting, 1992.

13. Committee on Energy and Commerce U.S. House
of Representatives. Report on the Safe Medical
Devices Act of 1990. Washington D.C.: Con-
gressional Printing Office, 1990.

