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1 Sampling small-world networks

Following the description in (Albert and Barabási, 2002) we generate our random small-world networks using
two steps: first we generate a network with nodes equally distributed on the unit circle and connect each node
randomly to 50% of its 4 nearest neighbours. Then we create long range edges by randomly connecting any two
nodes. In order to get a directed graph we orient edges with equal probabilities.

For our most commonly used networks of size N = 50 nodes showed in-degrees (excluding self-edges) in the
range {0, ..., 6} (average 2.3).

2 Dynamics of the Simulator

A review of potential dynamics for gene regulatory networks is given in Smolen et al. (2000). Here, the form of
the non-linear dynamic model and the parameter ranges were designed in smilarity to the system described in
(Kholodenko et al., 2002, Supporting Table 2).

Parameters were drawn randomly, subject to the model producing dynamics with a stable steady state with
values in [0, 10]. U [a..b] is the uniform distribution between a and b.

Parameter Description Range
Vdi Max. enzyme rate for degradation U [150..500]
di Max. degradation level U [20..70]
κij Half-saturation / Michaelis constant U [20..70]
nij Hill coefficient U [1..2]
Vsi Basal rate of expression U [3..5]
Aij Max. over-expression factor U [2..5]

Typical linearization matrices A obtained at the unperturbed steady state have non-vanishing entries with mean
zero and standard deviation 1.1, yet some quite large values do occur.

3 The Method of Tegnér et.al.

We first describe the approach of Tegnér et al. (2003) in Bayesian terms, which facilitates a comparison to ours.
They start by discretising the space of possible matrices A, having a finite number of bins for values of aij , one
of them symmetric around 0. This results in a finite (but large) number of hypotheses for A, and they put a
uniform prior on allowable matrices: for each gene i, only up to three non-zero aij are allowed. In other words,
the node in-degree is limited to three in their, and also in our comparative experiments here. Their likelihood
is an indicator distribution, in that A is consistent with the observations iff u = Ax + ε is fulfilled up to a
bounded error ε, across all measurements taken. Their posterior is therefore uniform over all (discretized) A
consistent with the data and of node in-degree at most three. Experimental design in their method works by
next perturbing the gene j for which the variance of aij ’s (outgoing edges) is maximal, under this posterior.
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We now give details of our implementation of their method. As (Tegnér et al., 2003) do not explicitly define
what a consistent solution is, we will state the criterion that we used, in order to make our implementation of
their method comparable.

Let us just consider one row of A, namely A∗,:. We assumed that the maximal in-degree is k = 3, i.e. there are
at most 3 non-zero entries in A∗,: apart from the diagonal entry a∗∗. The non-zero entries are quantized into
bins of equal width ∆A and with means āj (j being the index of the bin). Symmetric around zero an interval of
width 2∆A is excluded, for these entries are assumed to be zero and do not represent edges. A∗,: is then fully
described by up to three tuples of one bin index j and one column index i each, i.e. by D∗ = {(j(k), i(k))}k≤3.
We will assume that the measurement error of any component of x is at most ∆x, that the maximal absolute
value of x is xmax, and that the diagonal entry a∗∗ is known exactly. We consider the row A∗,: given through a
descriptor D∗ as consistent with a measurement (u∗,x) ∈ R× RN if the value u∗ falls into the following range

a∗∗ (x∗ ±∆x)±∆x +
|D∗|∑
k=1

(
āj(k)

(
xi(k) ±∆x

)
± ∆A

2
xi(k)

)
± (3− |D∗|)∆Axmax.

This considers quantisation errors in the matrix entries of A and measurement errors in x and u. The last
term helped to improve results, and accounts for entries in A that are smaller than ∆A but may still represent
an edge.

Given this criterion our implementation was quite simple: after the first random experiments, all possible row
descriptors are checked whether they are consistent, and if so, were stored in an array. After each inclusion,
only this array is parsed to detect row descriptors which have become inconsistent through the last experiment.
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