
Supporting Text 1:
Procedure to identify every subsystem

Here, we describe a 2-stage method for identifing every subsystem in a Boolean network model.
As an input for the method, we only require a set attractors A = {A1, ..., Ar}, where each
attractor A = {z0, ..., zp−1} ∈ A is a (repeating) series of discrete states for the whole network
/ system. Therefore, the same method can be applied to any set of discrete state, discrete time
attractors (without a Boolean network model). Supporting Text 3 also provides some additional
examples that demonstrate the main features of the method (in a less formal manner).

The two stages are described in Sections S1.2 and S1.3 below, which involve identifying every
partial state sequence P that satisfies Definitions 5 and 6 in the main text. Section S1.2 describes
how to identify every partition sequence (satisfying Definition 5). These provide a hierarchical
breakdown of the attractors and are used as the basis for identifying every subsystems (satisfying
Definition 6) in Section S1.3. In both of these stages, we look for partial state sequences that
occur in attractors (i.e. satisfy Definition 3 of the main text). Therefore, in Section S1.1, we
first demonstrate how to identify partial state sequences that occur in attractors or occur in
larger partial state sequences.

This supporting text is a more formal description / proof of the procedures given in the main
manuscript. The procedures in the main manuscript are revisited here in the following sections.

Procedure 1: Corresponds to Procedure S1.3 and Theorem S1.4 in Section S1.1.1

Procedure 2: Corresponds to Procedure S1.9 and Theorem S1.10 in Section S1.1.3

Procedure 3: Corresponds to Procedure S1.13 and Theorem S1.14 in Section S1.2.1

Procedure 4: Corresponds to Procedure S1.16 and Theorem S1.17 in Section S1.2.2

Procedure 5: Corresponds to Procedure S1.18 and Theorem S1.19 in Section S1.3

One thing to note first, is that if a partial state sequence P = {xN
0 , xN

1 , ..., xN
q−1} occurs in

an attractor A, so will q − 1 other equivalent partial state sequences P ′ = {yN
0 , yN

1 , ..., yN
q−1}

where the partial states in P have been rotated modulo q. This is since rotating the partial
states in P (modulo q) will leave a partial state sequence that still satisfies the 3 properties of
Definition 3. The following Definition and Theorem formalise this.

Definition S1.1. A partial state sequences Px = {xN
0 , xN

1 , ..., xN
q−1} is equivalent to another

partial state sequence Pw = {wM
0 , wM

1 , ..., wM
r−1} if the following hold

1. M = N

2. q = r

3. ∃ an integer c such that, xN
i = wM

j , for all i ∈ {0, 1, ..., q − 1} and j = i + c (mod q)

Whenever Px is equivalent to Pw, Pw is also equivalent to Px (replace c by −c (mod q) in the
above definition)
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Theorem S1.2. Consider a partial state sequence Px = {xN
0 , ..., xN

q−1} that occurs in an
attractor A = {z0, ...,zp−1}

A partial state sequence Pw = {wN
0 , ..., wN

r−1} (for the same node set N) occurs in A ⇐⇒ Pw

is equivalent to Px

PROOF: see Section S1.4.1

From now on, we primarily consider only one of the the q equivalent partial states sequences,
since if one occurs in an attractor, so will the other q − 1.

S1.1 Preliminary results and procedures

Given a node set N and attractor A = {z0, z1, ..., zp−1}, Section S1.1.1 provides a procedure to
identify a partial state sequence P = {xN

0 , xN
1 , ..., xN

q−1} that occurs in A (i.e. the properties
of Definition 3 are satisfied). Section S1.1.2 adapts this procedure to look for partial state
sequences (for a node set N) occurring in other partial state sequences (for a larger node set M
⊃ N).

Section S1.1.3 then extends these ideas to sets of attractors C, to identify partial state sequences
P1, ..., Pk (for a node set N) that partition C into distinguishable groups.

S1.1.1 Partial state sequences occurring in an attractor A

Given a node set N and an attractor A = {z0, z1, ..., zp−1}, the following procedure identifies
a partial state sequence P = {xN

0 , ..., xN
q−1} that occurs in A (i.e. the 3 properties of Definition

3 of the main text are satisfied)

Procedure S1.3. (Procedure 1 from main manuscript)

Initially let k = 0, b0 = 0 and xN
0 = {si ∈ z0 : ni ∈ N}. The enter the following loop

Step 1
If k = p− 1, let q∗ = bp−1 + 1 and go to step 6

Step 2
Let j = k and increment k by 1 (let k = k + 1)

Step 3
If xN

bj
= {si ∈ zk : ni ∈ N}, then let bk = bj and go to step 1

(otherwise go to step 4)

Step 4
Let bk = bj + 1

Step 5
Let xN

bk
= {si ∈ zk : ni ∈ N} and go to step 1

Step 6
If xN

bp−1
= xN

b0
and q∗ > 1, reduce q∗ by 1 (let q∗ = q∗ - 1)
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Step 7
Let q be the smallest integer for which both

(a) q | q∗ (this can be q = q∗)

(b) xN
f = xN

g , whenever f ≤ bp−1, g ≤ bp−1 and f (mod q) = g (mod q)

Step 8
For k = 0, ..., p− 1, let bk = bk (mod q)

At the end of this procedure P = {xN
0 , ..., xN

q−1} occurs in A and the 3 properties of Definition
3 are satisfied. Steps 2-5 ensure that properties 1 and 2 are satisfied and the partial states
in P cycle within the attractor A in the correct order (as the attractor progresses over time).
Steps 3, 6, 7 and 8 ensures property 3, so that P is smallest possible set of partial states that
cycles within A. In particular (a) no two adjacent partial states in P are identical, (b) there
are no redundant partial states in P and (c) if a sequence of states cycles many times within
an attractor, only one copy is kept. This leaves a partial state sequence that just describes the
′order′ in which the node states change in A (for nodes in N).

We demonstrate this formally with Theorem S1.4 (below) which is proved at the end of this
supporting text (Section S1.4.1). In C, C1 and C2 correspond to properties 1 and 2 of Definition
3. C3, C4 and C5 correspond to (a), (b) and (c) discussed above.

Theorem S1.4. Consider a node set N , partial state sequence P = {xN
0 , ..., xN

q−1} and attractor
A = {z0, z1, ..., zp−1}.

If any of one the following 3 statements (A, B or C) is true, they are all true. (i.e. A ⇐⇒ B
⇐⇒ C ⇐⇒ A)

A: P occurs in A

B: Given N and A, Procedure S1.3 identifies a partial state sequence P ∗ that is equivalent to
P (this could be P ∗ = P )

C: The following are true for P = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

PROOF: See Section S1.4.1
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S1.1.2 Partial state sequences occurring in other partial state sequences

Definition 3 of the main text involves a partial state sequence P = {xN
0 , xN

1 , ..., xN
q−1} occurring

in an attractor A. However, it is possible to adapt this definition to look at a partial state
sequence Px (for a node set N) occurring in another partial state sequence Py (for a larger node
set M ⊇ N). i.e.

Definition S1.5. A partial state sequence Px = {xN
0 , xN

1 , ..., xN
q−1} occurs in another partial

state sequence Py = {yM
0 , ...,yM

r−1} (where M ⊇ N) if there exists integers b0, ..., br−1 ∈
{0, ..., q − 1} for which the following is true

1. For k = 0, ..., r − 1, xN
bk

= {si ∈ yM
k : ni ∈ N}

2. For each k ∈ {0, ..., r − 1} and j = k − 1 (mod r), either
(a) bk = bj or (b) bk = bj + 1 (mod q)

3. 1 and 2 are not true for any smaller partial state sequence P ′ = {zN
0 , zN

1 , ..., zN
q′−1} and

integers c0, ..., cr−1 ∈ {0, ..., q′ − 1} (q′ < q)

Given a node set N ⊆ M and a partial state sequence Py = {yM
0 , yM

1 , ..., yM
r−1}, Procedure

S1.3 can be adapted to identify a partial state sequence Px = {xN
0 , xN

1 , ..., xN
q−1}, that occurs

in Py.

Procedure S1.6. Initially let k = 0, b0 = 0 and xN
0 = {si ∈ yM

0 : ni ∈ M}. The enter the
following loop.

Then enter the same loop as Procedure S1.3, except replace p with r (in Step 1) and replace zk

with yM
k (in Steps 3 and 5)

Theorems S1.2 and S1.4 can also be adapted and proved in an analogous manner, replacing p
with r and replacing A = {z0, ..., zp−1} with Py = {yM

0 , ..., yM
r′−1}

Theorem S1.7. Consider a partial state sequence Px = {xN
0 , ..., xN

q−1} that occurs in another
partial state sequence Py = {yM

0 , ..., yM
r−1} (M ⊃ N)

A partial state sequence Pw = {wN
0 , ..., wN

r−1} (for the same node set N) occurs in Py ⇐⇒ Pw

is equivalent to Px

PROOF: Analogous to the proof of S1.2

Theorem S1.8. Consider a node set N and two partial state sequence Px = {xN
0 , ..., xN

q−1}
and attractor Py = {yM

0 , ..., yM
r−1} (M ⊃ N)

Px occurs in Py

⇐⇒
Given N and Py, Procedure S1.6 identifies a partial state sequence P ∗ that is equivalent to Px

(this could be P ∗ = Px)

PROOF: Analogous to the proof of S1.4
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S1.1.3 Partial state sequences partitioning a set of attractors C

Given a node set N and a set of attractors C, we want to find a set of partial state sequences
P1, ..., Pk that are all distinguishable from one another and optimally partition C into smaller
sets C1, ..., Ck.

One such way is to apply the following procedure (Procedure S1.9). This will identify partial
state sequences P1, ..., Pk and sets of attractors C1, ..., Ck that satisfy properties A- F in
Theorem S1.10

Procedure S1.9. (Procedure 2 from main manuscript)

Begin with the node set N and set of attractors C and then carry out the following steps

Step 1
For every attractor Aj ∈ C, apply Procedure S1.3 to N and Aj , to get a partial state sequence
Qj that occurs in Aj .

Step 2
Put the Qj ’s into groups i = 1, ..., k, whereby two partial state sequences Q′

x, Q′
y go in the same

group ⇐⇒ Q′
x is equivalent to Q′

y.

(here k is the minimum number of groups required to hold every Qj)

Step 3
For each group, i, let

i) Pi = any Qj in the group i

ii) Ci = {Aj : Qj is part of the group i}

Theorem S1.10. Given a node set N and set of attractors C, Procedure S1.9 identifies partial
state sequences P1, ..., Pk and sets of attractors C1, ..., Ck satisfying

A: For i = 1, ..., k, Pi involves the node set N (i.e. Pi = {xN
i0

, ..., xN
iq−1

})
B: For i = 1, ..., k, Pi occurs in every attractor A ∈ Ci

C: For i = 1, ..., k, Pi does not occur in any attractor A /∈ Ci

D: For any i, j (1 ≤ i < j ≤ k), Ci ∩ Cj = ∅

E: C1 ∪ ... ∪ Ck = C

F: Given the node set N , there are no other partial state sequences P ′ /∈ {P1, ..., Pk} that
occur in any attractor A ∈ C (unless P ′ is equivalent to some Pi ∈ {P1, ..., Pk})

PROOF See Section S1.4.1

The following results (Lemmas S1.11 and S1.12, below), demonstrate that when a partial state
sequence Px (for a node set N) is extended with extra nodes, the new partial state sequence Py

(for a node set M ⊃ N) can only occur in a smaller subset of attractors.
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Lemma S1.11. Consider two partial state sequences Px = {xN
0 , ..., xN

q−1} and Py = {yM
0 , ...,

yM
r−1} (where M ⊇ N)

Then,

(a) Px occurs in Py, and Py occurs in an attractor A =⇒ Px occurs in A

(b) Px and Py both occur in an attractor A =⇒ Px occurs in Py

PROOF: See Section S1.4.1

Lemma S1.12. Consider two partial state sequences Px = {xN
0 , ..., xN

q−1} and Py = {yM
0 , ...,

yM
r−1}, and two sets of attractors Cx and Cy for which

1. M ⊇ N

2. Px occurs in every attractor A ∈ Cx

3. Px does not occur in any attractor A /∈ Cx

4. Py occurs in every attractor A ∈ Cy

5. Py does not occur in any attractor A /∈ Cy

Then, either

(a) Cx ∩ Cy = ∅

(b) Px occurs in Py and Cy ⊆ Cx

PROOF: See Section S1.4.1

S1.2 Stage 1: Identifying every partition sequence

In this stage, we first identify every partial every partial state sequence that satisfies Definition
4 of the main text (intersection sequences). These are then used to identify every partition
sequence satisfying Definition 5 of the main text. Therefore, we describe the two procedures
separately (in Sections S1.2.1 and S1.2.2 below)

S1.2.1 Definition 4: Intersection sequences

Identifying every intersection sequence is equivalent to finding every partial state sequence that
satisfies the 3 properties of Definition 4 (for some set of attractors C, say). I first give a
procedure for identifying every intersection sequence, and then discuss ways to make the process
more efficient.
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Procedure S1.13. (Procedure 3 from main manuscript)

First, consider the tree in Fig.S1.1 and note that for every node set N , there exists a path
from left to right (starting at ′−′) that corresponds to it. Therefore, searching through a tree
analogous to the one in Fig.S1.1 (for a network with nodes V = {n1, ..., nv}), every node set N
can be visited at some point.

The procedure searches through the tree (as in Fig.S1.1) and carries out the following steps for
each node set N . At the end of the procedure the set S contains every intersection sequence

Step 0 : Initialise
Let S = ∅ and let N = ∅ (−)

Step 1 :
Move onto the next node set N in the tree (as in Fig.S1.1).

Step 2 :
For the node set N , apply Procedure S1.9 to identify partial state sequences P1, ..., Pk and sets
of attractors C1, ..., Ck satisfying (from Theorem S1.10)

(a) For i = 1, ..., k, Pi involves the node set N (i.e. Pi = {xN
i0

, ..., xN
iq−1

})
(b) For i = 1, ..., k, Pi occurs in every attractor A ∈ Ci

(c) For i = 1, ..., k, Pi does not occur in any attractor A /∈ Ci

(d) For any i, j (1 ≤ i < j ≤ k), Ci ∩ Cj = ∅

(e) C1 ∪ ... ∪ Ck = A (the set of all attractors)

(f) Given the node set N , there are no other partial state sequences P ′ /∈ {P1, ..., Pk} that
occur in any attractor A ∈ A (unless P ′ is equivalent to some Pi ∈ {P1, ..., Pk})

Step 3 :
For i = 1, ..., k, add the pair {Pi, Ci} to the set S

Step 4 :
For i = 1, ..., k, check S to see if there is any pair {Q = {yM

0 , ..., yM
r−1}, D} for which either of

the following are true

(a) M ⊂ N and D = Ci

(b) M ⊃ N and D = Ci

If (a) is true, remove {Q,D} from S. If (b) is true, remove {Pi, Ci} from S

Step 5 :
If the tree has been completely searched, end procedure. Otherwise, return to step 1.

At the end of the procedure, S gives a complete set of intersection sequences (satisfying the 3
properties of Definition 4). Step 2 ensures every partial state sequence that satisfies properties
1 and 2 are identified for each node set N . Step 4 then ensures that only those satisfying Step
3 remain in S. We demonstrate this formally with Theorem S1.14 (below), which is proved in
Section S1.4.2
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Figure S1.1: Every path from left to right (starting at ′-′) in this tree represents a different node
set N ⊆ V = {n1, n2, n3, n4, n5}. It is possible to search this tree and visit every node set N
⊆ V (exactly once). For example, follow the path {n1} → {n1, n2} → {n1, n2, n3} → {n1, n2,
n3, n4} → {n1, n2, n3, n4, n5} → {n1, n2, n3, n5} → {n1, n2, n4} → {n1, n2, n4, n5} → {n1,
n2, n5} → {n1, n3} → {n1, n3, n4} → {n1, n3, n4, n5} → {n1, n3, n5} → {n1, n4} → {n1, n4,
n5} → {n1, n5} → {n2} →{n2, n3} → {n2, n3, n4} → {n2, n3, n4, n5} → {n2, n3, n5} → {n2,
n4} → {n2, n4, n5} → {n2, n5} → {n3} → {n3, n4} → {n3, n4, n5} → {n3, n5} → {n4} →
{n4, n5} → {n5}

Theorem S1.14. At the end of Procedure S1.13, the following is true

P is an intersection sequence
⇐⇒
P is equivalent to a partial state sequence P ∗ ∈ {P ∗,C} ∈ S

PROOF: See Section S1.4.2

We now explain how the the procedure can be made more efficient.

Improving efficiency(1)

In step 2, partial state sequences P1, ..., Pk and sets of attractors C1, ..., Ck are identified that
satisfy (a) to (f) (given a node set N). Now, because of the following Theorem (Theorem S1.15),

If, for a node set N : Cx ∈ C1, ..., Ck is a single attractor after Step 2 (i.e. Cx = {Ax})
Then, for any node set M ⊃ N : Step 2 returns the same single attractor Cx = {Ax}

This implies that this attractor (Ax) need not be re-analysed during the analysis of any node
set M ⊃ N . However, because of part (b) of the Theorem, the full node set V = {n1, ..., nv}
should still be fully analysed in Steps 2 - 4 (possibly at the very end of the procedure).
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Theorem S1.15. Consider a partial state sequence P = {xN
0 , ..., xN

q−1} for which

1. P occurs in a single attractor A

2. P does not occur in any attractor A′ 6= A

Then, given that V is the set of all nodes,

(a) Given a node set M satisfying N ⊂ M ⊂ V , it is impossible to find an intersection sequence
that involves the node set M and occurs in A.

(b) Given the node set V , it is possible to find an intersection sequence P ′ that involves the
node set V and occurs in A (usually A itself).

PROOF: See Section S1.4.2

We show one way in which this knowledge can improve efficiency in Procedure S1.13. Suppose,
attractors A′1, ..., A′f were returned as single attractors in Step 2, when analysing earlier node
sets P ⊆ N (including P = N). Then, when a path is extended to the right in the tree (Fig.S1.1)
from a node set N to a node set M ⊃ N , Procedure S1.9 in Step 2 need only be applied to the
set of attractors

A′ = A \ {A′1, ..., A′f}

Moreover, if every attractor is returned as a single attractor in Step 2, when analysing earlier
node sets P ⊆ N (including P = N), there is no need to extend the path to look at node sets
M ⊃ N . In Fig.S1.1, this is equivalent to ignoring all longer paths that include extra nodes to
the right. For example, if N = {n1, n3}, there would be no need to look at longer paths (from
left to right) that give node sets M = {n1, n3, n4}, M = {n1, n3, n5} or M = {n1, n3, n4, n5}

Improving efficiency(2)

As can be seen in Fig.S1.1, some nodes appear less than others, with the least frequent nodes
visited earlier in the tree. Therefore, it is likely to be advantageous to re-index nodes in the tree
during the search. At any stage during the search, nodes along paths to the right (from a node
set N) can be re-indexed without impairing our ability to search the tree. For example, once
N = {n1, n3} has been reached, re-indexing nodes {n4, n5} to {n5, n4} still allows us to reach
the same node sets M = {n1, n3, n4}, M = {n1, n3, n5} and M = {n1, n3, n4, n5}, as before.
However, they would be visited in a different order (M = {n1, n3, n5} then M = {n1, n3, n4}
then M = {n1, n3, n4, n5}).

Once a node set N has been analysed, re-indexing so that the next node nj to be visited
maximises c (below) will speed up the search

- For the sets of attractors C1, ..., Ck identified in Step 2 (for the new node set M = N ∪ {nj}),
Ci = {Ai} is a single attractor for c (≤ k) different values of i

Although this involves carrying out Step 2 multiple times (to compare different nj ’s), selecting
an nj that gives lots of single attractor Ci’s will mean less analysis later on (as discussed above).
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The quicker we can reach a stage where every set Ci in Step 2 is a single attractor, the more of
the tree can be ignored during the search.

S1.2.2 Definition 5: Partition sequences

In order to find every partition sequence satisfying Definition 5, it is necessary to find every
partial state sequence P = {xN

0 , xN
1 , ..., xN

q−1} that satisfies any of the following properties (A,
B or C), for some set of attractors C

A : P is Core to C
The following 3 properties hold for P

1. P occurs in an intersection sequence P ′, which intersects at C (P can equal P ′).

2. If an intersection sequence Q (for a node set M) intersects at D (where D ∩ C 6=
∅), then there exists an intersection sequence Q′ (for a node set M ′ ⊇ M ∪ N) that
occurs in every attractor A ∈ D ∩ C

3. 1 and 2 are not true for any larger partial state sequence P ′′ (for a node set N ′′ ⊃ N)

B : P is Exclusive to C
P is the only intersection sequence that intersects at C
(excluding those partial state sequences that are equivalent to P )

C : P is Independently Oscillating
P intersects at C and cycles out of phase with another intersection sequence Q. i.e. ∃ Q
that involves the node set M and intersects at D, for which

1. | C ∩ D | ≥ 2

2. N ∪ M = V (the set of all nodes)

Using the complete list of intersection sequences (see above)), these can be found as follows

Part A: Core components

From Procedure S1.13, we get a set S that contains the complete set of intersection sequences,
along with the set of attractors each one intersects at (if {P ′, C} ∈ S, then P ′ intersects at C).

Using this set S as an input, the following procedure identifies every partial state sequence that
is core to some set of attractors (i.e every partial state sequence P satisfying Definition 5A)
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Procedure S1.16. (Procedure 4 from main manuscript)

Initially, let the set T = ∅ (empty set). Then, for every intersection sequence P ′ = {yN ′
0 , yN ′

1 ,
..., yN ′

r−1} ∈ {P ′,C} ∈ S, carry out the following steps

Step 1:
From the complete set of intersection sequences (S), identify every Qi (for the node set Mi) for
which

(a) Qi intersects at Di, where Di ∩ C 6= ∅

(b) There is no intersection sequence Q∗ (for a larger node set M∗ ⊃ Mi) that intersects at
D∗ ⊇ Di ∩ C

Step 2:
Let k be the number of partial state sequences from Step 1

Step 3:
Let N = M1 ∩ ... ∩ Mk (N ⊆ N ′ since P ′ is itself identified in Step 1)

Step 4:
If N = ∅ in Step 3, apply Procedure S1.6 to find a partial state sequence P = {xN

0 , xN
1 , ...,

xN
q−1} that occurs in P ′.

Step 5:
If N = ∅ in Step 3, add the pair {P ,C} to the set T

At the end of the procedure, T contains every partial state sequence P that is core to some
set of attractors C (i.e every partial state sequence P satisfying Definition 5A). Essentially, in
each loop, N is the set of nodes that is core to every intersection sequence that occurs in any
attractor A ∈ C. We demonstrate this formally with Theorem S1.17 (below), which is proved
in Section S1.4.2

Theorem S1.17. At the end of Procedure S1.16, the following is true

P that is core to some set of attractors C (Definition 5A is satisfied)
⇐⇒
P is equivalent to a partial state sequence P ∗ ∈ {P ∗,C} ∈ T

PROOF: See Section S1.4.2

Part B: Exclusive

This is simply done by searching through all intersection sequences (in S) and identifying those
that satisfy Definition 5B.

Part C: Independently Oscillating

This is simply done by searching through every pair of intersection sequences (in S) to see which
pairs satisfy Definition 5C. Where such a pair is found, both of them are partition sequences.
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S1.3 Stage 2: Subsystems

Using all the partition sequences from Stage 1 as an input (i.e those partial state sequences
identified in A,B and C of Section S1.2.2), the following procedure identifies every subsystem
(satisfying Definition 6 of the main text)

Procedure S1.18. (Procedure 5 from main manuscript)

Initially, let the set U = ∅ (empty set)

Then, for every partition sequence P = {yM
0 , yM

1 , ..., yM
r−1} (identified in A, B or C of Section

S1.2.2), carry out the following steps

Step 1:
From the complete set of partition sequences, identify every partition sequence Pi (for a node
set Mi) for which

(a) Mi ⊂ M

(b) Pi and P both occur in some attractor A

(Here, (a), (b) and Lemma S1.11 imply that Pi occurs in P )

Step 2:
Let k be the number of partition sequences from Step 1

Step 3:
Let N = M \ (M1 ∪ ... ∪ Mk)

Step 4:
If N 6= ∅, use Procedure S1.6 to identify S = {xN

0 , xN
1 , ..., xN

q−1} that occurs in P

Step 5:
If N 6= ∅, add S (identified in Step 4) to the set U

At the end of the procedure, U contains every subsystem P satisfying the 3 properties of
Definition 6. Essentially, property 1 is satisfied because of Step 4. Property 2 is satisfied
because of Step 1 and the choice of N in step 3. Property 3 is satisfied because N is the largest
set for which Mi ∩ N = ∅ for all i = 1, ..., k. We demonstrate this formally with Theorem
S1.19 (below), which is proved in Section S1.4.3

Theorem S1.19. Assume Procedure S1.18 begins with every partition sequence. Then, at the
end of Procedure S1.18, the following is true

S is a subsystem (Definition 6 is satisfied)
⇐⇒
S is equivalent to a partial state sequence S∗ ∈ U

PROOF: See Section S1.4.3
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The following Theorem demonstrates that the set of all subsystems gives a complete coverage
of the attractors

Theorem S1.20. Given an attractor A and node ni, there exists a subsystem S = {xN
0 , xN

1 ,
..., xN

q−1} for which

(a) ni ∈ N

(b) S occurs in A

PROOF : See Section S1.4.3

S1.4 Proofs for earlier results

For the Theorems and Lemmas in Section S1.1, Section S1.2 and Section S1.3, the proofs are
given (in Sections S1.4.1, S1.4.2 and S1.4.3 respectively).

Some of these proofs refer to Lemmas S1.21 - S1.25. These can be found in Section S1.4.4.

S1.4.1 Proofs for Section S1.1

Theorem. S1.2

Consider a partial state sequence Px = {xN
0 , ..., xN

q−1} that occurs in an attractor
A = {z0, ...,zp−1}

A partial state sequence Pw = {wN
0 , ..., wN

r−1} (for the same node set N) occurs in A ⇐⇒ Pw

is equivalent to Px

PROOF:

Case: =⇒:

We assume Px = {xN
0 , ..., xN

q−1} and Pw = {wN
0 , ..., wN

r−1} both occur in A. Therefore, by
Definition 3 (main text), it is impossible to find a partial state sequence P ′ (for the same node
set N) that satisfies properties 1 and 2 and has less partial states (q′ < q).

Therefore, since Px and Pw both involve the same node set N and both satisfy properties 1 and
2 of Definition 3, they must contain the same number of partial states. i.e.

A: q = r

Since Px and Pw both occur in A, Lemmas S1.21 and S1.23 (in Section S1.4.4) and A imply
that there exists integers l and m for which

B: For every i ≥ 0, xN
l+i (mod q) = wN

m+i (mod q)

13



To show that Px is equivalent to Pw, I need to show that the 3 properties of Definition S1.1 are
satisfied. Property 1 is obvious because Px and Pw involve the same node set N . Property 2 is
satisfied because of A. Property 3 is satisfied because of the following.

Let c = m - l (mod q).

Then for all u = {0, 1, ..., q − 1} and i = q − l + u, B implies

- xN
u = xN

l+i−q = wM
m+i−q (mod q) = wM

m−l+u (mod q) = wM
u+c (mod q) = wM

v

(where v = u + c (mod q))

Therefore Px is equivalent to Pw

Case: ⇐=:

We assume that Px = {xN
0 , ..., xN

q−1} occurs in A = {z0, ...,zp−1},
and that Pw = {wN

0 , ..., wN
r−1} is equivalent to Px = {xN

0 , ..., xN
q−1}.

From Definition 3 of the main text,

C: The following are true for Px = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)
3. 1 and 2 are not true for any smaller partial state sequence P ′ = {yN

0 , yN
1 , ..., yN

q′−1}
and integers d0, ..., dp−1 ∈ {0, ..., q′ − 1} (q′ < q)

From Definition S1.1, q = r and there exists an integer c such that

D: xN
i = wN

j , for all i ∈ {0, 1, ..., q − 1} and j = i + c (mod q)

We want to show that Pw occurs in A (i.e. the 3 properties of Definition 3 are satisfied)

Letting ck = bk + c (mod q), for k = 0, ..., p− 1, C and D imply

1. For k = 0, ..., p− 1, wN
ck

= wN
bk+c (mod q) xN

bk
= {si ∈ zk : ni ∈ N}

2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = bk + c (mod q) = bj + c (mod q) = cj

(b) ck = bk + c (mod q) = bj + 1 + c (mod q) = cj + 1 (mod q)

Therefore, properties 1 and 2 of Definition 3 are satisfied (from 1 and 2 above). Property 3
is satisfied because Pw and Px have the same number of partial states (q = r). Therefore, if
property 3 failed for Pw, it would also fail for Px (which is impossible since Px occurs in A)

14



Theorem. S1.4

Consider a node set N , partial state sequence P = {xN
0 , ..., xN

q−1} and attractor
A = {z0, z1, ..., zp−1}.

If any of one the following 3 statements (A, B or C) is true, they are all true. (i.e. A ⇐⇒ B
⇐⇒ C ⇐⇒ A)

A: P occurs in A

B: Given N and A, Procedure S1.3 identifies a partial state sequence P ∗ that is equivalent to
P (this could be P ∗ = P )

C: The following are true for P = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

PROOF

Here, it is sufficient to prove the following 3 cases: C =⇒ A and A =⇒ B and B =⇒ C

Case: C =⇒ A

This follows from Lemma S1.23 (in Section S1.4.4).

Case: A =⇒ B

Suppose P occurs in A.

Given N and A, Procedure S1.3 identifies a partial state sequence P ∗ = P ∗ = {wN
0 , ..., wN

r−1}

Therefore, by Lemmas S1.23 and S1.25 (in Section S1.4.4), P ∗ also occurs in A.

Therefore, by Theorem S1.2, P ∗ is equivalent to P (since they both involve the same node set
N and occur in the same attractor A)

Case: B =⇒ C

Applying Procedure S1.3 to N and A = {z0, z1, ..., zp−1}, gives a partial state sequence
P ∗ = {wN

0 , ..., wN
r−1}. Then since P ∗ is equivalent to P = {xN

0 , ..., xN
q−1}

D: q = r

E: ∃ an integer d such that, xN
i = wN

j , for all i ∈ {0, 1, ..., q − 1} and j = i + d (mod q)
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Now by Lemma S1.25 (in Section S1.4.4),

F: The following are true for P ∗ = {wN
0 , ..., wN

q−1} and integers c0, ..., cp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, wN
ck

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = cj or (b) ck = cj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if ck 6= cj then wN
ck
6= wN

cj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = a

5. There is no integer q′ | q (q′ < q) for which wN
f = wN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

For k = 0, ..., p− 1, let bk = ck − d (mod q)

Then we can show that properties C1-C5 are true for P = {xN
0 , ..., xN

q−1} and integers b0, ...,
bp−1 ∈ {0, ..., q − 1}

Property C1:

For k = 0, ..., p− 1, xN
bk

= wN
j where j = bk + d (mod q) (by E)

Therefore (from F1), xN
bk

= wN
ck

= {si ∈ zk : ni ∈ N}

Property C2:

For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), E and F2 imply either

(a) bk = ck − d (mod q) = cj − d (mod q) = bj

(b) bk = ck − d (mod q) = cj + 1− d (mod q) = bj + 1 (mod q)

Property C3:

Consider any k ∈ {0, ..., p− 1} and j = k − 1 (mod p).

Then if bk 6= bj , we have (following from C2and F2)

(i) q > 1

(ii) bk = ck − d (mod q) = cj + 1− d (mod q) = bj + 1 (mod q)

(iii) ck 6= cj (from (i) and (ii))

Therefore, from F3, xN
ck
6= xN

cj
.

Therefore, wN
bk
6= wN

bj
(since xN

bi
= wN

ci
for i = 0, ..., p− 1: see C1)
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Property C4:

For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = a (from F4).

Therefore there also exists k′ ∈ {0, ..., p− 1} such that

(i) ck′ = a + d (mod q)

(ii) bk′ = ck′ − d (mod q) = a

Property C5:

Suppose there exists an integer q′ | q (q′ < q) for which xN
f = xN

g whenever
f (mod q′) = g (mod q′).

Consider any f ′, g′ satisfying f ′ (mod q′) = g′ (mod q′). Then

(a) f ′ − d (mod q′) = g′ − d (mod q′)

(b) (f ′ − d (mod q)) (mod q′) = (g′ − d (mod q)) (mod q′)

(by (a) and the fact q is a multiple of q′)

(c) xN
f ′−d (mod q) = xN

g′−d (mod q)

(by (b) and the fact xN
f = xN

g whenever f (mod q′) = g (mod q′))

Therefore, from (a) - (c) and E

- wN
f ′ = xN

f ′−d (mod q) = xN
g′−d (mod q) = wN

g′

However, since this true for any f ′, g′ satisfying f ′ (mod q′) = g′ (mod q′), it contradicts F5.

Therefore, there cannot be any integer q′ | q (q′ < q) for which xN
f = xN

g whenever
f (mod q′) = g (mod q′)
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Theorem. S1.10

Given a node set N and set of attractors C, Procedure S1.9 identifies partial state sequences P1,
..., Pk and sets of attractors C1, ..., Ck satisfying

A: For i = 1, ..., k, Pi involves the node set N (i.e. Pi = {xN
i0

, ..., xN
iq−1

})
B: For i = 1, ..., k, Pi occurs in every attractor A ∈ Ci

C: For i = 1, ..., k, Pi does not occur in any attractor A /∈ Ci

D: For any i, j (1 ≤ i < j ≤ k), Ci ∩ Cj = ∅

E: C1 ∪ ... ∪ Ck = C

F: Given the node set N , there are no other partial state sequences P ′ /∈ {P1, ..., Pk} that
occur in any attractor A ∈ C (unless P ′ is equivalent to some Pi ∈ {P1, ..., Pk})

PROOF

Note that from Theorem S1.4, any partial state sequence Qj created in Step 1 of the procedure
must occur in Aj (when applying Procedure S1.3 to N and Aj ∈ C)

Property A

Every partial state sequence in the procedure is created by applying Procedure S1.3 to N and
some attractor A ∈ C. This will only give partial state sequences involving the input node set
N .

Properties B, C, D and F

Since all partial state sequences Qj involve the node set N , Theorem S1.2 implies that if Q′
x is

equivalent to Q′
y, then

- Q′
x occurs in an attractor A ⇐⇒ Q′

y occurs in an attractor A

Moreover, Theorem S1.2 implies that if Q′
x is not equivalent to Q′

y, then Q′
x and Q′

y never occur
in the same attractor.

Therefore, from Step 2 and 3,

B: For i = 1, ..., k, Pi occurs in every attractor A ∈ Ci

C: For i = 1, ..., k, Pi does not occur in any attractor A /∈ Ci

D: For any i, j (1 ≤ i < j ≤ k), Ci ∩ Cj = ∅

F: Given the node set N , there are no other partial state sequences P ′ /∈ {P1, ..., Pk} that
occur in any attractor A ∈ C (unless P ′ is equivalent to some Pi ∈ {P1, ..., Pk})
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Property E

In Step 1, every Aj ∈ C is considered and a partial state sequence Qj that occurs in Aj is
created.

Since every Qj is put into a group i and Ci = {Aj : Qj is part of the group i} (by Step 3), there
exists i ∈ {1, ..., k} for which Aj ∈ Ci.

Therefore, since the procedure only uses attractors from C

C1 ∪ ... ∪ Ck = C (as required)

Lemma. S1.11

Consider two partial state sequences Px = {xN
0 , ..., xN

q−1} and Py = {yM
0 , ..., yM

r−1} (where
M ⊇ N). Then,

(a) Px occurs in Py, and Py occurs in an attractor A =⇒ Px occurs in A

(b) Px and Py both occur in an attractor A =⇒ Px occurs in Py

PROOF

Part a

Since Px = {xN
0 , ..., xN

q−1} occurs in Py = {yM
0 , ..., yM

r−1} (M ⊇ N), and Py occurs in an
A = {z0, ..., zp−1}, Lemmas S1.23 and S1.24 (in Section S1.4.4) imply that

A: The following is true for Px = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., br−1 ∈ {0, ..., q − 1}

1. For k′ = 0, ..., r − 1, xN
bk′

= {si ∈ yM
k′ : ni ∈ N (⊆ M)}

2. For each k′ ∈ {0, ..., r − 1} and j′ = k′ − 1 (mod r), either
(a) bk′ = bj′ or (b) bk′ = bj′ + 1 (mod q)

3. Given k′ ∈ {0, ..., r − 1} and j′ = k′ − 1 (mod r), if bk′ 6= bj′ then xN
bk′
6= xN

bj′

4. For each a ∈ {0, ..., q − 1}, ∃ k′ ∈ {0, ..., r − 1} such that bk′ = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

B: The following is true for Py = {yM
0 , ..., yM

r−1} and some sequence of integers
c0, ..., cp−1 ∈ {0, ..., r − 1}

1. For k = 0, ..., p− 1, yN
ck

= {si ∈ zk : ni ∈ M}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = cj or (b) ck = cj + 1 (mod r)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if ck 6= cj then yM
ck
6= yM

cj

4. For each a ∈ {0, ..., r − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = a

5. There is no integer r′ | r (r′ < r), for which yM
f = yM

g whenever f, g satisfies
f (mod r′) = g (mod r′)
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For k = 0, ..., p− 1, let dk = bck

Then dk ∈ {0, ..., q − 1}, since ck ∈ {0, ..., r − 1} and bi ∈ {0, ..., q − 1} for any i ∈ {0, ..., r − 1}.

Then, following from A and B (and the fact that N ⊆ M)

C: The following is true for Px = {xN
0 , ..., xN

q−1} and the sequence of integers
d0, ..., dp−1 ∈ {0, ..., q − 1} (proved below)

1. For k = 0, ..., p− 1, xN
dk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) dk = dj or (b) dk = dj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if dk 6= dj then xN
dk
6= xN

dj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that dk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

Lemma S1.23 (in Section S1.4.4) then implies that Px occurs in A (as required).

It just remains to show properties C1 - C5 are true

Property C1:

Let k′ = ck in A1. Then, from A1 and B1

- For k = 0, ..., p− 1, xN
dk

= xN
bk′

= {si ∈ yM
k′ : ni ∈ N} = {si ∈ yM

ck
: ni ∈ N} = {si ∈ zk :

ni ∈ N (⊆ M)}

Property C2:

We consider all possible cases from A2 and B2.

Given any cj ∈ {1, ..., r}, let

- k′ = cj + 1 (mod r) (in A2)

- j′ = k′ − 1 (mod r) = cj (in A2)

Then, for each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

Case: B2(a)
dk = bck

= bcj = dj

Case: B2(b) and A2(a)
dk = bck

= bcj+1 (mod r) = bk′ = bj′ = bcj = dj

Case: B2(b) and A2(b)
dk = bck

= bcj+1 (mod r) = bk′ = bj′ + 1 (mod q) = bcj + 1 (mod q) = dj + 1 (mod q)
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Property C3:

Given any cj ∈ {1, ..., r}, let

- k′ = cj + 1 (mod r) (in A3)

- j′ = k′ − 1 (mod r) = cj (in A3)

Then, given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if dk 6= dj

(a) bck
6= bcj

(b) ck 6= cj (otherwise (a) would be incorrect)

(c) ck = cj + 1 (mod r) (by (b) and B2)

(d) k′ 6= j′ (by (b), (c) and choice of k′, j′)

(e) xN
bk′
6= xN

bj′
(by A3 and (d))

(f) xN
bck

6= xN
bcj

(by (c), (e) and choice of k′, j′)

(g) xN
dk
6= xN

dj

(as required)

Property C4:

By A4. For each a ∈ {0, ..., q − 1}, ∃ k′ ∈ {0, ..., r − 1} such that bk′ = a

By B4. For each k′ ∈ {0, ..., r − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = k′

Therefore, for each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that dk = bck
= bk′ = a

Property C5:

This follows directly from A5.

Part b

Suppose Px = {xN
0 , ..., xN

q−1} and Py = {yM
0 , ..., yM

r−1} (M ⊇ N) both occur in an attractor
A = {z0, ..., zp−1}

Applying Procedure S1.6 to Py and N identifies a partial state sequence P ∗ = {wN
0 , ..., wN

q∗−1}
that occurs in Py (by Theorem S1.8)

Therefore, by part a of this Lemma, P ∗ occurs in A (since P ∗ occurs in Py and Py occurs in A)

Therefore, by Theorem S1.2, Px is equivalent to P ∗ (since P ∗ and Px both occur in A)

Therefore, by Theorem S1.7, Px occurs in Py
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Lemma. S1.12

Consider two partial state sequences Px = {xN
0 , ..., xN

q−1} and Py = {yM
0 , ..., yM

r−1}, and two
sets of attractors Cx and Cy for which

1. M ⊇ N

2. Px occurs in every attractor A ∈ Cx

3. Px does not occur in any attractor A /∈ Cx

4. Py occurs in every attractor A ∈ Cy

5. Py does not occur in any attractor A /∈ Cy

Then, either

(a) Cx ∩ Cy = ∅

(b) Px occurs in Py and Cy ⊆ Cx

PROOF

Suppose there exists an attractor A ∈ Cx ∩ Cy (i.e. (a) is not true).

Then Px and Py both occur in A. Therefore, by Lemma S1.11, Px occurs in Py.

Now consider any attractor A ∈ Cy. Since Px occurs in Py, and Py occurs in A, Lemma S1.11
implies that Px also occurs in A. Therefore A ∈ Cx (and so Cy ⊆ Cx).
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S1.4.2 Proofs for Section S1.2

Theorem. S1.14

At the end of Procedure S1.13, the following is true

P is an intersection sequence
⇐⇒
P is equivalent to a partial state sequence P ∗ ∈ {P ∗,C} ∈ S

PROOF:

Case =⇒

Since P = {xN
0 , ..., xN

q−1} is an intersection sequence, Definition 4 (in the main text) implies
that there is a set of attractors C for which

1. P occurs in every attractor A ∈ C
2. P does not occur in any attractor A /∈ C

Moreover, P must be equivalent to some partial state sequence P ∗ = {wN
0 , ..., wN

q−1} identified
in Step 2 of Procedure S1.13, when the node set N is analysed (because of (f) in Step 2)

Therefore, by Theorem S1.2,

1. P ∗ occurs in every attractor A ∈ C
2. P ∗ does not occur in any attractor A /∈ C

and so {P ∗,C} is added to S in Step 3 (of Procedure S1.13).

It just remains to show that {P ∗,C} is never removed from S in Step 4 of any loop. {P ∗,C}
could only be removed in Step 4 if there was a pair {Q = {yM

0 , ..., yM
r−1}, D} for which

(i) M ⊃ N

(ii) D = C

(iii) Q occurs in every attractor A ∈ D = C (because of Step 2(b) and (ii))

However, this would be impossible since P is an intersection sequence, and so property 3 of
Definition 4 implies that

- Given a larger set M ⊃ N , there is no partial state sequence Q for the node set M that occurs
in every attractor A ∈ C (= D)
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Case ⇐=

We show that P ∗ is an intersection sequence, that intersects at C (i.e. the 3 properties of
Definition 4 (main text) hold for P ∗ and C). It then follows from Theorem S1.2 and Definition
4 (main text) that the same must be true for any P , which is equivalent to P ∗.

Properties 1 and 2 are true because of (b) and (c) in Step 2 of Procedure S1.13. Therefore,

(b) P ∗ = {wN
0 , ..., wN

q−1} occurs in every attractor A ∈ C

(c) P ∗ = {wN
0 , ..., wN

q−1} does not occur in any attractor A /∈ C

Now, we show that property 3 holds (noting that every node set M is analysed at some point
in the procedure).

If a partial state sequence Q (for a node set M ⊃ N) occurs in every A ∈ C, (b), (c) and
Lemma S1.12 implies that

- Q occurs in every attractor A ∈ C
- Q does not occur in any attractor A /∈ C

Let M be the largest such set (i.e. it is impossible to identify another partial state sequence Q′

for a node set L ⊃ M ⊃ N). Then, when M is analysed in the procedure, we get

Step 2: Q would be identified (or an equivalent partial state sequence would be identified).

Step 3: {Q,C} would be added to S

Step 4: Either

A : Case M is analysed after N
{P ∗,C} is removed from S

B : Case M is analysed before N
{Q,C} is kept in S and {P ∗,C} is removed from S when it is analysed later

Therefore, in order for {P ∗,C} to be in S at the end of the procedure, there cannot be any
partial state sequence Q (for a larger node set M ⊃ N) that occurs in every A ∈ C. Therefore
Property 3 of Definition 4 is satisfied.
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Theorem. S1.15

Consider a partial state sequence P = {xN
0 , ..., xN

q−1} for which

1. P occurs in a single attractor A = {z0, ..., zp−1}
2. P does not occur in any attractor A′ 6= A

Then, given that V is the set of all nodes,

(a) Given a node set M satisfying N ⊂ M ⊂ V , it is impossible to find an intersection sequence
that involves the node set M and occurs in A.

(b) Given the node set V , it is possible to find an intersection sequence P ′ that involves the
node set V and occurs in A (usually A itself).

PROOF:

Applying Procedure S1.3 for the node set V and an attractor A, gives a partial state sequence
P ′ that involves the node set V and occurs in A (by Theorem S1.4)

Now consider any partial state sequence Q = {yM
0 , ..., yM

r−1} that involves a node set M (N ⊂ M)
and occurs in the attractor A. Then, from 1., 2. and Lemma S1.12,

- P occurs in Q

- Q does not occur in any attractor A′ 6= A

Therefore, A is the only attractor for which Q occurs in A (this includes Q = P ′, if M = V )

Therefore,

(a) Given a node set M satisfying N ⊂ M ⊂ V , any partial state sequence Q that occurs in A
will fail Definition 4 (main text). Since,

1. Q occurs in A (from above)

2. Q does not occur in any attractor A′ 6= A (from above)

3. There exists a partial state sequence P ′ (for a larger node set V ⊃ M) that occurs
in A.

(b) P ′ is an intersection sequences since P ′ and A satisfy the 3 properties of Definition 4 (main
text). Namely,

1. P ′ occurs in A (from above)

2. P ′ does not occur in any attractor A′ 6= A (from above)

3. There is no node set larger than V

Therefore, parts (a) and (b) of the Theorem are true.
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Theorem. S1.17

At the end of Procedure S1.16, the following is true

P that is core to some set of attractors C (Definition 5A is satisfied)
⇐⇒
P is equivalent to a partial state sequence P ∗ ∈ {P ∗, C} ∈ T

PROOF:

Case ⇐=

We show that the 3 properties of Definition 5A hold for any P ∗ ∈ {P ∗, C} ∈ T.

It then follows from Theorem S1.2, Theorem S1.7, Definition 5A and Definition S1.1 that the
same must be true for any P , which is equivalent to P ∗.

{P ∗ = {xN
0 , ..., xN

q−1}, C} is added to T when Steps 1 - 5 of Procedure S1.16 are carried out
for some intersection sequence P ′ (that intersects at C). We consider Steps 1 - 5 for P ′, when
showing the 3 properties of Definition 5A hold for P ∗

Property 1 is satisfied because Step 4 implies P ∗ occurs in P ′ (which intersects at C)

Property 2 is satisfied because of the following.

Consider any intersection sequence Q (for a node set M) that intersects at D (where D ∩ C 6=
∅). We need to show that there is an intersection sequence Q′ (for a node set M ′ ⊇ M ∪ N)
that occurs in every node set A ∈ D ∩ C.

Let Q′ be any intersection sequence (for a node set M ′) satisfying

(a) M ′ ⊇ M

(b) Q′ intersects at D′ ⊇ D ∩ C (this also implies D′ ∩ C 6= ∅)

(c) There is no intersection sequence Q∗ (for a larger node set M∗ ⊃ M ′ ⊇ M) that intersects
at D∗ ⊇ (D′ ∩ C) ⊇ (D ∩ C)

Now, at least one Q′ must exist since Q itself satisfies (a) and (b). Therefore, either Q satisfies
(a), (b) and (c) or we can find Q′ = Q∗ (for the largest possible node set M∗ ⊇ M) that does.
Q′ is then identified in Step 1 of the procedure and so

(d) M ′ ⊇ N (from Step 3)

(e) M ′ ⊇ M ∪N (from (a) and (d))

Moreover, because of (b) and Definition 4

(f) Q′ occurs in every A ∈ D ∩ C

Therefore, because of (e) and (f), we have found a suitable Q′.
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Property 3 is satisfied because of the following. Consider any partial state sequence P ′′, for a
larger node set N ′′ ⊃ N . Then, since N = M1 ∩ ... ∩ Mk in Step 3, there must be a node set
Mi (i ∈ {1, ..., k}) satisfying

- Mi + N ′′

Then, for the corresponding intersection sequence Qi (for the node set Mi) identified in Step 1

(i) Qi intersects at Di, where Di ∩ C 6= ∅ (by Step 1a)

(ii) There is no intersection sequence Q∗ (for a larger node set M∗ ⊃ Mi) that intersects at
D∗ ⊇ (Di ∩ C) (by Step 1b)

(ii) There is no intersection sequence, Q∗ (for a larger node set M∗ ⊃ Mi) that occurs in every
attractor A ∈ Di ∩ C (by (ii) and Definition 4)

Therefore, it is impossible to find an intersection sequence Q∗ (for a node set M∗ ⊇ Mi ∪ N ′′)
that occurs in every attractor A ∈ Di ∩ C. Therefore, P ′′ cannot be core to C, since property
2 of Definition 5A would fail (for Q = Qi).

Case =⇒

Suppose P = {xN
0 , ..., xN

q−1} is core to some set of attractors C (say). Then, Definition 5A
(main text) implies that

1. P occurs in an intersection sequence P ′, which intersects at C (P can equal P ′).

2. If an intersection sequence Q (for a node set M) intersects at D (where D ∩ C 6= ∅), then
there exists an intersection sequence Q′ (for a node set M ′ ⊇ M ∪ N) that occurs in every
attractor A ∈ D ∩ C

3. 1 and 2 are not true for any larger partial state sequence P ′′ (for a node set N ′′ ⊃ N)

Now, P ′ = {yN ′
0 , yN ′

1 , ..., yN ′
r−1} (from 1. above) will be analysed in Procedure S1.16.

In Step 1, intersection sequences Q1, ..., Qk (for node sets M1, ..., Mk resp) are identified where
(for i = 1, ..., k)

A: Qi intersects at Di, where Di ∩ C 6= ∅

B: There is no intersection sequence Q∗
i (for a node set M∗

i ⊃ Mi) that intersects at
D∗i ⊇ (Di ∩ C)

C: There is no intersection sequence Q∗
i (for a node set M∗

i ⊃Mi) that occurs in every attractor
A ∈ Di ∩ C (by B and Definition 4)
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Moreover, P ′ ∈ {Q1, ..., Qk}, since

A′: P ′ intersects at C, where C ∩ C = C 6= ∅

B′: There is no intersection sequence P ′′ (for a node set M ′′ ⊃ N ′) that intersects at
D′ ⊇ C (by Definition 4)

Now, because of A and 2. above, the following are true for i = 1, ..., k

D: There exists an intersection sequence Q∗
i (for a node set M∗

i ⊇ Mi ∪ N) that occurs in
every attractor A ∈ Di ∩ C

Therefore, comparing C and D, it must be the case that N ⊆ Mi (for i = 1, ..., k). Therefore,

E: N ⊆ (M1 ∩ ... ∩ Mk) ⊆ N ′ (since P ′ ∈ {Q1, ..., Qk})

Now, in Steps 3 - 5 of Procedure S1.16 (when P ′ is analysed), we identify a node set N∗ and
partial state sequence P ∗ where

- N∗ = (M1 ∩ ... ∩ Mk) ⊆ N ′

- P ∗ = {wN∗
0 , ..., wN∗

q∗−1} occurs in P ′

- The pair {P ∗, C} is added to the set T

Therefore, by part ⇐= of this Theorem,

- P ∗ is core to C

Therefore, P and P ∗ both occur in P ′ and are both core to C.

Therefore, because of 2. and 3. and Theorem S1.7, it must be the case that N = N∗ and P is
equivalent to P ∗ (∈ {P ∗,C} ∈ T) as required
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S1.4.3 Proofs for Section S1.3

Theorem. S1.19

Assume Procedure S1.18 begins with every partition sequence. Then, at the end of Procedure
S1.18, the following is true

S is a subsystem (Definition 6 is satisfied)
⇐⇒
S is equivalent to a partial state sequence S∗ ∈ U

PROOF:

Case ⇐=

We show that the 3 properties of Definition 6 hold for any S∗ ∈ U.

It then follows from Theorem S1.2, Theorem S1.7, Definition 6 and Definition S1.1 that the
same must be true for any S, which is equivalent to S∗.

S∗ = {xN
0 , ..., xN

q−1} is added to U when Steps 1 - 5 of Procedure S1.18 are carried out for some
partition sequence P = {yM

0 , ..., yM
r−1}. We consider Steps 1 - 5 for P , when showing the 3

properties of Definition 6 hold for S∗

Property 1 is satisfied because Step 4 implies S∗ occurs in P .

Property 2 is satisfied because of the following. Consider any partition sequence P ′ (for a node
set M ′ ⊂ M) that occurs in P . Then, Lemma S1.11 implies that P ′ occurs in an attractor A,
whenever P occurs in A.

Therefore, P ′ is identified in Step 1, and N ⊆ (M \ M ′) (by Step 3 and the fact M ′ = Mi for
some i ∈ {1, ..., k}).

Therefore, M ′ ∩ N = ∅ and property 2 holds

Property 3 is satisfied because of the following. Consider any partial state sequence S′ (for a
larger node set N ′ ⊃ N) that occurs in P .

Then, since N = M \ (M1 ∪ ... ∪ Mk) in Step 3, there must be a node set Mi (i ∈ {1, ..., k})
satisfying

- Mi ∩ N ′ 6= ∅

(since S′ occurs in P = {yM
0 , ..., yM

r−1}, and so N ′ ⊆ M)

Therefore property 2 of Definition 6 would fail.
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Case =⇒

Suppose S = {xN
0 , ..., xN

q−1} is subsystem. Then, Definition 6 implies that there exists a partition
sequence P = {yM

0 , ..., yM
r−1} for which

1. S occurs in P (and so N ⊆ M)

2. If another partition sequence P ′ (for a node set M ′ ⊂ M) occurs in P , then M ′ ∩ N = ∅

3. 1 and 2 are not true for any partial state sequence S′, for a larger node set N ′ ⊃ N

Now, P (from above) will be analysed in Procedure S1.18. In Step 1 partition sequences P1, ...,
Pk (for node sets M1, ..., Mk resp) are identified where (for i = 1, ..., k)

A: Mi ⊂ M

B: Pi and P both occur in some attractor Ai

C: Pi occurs in P (by A, B and Lemma S1.11)

Therefore, because of A, C and 2. above, the following are true

D: For i = 1, ..., k, Mi ∩ N = ∅

E: (M1 ∪ ... ∪ Mk) ∩ N = ∅ (by D)

F: N ⊆ M \ (M1 ∪ ... ∪ Mk) (by A, E and 1. from above)

Now, in Steps 3 - 5 of Procedure S1.18 (when P is analysed), we identify a node set N∗ and
partial state sequence S∗ where

- N∗ = M \ (M1 ∪ ... ∪ Mk) ⊇ N

- S∗ = {wN∗
0 , ..., wN∗

q∗−1} occurs in P

- S∗ is added to the set U

Therefore, by part ⇐= of this Theorem,

- S∗ is a subsystem and satisfies properties 1 - 3

Therefore, because of 1. - 3. and Theorem S1.7, it must be the case that N = N∗ and S is
equivalent to S∗ ∈ U, as required
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Theorem. S1.20

Given an attractor A and node ni, there exists a subsystem S = {xN
0 , xN

1 , ..., xN
q−1} for which

(a) ni ∈ N

(b) S occurs in A

PROOF :

Given the node set V (set of all nodes) and the attractor A, Procedure S1.3 identifies a partial
state sequence P that occurs in A (by Theorem S1.4). Now, let C be the set of attractors for
which

1. P occurs in every attractor A ∈ C
2. P does not occur in any attractor A /∈ C

(Note: In a Boolean network model, P = A and C = {A})

Therefore, since V is the largest possible node set, 1., 2. and Definition 4 imply P is an
intersection sequence that intersects at C.

Moreover, no other intersection sequence P ′ (that is not equivalent to P ) can intersect at C
(because of 1 and 2 and the fact that V is the largest node set possible). Therefore, P is
exclusive to C and is a partition sequence (by Definition 5).

Therefore, it is possible to find a partition sequence P (for a node set M = V ) for which

(a) ni ∈ M

(b) P occurs in A

Now carry out the following loop

while() {

If a partition sequence Pi (for a node set Mi) exists such that

- ni ∈ Mi

- Mi ⊂ M

- Pi occurs in P (and Pi occurs in A by Lemma S1.11)

Then, replace M by Mi, replace P by Pi and execute the loop again.

Otherwise, exit loop

}
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At the end of the loop we have a partition sequence P (for the node set M) satisfying

A: ni ∈ M

B: P occurs in A

C: If a partition sequence P ′ (for a node set M ′ ⊂ M) occurs in P , then M ′ ∩ {ni} = ∅

Now, we apply Steps 1-5 of Procedure S1.18 to P . In Step 1, partition sequences P1, ..., Pk (for
node sets M1, ..., Mk resp) are identified where

D: For i = 1, ..., k, Mi ⊂ M (by Step 1a)

E: For i = 1, ..., k, Pi and P both occur in some attractor Ai (by Step 1b)

F: For i = 1, ..., k, Pi occurs in P (by D, E and Lemma S1.11)

G: For i = 1, ..., k, Mi ∩ {ni} = ∅ (by C, D and F)

Then, in Steps 3-5, we identify a node set N and partial state sequence S = {xN
0 , xN

1 , ..., xN
q−1}

where

H: N = M \ (M1 ∪ ... ∪ Mk) (by Step 3)

I: ni ∈ N (by A, G and H)

J: S occurs in P (by Step 4)

K: S occurs in A (by B, J and and Lemma S1.11)

L: S is added to the set U (by Step 5)

Therefore, by L and part ⇐= of Theorem S1.19,

M: S is a subsystem

Therefore, because of I, K and M, the theorem is satisfied.
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S1.4.4 Supplementary Lemmas

Lemma S1.21. Consider an attractor A = {z0, ..., zp−1}, and two partial state sequences Px

= {xN
0 , ..., xN

q−1} and Pw = {wN
0 , ..., wN

r−1} for the same node set N .

Now suppose,

A: The following are true for Px = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

B: The following are true for Pw = {wN
0 , ..., wN

r−1} and some sequence of integers
c0, ..., cp−1 ∈ {0, ..., r − 1}

1. For k = 0, ..., p− 1, wN
ck

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = cj or (b) ck = cj + 1 (mod r)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if ck 6= cj then wN
ck
6= wN

cj

4. For each a ∈ {0, ..., r − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = a

Then, letting l = b0 and m = c0

C: For every i ≥ 0

1. ∃ ki ∈ {0, ..., p− 1} for which bki = l + i (mod q) and cki = m + i (mod r)

2. xN
l+i (mod q) = wN

m+i (mod r)

PROOF

From A1 and B1,

D: For k = 0, ..., p− 1, xN
bk

= wN
ck

= {si ∈ zk : ni ∈ N}

Additionally, note that

E: If q = 1, then r = 1 (because of the (i)-(iv) below)

(i) For k = 0, ..., p− 1, bk = 0

(ii) For k = 0, ..., p− 1, wN
ck

= xN
0 (by (i) and D)

(iii) Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), ck = cj (by (ii) and B3)

(iv) r = 1 and ck = 0, for k = 0, ..., p− 1 (by (iii) and B4)
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We want to prove C is true. We prove C1 here. C2 then follows from C1 and D.

For the case i = 0, letting ki = 0 ensures bki
= b0 = l = l + i (mod q) and cmi = c0 = m =

m + i (mod r) (as required)

For the case q = 1, we have r = 1 (by E) and so ki = 0, for every i > 0. This then ensures bki

= b0 = 0 = l + i (mod 1) and cmi = c0 = 0 = m + i (mod 1) (as required)

Therefore, it just remains to prove the case i > 0, q > 1, r > 1. We do this by induction on i
(case i = 0 already done). Suppose C1 is true for i− 1 (≥ 0), so that

F ∃ ki−1 ∈ {0, ..., p− 1} for which bki−1 = l + i− 1 (mod q) and cki−1 = m + i− 1 (mod r)

Because of A2, A3 and A4 and the fact that q > 1, there must exist a chain of integers

- j0, ..., jd, k

for which

(a) For t = 0, ..., d, jt = ki−1 + t (mod p)

(b) k = jd + 1 (mod p)

(c) bj0 = ... = bjd
6= bk and bk = bjd

+ 1 (mod q)

(d) xN
bj0

= ... = xN
bjd

6= xN
bk

Then, because of (a)- (d), B3, D and the fact that q > 1 and r > 1,

(e) cj0 = ... = cjd
6= ck and ck = cjd

+ 1 (mod r)

(f) wN
cj0

= ... = wN
cjd

6= wN
ck

Then letting ki = k (and noting that bki−1 = bj0 and cki−1 = cj0), (a) - (f) and F imply that

(g) bki = bjd
+ 1 (mod q)

= bki−1 + 1 (mod q)
= (l + i− 1 (mod q) + 1) (mod q)
= l + i (mod q)

(h) cki = cjd
+ 1 (mod r)

= cki−1 + 1 (mod r)
= (m + i− 1 (mod r) + 1) (mod r)
= m + i (mod r)

as required and so C1 (and C2) holds.
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Lemma S1.22. Consider an attractor A = {z0, ..., zp−1}, and two partial state sequences Px

= {xN
0 , ..., xN

q−1} and Pw = {wN
0 , ..., wN

r−1} for the same node set N .

Now suppose,

A: The following are true for Px = {xN
0 , ..., xN

q−1} and some sequence of integers
b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

B: The following are true for Pw = {wN
0 , ..., wN

r−1} and some sequence of integers
c0, ..., cp−1 ∈ {0, ..., r − 1}

1. For k = 0, ..., p− 1, wN
ck

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = cj or (b) ck = cj + 1 (mod r)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if ck 6= cj then wN
ck
6= wN

cj

4. For each a ∈ {0, ..., r − 1}, ∃ k ∈ {0, ..., p− 1} such that ck = a

Then, letting h be the highest common factor of q and r,

(i) xN
f = xN

g whenever f (mod h) = g (mod h) (0 ≤ f ≤ q − 1, 0 ≤ g ≤ q − 1)

(ii) Pz = {xN
0 , ..., xN

h−1} satisfies Properties 1 and 2 of Definition 3

PROOF

From Lemma S1.21, the following is true for l = b0 and m = c0

C: For every i ≥ 0

1. ∃ ki ∈ {0, ..., p− 1} for which bki = l + i (mod q) and cki = m + i (mod r)

2. xN
l+i (mod q) = wN

m+i (mod r)

Let h be the highest common factor of q and r and consider any integers f , g (≤ q − 1)
satisfying f (mod h) = g (mod h). Then we have,

D: g = f + i1h for some integer i1

E: h = i2q + i3r for some integers i2, i3 (by Euclid’s algorithm)

Let i′ = f − l + i1i3r + i4q

(where i4 is any non-negative integer, larger enough to ensure i′ ≥ 0, i′ − i1i3r ≥ 0).

Then C, D and E leads to
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F: g = f + i1h
= f + i1i2q + i1i3r
= l + i′ − i4q + i1i2q
= l + i′ (mod q)

G: xN
f = xN

l+i′−i1i3r−i4q

= xN
l+i′−i1i3r (mod q)

= wN
m+i′−i1i3r (mod r)

= wN
m+i′ (mod r)

= xN
l+i′ (mod q)

= wN
g

Therefore part (i) of the Lemma is true because xN
f = xN

g whenever f (mod h) = g (mod h)
(0 ≤ f ≤ q − 1, 0 ≤ g ≤ q − 1)

Now, letting sk = bk (mod h), for k = 0, ..., p− 1

H: The following are true for Pz = {xN
0 , ..., xN

h−1} and integers s0, ..., sp−1 ∈ {0, ..., h− 1}

1. For k = 0, ..., p− 1, xN
sk

= xN
bk

= {si ∈ zk : ni ∈ N} (by G)

2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) sk = bk (mod h) = bj (mod h) = bj

(b) sk = bk (mod h) = (bj+1 (mod q)) (mod h) = bj+1 (mod h) = sj+1 (mod h)
(because q is a multiple of h)

Therefore, part (ii) of the Lemma is true because Pz = {xN
0 , ..., xN

h−1} satisfies the first two
properties of Definition 3 (as required).

Lemma S1.23. Consider a partial state sequence P = {xN
0 , ..., xN

q−1} and an attractor
A = {z0, ..., zp−1}

P occurs in A (i.e. Definition 3 is satisfied)
⇐⇒
The following are true for P = {xN

0 , ..., xN
q−1} and some sequence of integers

b0, ..., bp−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)
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PROOF:

Case: =⇒

Suppose P occurs in A. Then, properties 1 and 2 follow directly from Properties 1 and 2 of
Definition 3.

We now show properties 3, 4 and 5 hold.

Property 3

We use proof by contradiction to show property 3. We show that if the property does not hold,
it is possible to find a smaller partial state sequence P ′ = {yN

0 , ..., yN
q′−1} and integers c0, ...,

cp−1 ∈ {0, ..., q′ − 1} (q′ < q) that satisfy properties 1 and 2 of Definition 3 (thus contradiction
property 3 of Definition 3 and the fact that P occurs in A)

Suppose there exists k′ ∈ {0, ..., p− 1} and j′ = k′ − 1 (mod p) for which bk′ 6= bj′ and xN
bk′

=
xN

bj′
. Then, Property 2 implies there’s an integer h for which

- h = bj′ ∈ {0, ..., q − 1}
- h + 1 (mod q) = bk′ (since bk′ 6= bj′)

- xN
h = xN

h+1 (mod q)

Take h (above), q′ = q − 1 and consider the partial state sequence P ′ = {yN
0 , ..., yN

q′−1} where

- yN
i = xN

i for i = 0, ..., h− 1 (if h > 0)

- yN
i = xN

i+1 for i = h, ..., q′ − 1 (if h < q − 1)

Then, for m = 0, ..., p− 1, let

(i) cm = bm, if bm < h

(ii) cm = bm, if bm = h < q′ = q − 1

(iii) cm = 0, if bm = h = q′ = q − 1

(iv) cm = bm - 1, if bm > h

(Note: Since each bm ∈ {0, ..., q − 1} and h ∈ {0, ..., q − 1}, each cm ∈ {0, ..., q − 2} =
{0, ..., q′ − 1})

Now, from Property 2, for each k ∈ {0, ..., p− 1} and j = k − 1 (mod p) either

(a) bj = bk

(b) bj = bk − 1 (when (a) is not true and bk > bj ≥ 0)

(c) bj = q − 1 (when (a) is not true and bk = 0)
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Considering all relevant cases (i) - (iv) and (a) - (c), we can show that P ′ = {yN
0 , ..., yN

q′−1}
satisfies properties 1 and 2 of Definition 3.

i.e. The following are true for c0, ..., cp−1 ∈ {0, ..., q′ − 1} (defined above)

1. For k = 0, ..., p− 1, yN
ck

= {si ∈ zk : ni ∈ N}. This is because of the following

(i) If bk < h ≤ q − 1, then
yN

ck
= yN

bk
= xN

bk
= {si ∈ zk : ni ∈ N}

(ii) If bk = h < q′ = q − 1, then
yN

ck
= yN

bk
= yN

h = xN
h+1 = xN

h = xN
bk

= {si ∈ zk : ni ∈ N}
(iii) If bk = h = q′ = q − 1, then since h + 1 (mod q) = 0

yN
ck

= yN
0 = xN

0 = xN
h+1 (mod q) = xN

h = xN
bk

= {si ∈ zk : ni ∈ N}
(iv) If bk > h, then

yN
ck

= yN
bk−1 = xN

bk
= {si ∈ zk : ni ∈ N}

2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either (a) ck = cj or (b) ck = cj + 1
(mod q′). This is because of the following

(i) If bk < h ≤ q − 1, then either

(a) ck = bk = bj = cj

(b) ck = bk = bj + 1 (mod q′) = cj + 1 (mod q′)
(since bj ≥ 0 and bj < h ≤ q′ = q − 1)

(c) ck = bk = 0 = q − 1 (mod q′) = bj (mod q′) = either cj or cj + 1 (mod q′)
(depending on whether or not bj = h or bj > h)

(ii and iii) If bk = h ≤ q − 1, then since ck = bk (mod q′), either

(a) ck = bk (mod q′) = bj (mod q′) = cj

(since bj = bk = h)
(b) ck = bk (mod q′) = bj + 1 (mod q′) = cj + 1 (mod q′)

(since bj < h and bj ≥ 0)
(c) ck = bk (mod q′) = 0 = q − 1 (mod q′) = bj (mod q′) = either cj or cj + 1

(mod q′)
(depending on whether or not bj = h or bj > h)

(iv) If bk > h, then either

(a) ck = bk − 1 = bj − 1 = cj

(since bj = bk > h)
(b) ck = bk − 1 = bj = bj (mod q′) = either cj or cj + 1 (mod q′)

(depending on whether or not bj = h or bj > h)
(c) Case not possible

Property 4

Now, from Property 2, for each k ∈ {0, ..., p− 1} and j = k − 1 (mod p) either

(a) bk = bj

(b) bk = bj + 1 (mod q) and q > 0
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Let c be the number of times that bk 6= bj when k ∈ {1, ..., p− 1} (i.e. c is number of times
we get case (b))

Then, bp−1 = b0 + c (mod q).

Therefore, since either (a) or (b) must be true for k = 0 and j = p− 1, either

(c) c = 0 and b0 = ... = bp−1

(d) c = eq − 1 for some positive integer e (q > 0)

(e) c = eq for some positive integer e (q > 0)

In cases (d) and (e), Property 4 must hold because bk increases by either 0 or 1 (mod q) as k
increases (from 0 to p− 1). This would imply that every a ∈ {0, ..., q − 1} occurs at least once.

In case (c), properties 1 and 2 of Definition 3 would hold for the partial state sequence P ′ =
{yN

0 } = {xN
b0
}. Therefore, since P = {xN

0 , ..., xN
q−1} occurs in A, it must be the case that q = 1

(Otherwise property 3 of Definition 3 would fail, using P ′ and b0 = ... = bp−1 = 0). Property 4
would then follow, since for each a ∈ {0}, b0 = ... = bp−1 = 0.

Property 5

We use proof by contradiction to show property 5. We show that if the property does not hold,
it is possible to find a smaller partial state sequence P ′ = {yN

0 , ..., yN
q′−1} and integers c0, ...,

cp−1 ∈ {0, ..., q′ − 1} (q′ < q) that satisfy properties 1 and 2 of Definition 3 (thus contradiction
property 3 of Definition 3 and the fact that P occurs in A)

Suppose there is an integer q′ | q (q′ < q) for which xN
f = xN

g whenever f (mod q′) = g (mod q′).

Let,

- P ′ = {xN
0 , ..., xN

q′−1} (where each xN
i is taken from P )

- ci = bi (mod q′), for i = 0, ..., p− 1

Then, properties 1 and 2 of Definition 3 are true for P ′ = {yN
0 , ..., yN

q′−1} and integers c0, ...,
cp−1 ∈ {0, ..., q′ − 1} (defined above). This is because

1. For k = 0, ..., p− 1, xN
ck

= xN
bk (mod q′) = xN

bk
= {si ∈ zk : ni ∈ N}

2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) ck = bk (mod q′) = bj (mod q′) = cj

(a) ck = bk (mod q′) = (bj + 1 (mod q)) (mod q′) = bj + 1 (mod q′) = cj + 1 (mod q′)
(since q′ | q)
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Case: ⇐=

Suppose properties 1 - 5 are true for P = {xN
0 , xN

1 , ..., xN
q−1} and some sequence of integers b0,

..., bp−1 ∈ {0, ..., q − 1}

Then, we want to show that P = {xN
0 , xN

1 , ..., xN
q−1} occurs in A (i.e. the 3 properties of

Definition 3 are satisfied). Properties 1 and 2 follow directly from Properties 1 and 2 of this
Lemma. Therefore, it just remains to show property 3 of Definition 3.

If property 3 were not true, it would be possible to find a smaller partial state sequence P ′ =
{yN

0 , yN
1 , ..., yN

q′−1} and integers c0, ..., cp−1 ∈ {0, ..., q′ − 1} (q′ < q) that also satisfied properties
1 and 2 (of this Lemma and Definition 3)

Let P ′ = {yN
0 , ..., yN

q′−1} be the smallest such sequence (in terms of number of partial states q′).

Then P ′ occurs in A and part =⇒ of this Lemma would ensure Properties 1 - 5 of this Lemma
hold (for P ′).

Therefore, by Lemma S1.22, there is an integer h (highest common factor of q and q′) for which

- h ≤ q′ < q

- h | q
- xN

f = xN
g whenever f (mod h) = g (mod h) (in P )

Therefore, if property 3 of Definition 3 were not true for P , property 5 of the Lemma would fail.

Therefore, property 3 of Definition 3 must be true and P must occur in A.

Lemma S1.24. Consider two partial state sequence Px = {xN
0 , ..., xN

q−1} and
Py = {yM

0 , ..., yM
r−1},where M ⊇ N

Px occurs in Py (i.e. Definition S1.5 is satisfied)
⇐⇒
The following are true for Px = {xN

0 , ..., xN
q−1} and some sequence of integers

b0, ..., br−1 ∈ {0, ..., q − 1}

1. For k = 0, ..., r − 1, xN
bk

= {si ∈ yM
k : ni ∈ N (⊆ M)}

2. For each k ∈ {0, ..., r − 1} and j = k − 1 (mod r), either
(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., r − 1} and j = k − 1 (mod r), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., r − 1}, ∃ k ∈ {0, ..., r − 1} such that bk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)
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PROOF:

This Lemma can be proved in an analogous way to Lemma S1.23.

In particular, in the proof of Lemma S1.23,

- replace P by Px

- replace A by Py,

- replace zk by yM
k

- replace p by r

- replace Definition 3 by Definition S1.5

and note that similar changes can also be made to adapt Lemmas S1.21 and S1.22.

Lemma S1.25. Consider a node set N and attractor A = {z0, z1, ..., zp−1}.

After applying Procedure S1.3 to N and A, we get a partial state sequence P = {xN
0 , ..., xN

q−1}
and sequence of integers b0, ..., bp−1 ∈ {0, ..., q − 1} for which the following are true

1. For k = 0, ..., p− 1, xN
bk

= {si ∈ zk : ni ∈ N}
2. For each k ∈ {0, ..., p− 1} and j = k − 1 (mod p), either

(a) bk = bj or (b) bk = bj + 1 (mod q)

3. Given k ∈ {0, ..., p− 1} and j = k − 1 (mod p), if bk 6= bj then xN
bk
6= xN

bj

4. For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., p− 1} such that bk = a

5. There is no integer q′ | q (q′ < q) for which xN
f = xN

g whenever f, g satisfies
f (mod q′) = g (mod q′)

PROOF

First note that b0, ..., bp−1 ∈ {0, ..., q − 1} by Step 8. Also note that, once bk has been specified
during the procedure, it can only be altered in Step 8.

We now show the 5 properties of above are satisfied for P , A and b0, ..., bp−1 (defined in the
procedure itself). For properties 1 - 3, we consider the cases k = 0 and k > 0 separately
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Properties 1 -3 : Case k = 0

Property 1

The initialisation ensures

A: b0 = 0

B: xN
b0

= {si ∈ z0 : ni ∈ N}.

(Note: b0 = 0 is not altered in Step 8, since b0 = 0 and q ≥ 1).

Therefore, Property 1 is satisfied

Properties 2 and 3

When k = 0, j = k − 1 (mod p) = p− 1 and bk = b0 = 0 (by A).

Then, because of Steps 1 and 6, one of the following is true by the end of Step 6

(a) q∗ = 1, bp−1 = bj = 0 and xN
0 = xN

b0
= xN

bk
= xN

bj

(b) q∗ = bp−1 = bj and xN
0 = xN

b0
= xN

bk
= xN

bj

(c) q∗ = bp−1 + 1 = bj + 1 and xN
0 = xN

b0
= xN

bk
6= xN

bj

Then, since q | q∗ (q∗ = aq for some positive integer a) in Step 7, Step 7 implies either

(a) bj = 0 and xN
0 = xN

bk
= xN

bj

(b) bj (mod q) = 0 and xN
0 = xN

bk
= xN

bj

(c) bj (mod q) = q − 1 and xN
0 = xN

bk
6= xN

bj
= xN

q−1

Therefore, since bk = b0 = 0 (by A), the following are true at the end of Step 8

(a) bk = bj = 0 and xN
bk

= xN
bj

= xN
0

(b) bk = bj = 0 and xN
bk

= xN
bj

= xN
0

(c) bk = bj + 1 (mod q) and xN
bk

= xN
0 6= xN

q−1 = xN
bj

Because of (a), (b) and (c) above, Property 2 is satisfied.

Property 3 is satisfied because if bk 6= bj , then (c) above must be true and xN
bk
6= xN

bj
(as

required)
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Properties 1 -3 : Case k = 1, ..., p− 1 (and p > 1)

When p > 1, Step 3 is applied for every k = 1, ..., p− 1.

Consider any k ∈ {1, ..., p− 1}.

Property 1

If the condition in Step 3 is satisfied, xN
bk

= {si ∈ zk : ni ∈ N} is true after Step 3. If the
condition is not satisfied, xN

bk
= {si ∈ zk : ni ∈ N} is true after Step 5.

As mentioned earlier, bk can then only be altered in Step 8, when bk is replaced by bk (mod q).
However, because of Step 7b, xN

bk
= {si ∈ zk : ni ∈ N} would remain unaltered.

Therefore Property 1 is satisfied.

Properties 2 and 3

Consider any k ∈ {1, ..., p− 1} and j = k − 1 (mod p) (where p > 1)

From steps 2, 3, 4 and 5, either (a) or (b) are true depending on whether or not the condition
in Step 3 is satisfied

(a) bk = bj and xN
bk

= xN
bj

(b) bk = bj + 1 and xN
bk
6= xN

bj

Now let fk = bk (mod q) and fj = bj (mod q), where q | q∗ is the integer identified in Step 7.
Then, after Step 7, either

(a) fk = fj and xN
fk

= xN
bk

= xN
bj

= xN
fj

(b) fk = fj + 1 (mod q) and xN
fk

= xN
bk
6= xN

bj
= xN

fj

Therefore after Step 8, either of the following are true (as required)

(a) bk = bj and xN
bk

= xN
fk

= xN
fj

= xN
bj

(b) bk = bj + 1 (mod q) and xN
bk

= xN
fk
6= xN

fj
= xN

bj

Because of (a) and (b) above, Property 2 is satisfied.

Property 3 is satisfied because if bk 6= bj , then (b) above must be true and xN
bk
6= xN

bj
(as

required)
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Property 4

Initially, b0 = 0.

Then, for each k ∈ {1, ..., p− 1} and j = k − 1, Steps 2 - 5 imply that at the end of Step 7 either

(a) bk = bj

(b) bk = bj + 1

Therefore, as k increases from 0 to p− 1, bk is increases in intervals of 1.

Moreover, since q ≤ q∗ ≤ bp−1 + 1 (from Steps 1, 6 and 7), there exists b0, ..., bd that satisfy
the following at the end of Step 7

(i) For i = 0, ..., d, bi ∈ {0, ..., q − 1}
(ii) For each a ∈ {0, ..., q − 1}, ∃ k ∈ {0, ..., d} such that bk = a

Moreover, after Step 8, b0, ..., bd remain unchanged (because of (i)).

Therefore, property 4 is satisfied

Property 5

In Step 7, q (q | q∗) is chosen to be the smallest integer for which xN
f = xN

g whenever
f (mod q) = g (mod q)

If there were a smaller q′ < q, (q′ | q) for which xN
f = xN

g whenever f (mod q′) = g (mod q′),
then it would have been identified in Step 7 (since it is also the case that q′ | q∗)
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