
Supporting Text 2:
Interactions between subsystems

Given an individual subsystem Sy, we are interested in which subsystems regulate it and ensure
its occurrence in an attractor. Essentially, we want to find collections of subsystems Sx = {Sx1 ,
..., Sxf

} whose co-occurrence in an attractor triggers a chain of interactions that results in the
occurrence of Sy.

In Sections S2.1 and S2.2, we look at Boolean network models to see how the model’s Boolean
functions can be used to identify such interactions. Sections S2.1 looks at how partial states
are regulated within attractors. Sections S2.2 then transfers these ideas back to subsystems.
Some simple examples to explain subsystems and interactions between them are given in Sup-
porting Text 3 (in Section S3.3). Even without the Boolean functions, it is possible to identify
relationships between subsystems. Sections S2.3 describes one such approach.

This supporting text is a more formal description / proof of the procedures given in the main
manuscript. The procedures in the main manuscript are revisited here in the following sections.

Procedure 6: Corresponds to Procedures S2.8, S2.11 and Theorem S2.12 in Section S2.1

Procedure 7: Corresponds to Procedure S2.19 and Theorem S2.20 in Section S2.2.2

First we introduce / repeat a few definitions used throughout this section

Definition S2.1. A network state, z = (s1, ..., sv) ∈ {0, 1}v is a set of v Boolean states, one for
each node ni ∈ V (where V is the set of all nodes).

Definition S2.2. An attractor state, z = (s1, ..., sv) ∈ {0, 1}v is a network state that occurs in
some attractor A ∈ {z0, ..., zp−1}
Definition S2.3. A partial state, xN ∈ {0, 1}|N | is a set of | N | Boolean states, one for each
node ni ∈ N(⊆ V). i.e. xN = {si : ni ∈ N}
Definition S2.4. A partial state xN is contained in another partial state zP if N ⊆ P and each
node ni ∈ N has the same Boolean state (si) in both xN and zP . We can also say zP contains
xN .

This definition is also applicable to a network / attractor state z, by letting P = V and zP = z.

S2.1 Regulation of partial states in attractors

As the Boolean network model progresses over time, the Boolean functions f = (f1, ..., fv)
determine how each node is updated from one time step to the next. i.e. Given a network state
x = x(t) at time t, the model progresses from one time step to the next as follows

- x(t + 1) = f(x(t)) = (f1(x(t)), ..., fv(x(t)))

It may be that a partial state xN controls the Boolean functions {fi : ni ∈ M} and ensures the
occurrence of yM in the following time step. i.e xN is a predecessor of yM (or xN triggers the
occurrence of yM).

1

Definition S2.5. A partial state xN is a predecessor of another partial state yM if the following
holds

- If a network state z contains xN , then f(z) contains yM

This definition is also applicable to a network / attractor state z, by letting N = V and xN =
z.

In the main manuscript, we also say that xN triggers the occurrence of yM . However, in this
Supporting Text, we keep to the terminology predecessor .

The following results relate to predecessors and are utilised during later analyses (to improve
efficiency).

Lemma S2.6. Suppose, a partial state xN is a predecessor of another partial state yM

If a partial state zP contains xN , then zP is a predecessor of yM

PROOF: See Section S2.4

Lemma S2.7. Consider two partial states yM1
1 , yM2

2 where yM2
2 contains yM1

1 .

Then, if xN is a predecessor of yM2
2 , xN is also a predecessor of yM1

1

PROOF: See Section S2.4

Given a partial state yM , its predecessors can be found by using the approach in Irons (2006).
The results of this procedure are given below, whilst the precise details can be found in the
original paper

Procedure S2.8. Given a partial state yM , the procedure FindPredecessors(yM) in Irons
(2006) (Appendix B.2.2) identifies partial states xN1

1 , ..., xNr
r for which the following are true

1. For i = 1, ..., r, xNi
i is a predecessor of yM .

2. For i = 1, ..., r, xNi
i does not contain any partial state xNj

j (j ∈ {1, ..., r}, j 6= i)

3. If an attractor state z is a predecessor of yM , then z contains xNi
i for some i ∈ {1, ..., r}

Property 2 ensures that only the most informative predecessors are kept (see Lemma S2.6). The
procedure can also be modified so that property 3 is more general and applies to network states
(rather than attractor states). This version is not necessary here.

Given a partial state yM that occurs in an attractor state za ∈ A, this idea of predecessors can
be extended to look at the regulation of yM in the attractor A

2

Definition S2.9. Consider an attractor A = {z0, ..., zp−1} and two partial states xN and yM

xN is a k-predecessor of yM , in an attractor state za ∈ A if

1. xN and yM are both contained in the attractor state za

2. There exists a sequence of partial states zP0
0 , zP1

1 , ..., zPk
k for which the following are true

(a) k = cp, where c is a positive integer.

(b) P0 = N and zP0
0 = xN

(c) Pk = M and zPk
k = yM

(d) For i = 0,, k − 1, zPi
i is a predecessor of zPi+1

i+1

(e) For i = 0,, k, zPi
i is contained in the attractor state zb ∈ A

(where b = a + i (mod p))

Essentially, in this definition, if xN is contained za ∈ A, then it ensures that yM is also contained
in za ∈ A, k = cp time steps later. Moreover, this process can be traced through the attractor
A at each time step (because of 2(e)).

Once we have found a k-predecessor xN , the following result implies that all larger partial states
zP (containing xN and contained in za) are also k-predecessors of yM .

Lemma S2.10. Suppose, xN is a k-predecessor of yM in za ∈ A.

If a partial state zP contains xN and is contained in za, then zP is a k-predecessor of yM in za

∈ A.

PROOF: see Section S2.4

Given a partial state yM and attractor state za ∈ A = {z0, ..., zp−1}, the following procedure
identifies partial states xN that are k-predecessors of yM in za ∈ A

Procedure S2.11. (Procedure 6 from main manuscript)

In this procedure, we take as an input a partial state yM that occurs in an attractor state za ∈
A = {z0, ..., zp−1}.

Initially, let sets U = ∅, W0 = {yM} and Wi = ∅ for all i ≥ 1. Moreover, set t = 0. The
procedure then enters the following loop

Step 1 :
Execute Procedure S2.8 for every partial state zP ∈ Wt. For each newly identified predecessor
xNi

i , of zP , xNi
i is added to Wt+1

Step 2 :
(a) Let t = t + 1 (increment t by 1)
(b) Let t′ = a− t (mod p)

Step 3 :
Remove all partial states from Wt that contain a different partial state in Wt

3

Step 4 :
Remove all partial states from Wt that are not contained in the attractor state zt′

Step 5 :
If t (mod p) = 0, go to Step 6. Otherwise go back to Step 1.

Step 6 :
For every partial state xN ∈ Wt,
(a) Check whether xN contains or equals any partial state uL ∈ U.
(b) Check whether xN is contained within any partial state uL ∈ U.

If (a) is true then remove xN from Wt.

If (a) is false then add xN to U and discard any uL identified in (b).

Step 7 :
If Wt is empty, end procedure. Otherwise, return to Step 1.

At the end of this procedure, U contains suitable k-predecessors of yM in za ∈ A. Starting
from za, Steps 1, 2 and 4 imply the procedure goes backwards around the attractor, identifying
predecessors within the relevant attractor state. Once we return to za (t (mod p) = 0), we
store any newly identified k-predecessors of yM in za ∈ A (in the set U). Steps 3, 4 and 6
ensure we only store / analyse the most informative and suitable k-predecessors, thus speeding
up the analysis. Because of Lemma S2.7, there is no advantage in considering partial states in
Wt, that contain other partial states in Wt. Because of Lemma S2.10, we need only identify
k-predecessors that do not contain other k-predecessors.

The Theorem below shows that the set U contains suitable k-predecessors of yM in A, at the
end of the procedure.

Theorem S2.12. At the end of Procedure S2.11

1. The set U is non-empty

2. If a partial state xN is contained in U at the end of the procedure, then

(a) xN is a k-predecessor of yM in za ∈ A

(b) xN contains no other partial states in U

PROOF: see Section S2.4

S2.2 Regulation of subsystems

The definitions and procedures from Section S2.1 can be used to describe how subsystems
are regulated in attractors. However, since partial states within subsystems could be subject
to different time lags in different attractors (see Definition 3 (main text) and Section S3.1 in
Supporting Text 3), we need to consider the precise dynamics (the instances) of subsystems in
attractors. i.e.

4

Definition S2.13. (Definition 9 from main manuscript)

Consider a collection of subsystems S = {S1, ..., Sf} where every Si = {xNi
i0

, ..., xNi
iqi
} ∈ S

involves a node set Ni and occurs in the attractor A = {z0, ...,zp−1}

The instance of S in A is the partial state sequence zM
0 , ...,zM

p−1, where

1. M = N1 ∪ ... ∪ Nf

2. For k = 0, ..., p− 1, zM
k = {sx ∈ zk : nx ∈ M}.

In order to describe how a subsystem Sy is regulated, we want to see which collections of
subsystems Sx = {Sx1 , ..., Sxf

} can set of a chain of interactions and trigger the occurrence of
Sy in an attractor. Using these instances, we can come up with the following definition

Definition S2.14. (Definition 10 from main manuscript)

Suppose we have

1. An attractor A = {z0, ...,zp−1}
2. A collection of subsystems Sx = {Sx1 , ..., Sxf

} where

(a) Sx1 , ..., Sxf
all occur in A

(b) xN
0 , ...,xN

p−1 is the instance of Sx in A

3. An individual subsystem Sy where

(a) Sy occurs in A

(b) yM
0 , ...,yM

p−1 is the instance of Sy in A

Then Sx triggers Sy in A if the following holds for every i ∈ {0, ..., p− 1}

- xN
i is a ki-predecessor of yM

i in zi ∈ A (for some ki)

This definition can easily be adapted to consider whether a collection of subsystems Sx = {Sx1 ,
..., Sxf

} triggers another collection of subsystem Sy = {Sy1 , ..., Syg} in an attractor A.

Here, the occurrence of Sy in A can be explained by the occurrence of Sx. If the subsystems Sx1 ,
..., Sxf

are established in the attractor A, xN
0 , ...,xN

p−1 would occur over and over again. This
can then (eventually) ensure the occurrence of yM

0 , ...,yM
p−1 over and over again. In the model,

it is unlikely that subsystems establish themselves one at a time. However, knowing which
collections of subsystems trigger Sy indicate which parts of the system are primarily responsible
for regulating Sy

Obviously, Sy may occur in multiple attractors and different collections of subsystems may be
responsible for triggering Sy in different attractors. Therefore, in order to describe how Sy is
regulated we want a more complete description

5

Definition S2.15. A set of subsystem collections S1, ..., Sg regulates an (individual) subsystem
Sy if the following are true

1. For i = 1, ..., g, ∃ an attractor A for which Si triggers Sy in A

2. If Sy occurs in an attractor A, ∃ i ∈ {1, .., g} for which Si triggers Sy in A

We call the set {S1, ..., Sg} a regulation set of Sy

The procedure in Section S2.2.2 shows one way of identifying such a regulation set, for a sub-
system Sy. However, there may be some regulation sets that are more descriptive than others.
Therefore, we first run through some extra constraints on S1, ..., Sg

S2.2.1 Extra constraints

Lemma S2.16. Consider two collections of subsystems Sa and Sb, and suppose

(a) Sa triggers an individual subsystem Sy in an attractor A = {z0, ..., zp−1}
(b) Sb ⊃ Sa

(c) Every subsystem S ∈ Sb occurs in A

Then, Sb triggers Sy in A

PROOF: see Section S2.4

For a regulation set {S1, ..., Sg} of Sy, there may be some redundancy.

Firstly, because of Lemma S2.16, if there exists Sa, Sb (a, b ∈ {1, ..., r}, a 6= b) for which

(a) Sb ⊃ Sa

(b) If Sb triggers Sy in A, then Sa also triggers Sy in A

then the regulatory ability of Sb is just a result of the smaller set Sa. Therefore, subsystem
collections such as Sb (where (a) and (b) hold) are not counted as triggering Sy in A (in Procedure
S2.19)

Secondly, properties 1 and 2 of Definition S2.15 could still hold after a subsystem collection Si (i
∈ {1, ..., g}) is removed from the set {S1, ..., Sg}. However, even in this scenario, it may be that
each Si is still informative. The following constraint is one way of deciding which subsystem
collections to keep and which to remove (if any). This extra (optional) constraint was used in
the examples in this paper. A description of how to apply this constraint is given in Section
S2.2.2.

6

Definition S2.17. Consider a regulation set {S1, ..., Sg} of a subsystem Sy.

Sa (a ∈ {1, ..., g}) is key to {S1, ..., Sg} in an attractor A if

1. Sa triggers Sy in A

2. It is possible to find a collection of subsystems T for which

(a) T triggers Sa in A

(b) T + Sb for any b 6= a (b ∈ {1, ..., g})

If Sa is not key to {S1, ..., Sg} in A, other collections of subsystems in the regulation set are
necessary to ensure Sa’s occurrence in A. Therefore, in this case, Sa is not counted as triggering
A. In the rare occurrence that no subsystem collection is key to {S1, ..., Sg} for a particular
attractor A (possibly because cyclic dependencies exist between collections of subsystems), this
extra constraint would be ignored.

If Sa is not key to {S1, ..., Sg} in any attractor, it would be removed from the regulation set.

Definition S2.15 can be modified to take account of this extra constraint, as follows

Definition S2.18. A set of subsystem collections S1, ..., Sg regulates an (individual) subsystem
Sy if the following are true

1. For i = 1, ..., g, ∃ an attractor A for which both of the following are true

(a) Si triggers Sy in A

(b) Si is key to {S1, ..., Sg} in A

2. If Sy occurs in an attractor A, ∃ i ∈ {1, .., g} for which Si triggers Sy in A

We call the set {S1, ..., Sg} the regulation set of Sy

S2.2.2 Procedure to identify regulation sets

Given a subsystem Sy (involving a node set My) and a set of attractors Cy, where

(a) Sy occurs in every attractor A ∈ Cy

(b) Sy does not occur in any attractor A /∈ Cy

The following procedure (Procedure S2.19) demonstrates a method of identifying a regulation
set of Sy (see Definition S2.15 above)

At the start of the procedure, we assume we know every subsystem S = {xN
0 , ..., xN

q−1}, along
with the node set involved (N) and a list of attractors it occurs in. Each subsystem and node
set N is a by-product of the method of identifying subsystems (described in Supporting Text 1).
A list of attractors can be found by applying Procedure S1.9 (from Supporting Text 1) to each
node set N . This information is used in Step 2 of the procedure (below).

7

Procedure S2.19. (Procedure 7 from main manuscript)

Initially, let the set R = ∅ (empty set)

For every Ai = {z0, ...,zp−1} ∈ Cy carry out the following steps.

Step 1 :
Let the set Ri = ∅. Let the sets U0, ..., Up−1 = ∅

Step 2 :
Identify every subsystem T1,, Th that occurs in Ai. Moreover, let M1, ..., Mh be the node
sets involved in T1,, Th (resp)

Step 3 :
Identify the instance of Sy in Ai. i.e. yMy

0 , ...,yMy

p−1.

(The procedure for this is obvious from Definition S2.13, given the node set My and attractor
Ai)

Step 4 :
For j = 0, ..., p− 1, carry out Procedure S2.11 to identify kj-predecessors of yMy

j in zj ∈ Ai.
The resulting kj-predecessors are added to the set Uj

Step 5 :
For every possible combination of partial states xN0

0 , ..., xNp−1

p−1 satisfying

- xNj

j ∈ Uj (for j = 0, ..., p− 1)

carry out the following

(a) Let N = N0 ∪ ... ∪ Np−1

(b) Let S = {Ta : Ma ∩ N 6= ∅}
(c) Add S to the set Ri

Step 6 :
Remove all subsystem collections S from Ri that contain other subsystem collections S′ ∈ Ri.
(i.e. S ⊃ S′)

Step 7 :
Add the subsystem collections in Ri to the set R

At the end of this procedure, every subsystem collection S ∈ Ri triggers Sy in the attractor Ai.
R is then the regulation set of Sy. This is proved with the following Theorem

8

Theorem S2.20. At the end of Procedure S2.19

1. Whenever Ai ∈ Cy,

(a) Ri is non-empty

(b) Every subsystem collection S ∈ Ri triggers Sy in Ai

2. R is a regulation set of Sy

PROOF: see Section S2.4

Given a regulation set R = {S1, ..., Sg} of Sy, we may want to apply the extra constraint in
Definitions S2.17 and S2.18. Thus only keeping those subsystem collections Sa that are key to
R = {S1, ..., Sg} in some attractor Ai.

To do this we let R′ = R and R′
i = Ri for each set in the above procedure. Then, we take

R′ and re-apply Procedure S2.19 to every collection of subsystems Sa ∈ R. As inputs to the
procedure take Sa and the set of attractors Ca ∩ Cy as inputs, instead of Sy and Cy. Here, Ca

is the set of attractors for which every S ∈ Sa occurs.

For each Sa ∈ R′ and Ai ∈ Ca ∩ Cy, this will give collections of subsystems T1, ..., Ts responsible
for triggering Sa in Ai. This information can then be used to see if Sa is key to {S1, ..., Sg} in
Ai (see Definition S2.17)

If Sa is not key to {S1, ..., Sg} in Ai, Sa is removed from R′
i. In the rare occurrence that

every subsystem collection in R′
i is not key to {S1, ..., Sg} in Ai, this extra constraint would be

ignored.

After doing this for every Sa ∈ R′, R′ can then be re-formed from all of the R′
i’s (repeat Step

7).

Theorem S2.12 would still hold for the R′
i’s and R′ at the end of these extra steps. This is

because none of the original R′
i’s are emptied and no subsystem collections are added. Part 2

of the Theorem can be proved in the same way.

9

S2.3 Hierarchical links between subsystems

On a simple observational level, a subsystem Sx may be hierarchically linked to another subsys-
tem Sy, because Sx only occurs in an attractor in conjunction with the ′higher order′ Sy. Such
hierarchical links can be identified without any prior knowledge of the underlying model. These
links could potentially correspond to relationships between subsystem, that are worth studying
more detail

Definition S2.21. Consider two subsystems Sx and Sy. Sx is hierarchically linked to Sy if the
following are true

- Sx occurs in an attractor A =⇒ Sy occurs in an attractor A

Furthermore, such a link can be viewed as direct if there it is impossible to find a subsystem Sz

for which the following is true

1. Sx is hierarchically linked to Sz

2. Sz is hierarchically linked to Sy

3. There exists attractors A1 and A2 for which

(a) Sy occurs in A1 and A2

(b) Sz occurs in A1 but not A2

(c) Sx occurs in neither A1 nor A2

This terminology can easily be extended to collections of subsystems.

10

S2.4 Proofs for earlier results

Here, we provide proofs for results introduced in this Supporting Text.

Lemma. S2.6

Suppose, a partial state xN is a predecessor of another partial state yM

If a partial state zP contains xN , then zP is a predecessor of yM

PROOF:

We need to show zP is a predecessor of yM (i.e. Definition S2.5 is satisfied)

Suppose a network state z contains zP . Then z also contains xN (since zP contains xN).
Therefore, since xN is a predecessor of yM , Definition S2.5 implies f(z) contains yM .

Therefore, zP is a predecessor of yM (as required)

Lemma. S2.7

Consider two partial states yM1
1 , yM2

2 where yM2
2 contains yM1

1 .

Then, if xN is a predecessor of yM2
2 , xN is also a predecessor of yM1

1

PROOF:

We need to show xN is a predecessor of yM1
1 (i.e. Definition S2.5 is satisfied)

Suppose a network state z contains xN .

Then, since xN is a predecessor of yM2
2 , Definition S2.5 implies f(z) contains yM2

2 . Therefore,
f(z) also contains yM1

1 (since yM2
2 contains yM1

1).

Therefore, xN is a predecessor of yM1
1 (as required)

11

Lemma. S2.10

Suppose, xN is a k-predecessor of yM in za ∈ A.

If a partial state zP contains xN and is contained in za, then zP is a k-predecessor of yM in za

∈ A.

PROOF:

Since xN is a k-predecessor of yM in za ∈ A = {z0, ..., zp−1}, Definition S2.9 implies that

1. xN and yM are both contained in the attractor state za

2. There exists a sequence of partial states zP0
0 , zP1

1 , ..., zPk
k for which the following are true

(a) k = cp , where c is a positive integer.
(b) P0 = N and zP0

0 = xN

(c) Pk = M and zPk
k = yM

(d) For i = 0,, k − 1, zPi
i is a predecessor of zPi+1

i+1

(e) For i = 0,, k, zPi
i is contained in the attractor state zb ∈ A

(where b = a + i (mod p))

We need to show that the same properties hold when xN is replaced by zP .

Property 1 is still satisfied since zP is contained in za.

We now show Property 2 holds for the sequence of partial states wL0
0 , wL1

1 , ..., wLk
k where

- L0 = P and wL0
0 = zP

- Li = Pi and wLi
i = zPi (for i = 1, ..., k)

(i.e. the same partial states as above except that zP0
0 = xN is replaced by zP)

Obviously, properties 2(a), (b) and (c) still hold. Also 2(d) and 2(e) still hold for i ≥ 1 (since
wL1

1 , ..., wLk
k are equal to zP1

1 , ..., zPk
k (resp)). Therefore, it just remains to show 2(d) and 2(e)

still hold for i = 0.

Case: 2(d) and i = 0 .

We need to show zP is a predecessor of wL1
1 = zP1

1 (i.e. Definition S2.5 is satisfied)

If a network state z contains zP , then z also contains xN (since zP contains xN). Therefore,
since xN is a predecessor of zP1

1 (by the old property 2(d)), Definition S2.5 implies f(z) contains
zP1
1 = wL1

1 . Therefore, zP is a predecessor of wL1
1 (as required)

Case: 2(e) and i = 0 .

Since zP is contained in za, wL0
0 = zP is contained in the attractor state zb ∈ A

(where b = a + 0 (mod p) = a).

12

Theorem. S2.12

At the end of Procedure S2.11

1. The set U is non-empty

2. If a partial state xN is contained in U at the end of the procedure, then

(a) xN is a k-predecessor of yM in za ∈ A

(b) xN contains no other partial states in U

PROOF:

Part 1 : U is non-empty

We show that Wm is non-empty at the end of the procedure, for all m ∈ {0, ..., p}.

Then, when t = p (t (mod p) = 0), partial states in Wt will be added to U in Step 6 (since
U is empty at the start of the procedure and the step t = p is the first time Step 6 is visited).
Since U is never emptied when Step 6 is visited in the future, U will then be non-empty at the
end of the procedure.

Below, we prove Wm is non-empty at the end of the procedure, for all m ∈ {0, ..., p}. We do
this by induction on m.

case m = 0 :

W0 is non-empty at the start of the procedure. Then, for the rest of the procedure, partial
states are only removed from Wi for i ≥ 1. Therefore, W0 is non-empty at the end of the
procedure

case m > 0 : m ≤ p

In each loop of the procedure t increases by 1 (in step 2).

Since U is empty at the start of the procedure and Step 6 is not visited until time t = p, partial
states are not removed from Wm in Step 6 when (m ≤ p). Therefore, partial states are only
removed from Wm (m ≤ p) in steps 3 or 4 (when t = m).

Therefore, if Wm is non-empty at the end of step 4 (when t ≥ m), Wm non-empty at the end
of the procedure.

Suppose, W0, ..., Wm−1 are non-empty at the end of Step 4, when t = m− 1. Then, because
of Steps 2 and 4, every zP ∈ Wm−1 satisfies

A: zP is contained in the attractor state zt′ (where t′ = a−m + 1 (mod p))

Now, for the attractor A = {z0, ..., zp−1}, f(zi) = zj for all i = 0, ..., p− 1 and
j = i + 1 (mod p) (by the definition of an attractor in these models). Therefore,

B: f(zm′) = zt′ (where m′ = a−m (mod p))

13

C: f(zm′) contains zP (by A and B)

D: zm′ is a predecessor of zP (by C and Definition S2.5)

After returning to Step 1 in the next loop of the procedure, Procedure S2.8 is applied to every
partial state zP ∈ Wm−1. This identifies partial states xN1

1 , ..., xNs
s where

1. Each xNi
i is a predecessor of some zP ∈ Wm−1

2. If an attractor state z is a predecessor of zP , then z contains xNi
i for some i ∈ {1, ..., s}

xN1
1 , ..., xNs

s are then added to Wm

Therefore (because of D and 2 above), the attractor state zm′ (m′ = a−m (mod p)) contains
xNi

i for some i ∈ {1, ..., s}. Letting xNi
i be the smallest such partial state (i.e. xNi

i does not
contain any other xNj

j ; j ∈ {1, ..., s}, j 6= i)

E: xNi
i is contained in zm′

F: xNi
i does not contain a different xNj

j ∈ Wm

Moving onto Step 2, t = m and t′ = m′ = a−m (mod p)

Moving onto Step 3, xNi
i is not removed from Wm (because of F)

Moving onto Step 4, xNi
i is not removed from Wm (because of E)

Therefore, Wm is not empty at the end of Step 4 and the end of the Procedure.

Therefore, Wm is non-empty for all m ∈ {0, ..., p} (as required)

Part 2a:

Given any xN ∈ U, we need to show that xN is a k-predecessor of yM in za ∈ A. To do this,
we show that the properties of Definition S2.9 is satisfied.

Each loop in the procedure corresponds to a single time step. Following the loop backwards
from the time xN is put in U, we get a sequence of partial states zP0

0 , ..., zPi
i , ..., zPk

k (from Wk,
..., Wk−i, ..., W0 respectively), where

(a) k = cp for some positive integer c (where c is the number of times Step 6 has been visited
when xN was added to U)

(b) P0 = N and zP0
0 = xN

(c) Pk = M and zPk
k = yM

(d) For i = 0,, k − 1, zPi
i is a predecessor of zPi+1

i+1 (because of Step 1 of the procedure)

14

Therefore, to show Property 2 of Definition S2.9 is satisfied, it just remains to show

(e) For i = 0,, k, zPi
i is contained in the attractor state zb ∈ A (where b = a + i (mod p))

A partial state zPi
i only remains in Wk−i after Step 4, if it is contained in the attractor state

zt′ (where t′ = a− (k − i) (mod p)). Therefore, since k (mod p) = 0, (e) is satisfied by letting
b = t′ = a + i (mod p).

Property 1 of Definition S2.9 is satisfied, because

- (b) and (e) imply that xN is contained in za

(i = 0 =⇒ b = a (mod p) = a)

- (a), (c) and (e) imply that yM is contained in za

(i = k and k (mod p) = 0 =⇒ b = a (mod p) = a)

Part 2b:

We use proof by contradiction to show 2b is satisfied. Suppose xN contains a partial state uL

in U. Then, xN could never of ended up in U because

By Step 3: xN and uL can’t both occur in some Wt

(and so couldn’t be put in U at the same time)

By Step 6: xN could not be put in U, if uL was already in U

By Step 6: xN would be removed from U, when uL was added.

Lemma. S2.16

Consider two collections of subsystems Sa and Sb, and suppose

(a) Sa triggers an individual subsystem Sy in an attractor A = {z0, ..., zp−1}
(b) Sb ⊃ Sa

(c) Every subsystem S ∈ Sb occurs in A

Then, Sb triggers Sy in A

PROOF:

Let,

A: xMa
0 , ...,xMa

p−1 be the instance of Sa in A = {z0, ..., zp−1}

B: yMb
0 , ...,yMb

p−1 be the instance of Sb in A = {z0, ..., zp−1}

C: zMy

0 , ...,zMy

p−1 be the instance of Sy in A = {z0, ..., zp−1}

15

Then, it must be the case that

D: Mb ⊇ Ma (from property 1 of Definition S2.13 and the fact that Sb ⊃ Sa)

E: For i = 0, ..., p− 1, yMb
i contains xMa

i (from D and property 2 of Definition S2.13)

F: For i = 0, ..., p− 1, yMb
i is contained in the attractor state zi (from property 2 of Definition

S2.13)

Additionally, since Sa triggers Sy in an attractor A, Definition S2.14 implies

G: For every i ∈ {0, ..., p− 1}, xMa
i is a ki-predecessor of zMy

i in zi ∈ A (for some ki)

Therefore, because of E, F, G and Lemma S2.10

H: For every i ∈ {0, ..., p− 1}, yMb
i is a ki-predecessor of zMy

i in zi ∈ A

From (a) and (c), we know that every Sy occurs in A and every S ∈ Sb occurs in A.

Therefore, in order to show Sb triggers Sy in A we just need to show the last property of
Definition S2.14 holds. This is true because of B, C and H (above)

Theorem. S2.20

At the end of Procedure S2.19

1. Whenever Ai ∈ Cy,

(a) Ri is non-empty

(b) Every subsystem collection S ∈ Ri triggers Sy in Ai

2. R = {S1, ..., Sg} is a regulation set of Sy

PROOF:

Part 1a

When Ai = {z0, ...,zp−1} is being analysed, Ri could only be empty at the end of the loop (and
hence the end of the procedure) if either

A: Step 2
There is no subsystem T that occurs in Ai

B: Step 4
Uj is empty for some j ∈ {0, ..., p− 1}

C: Step 5
There is no subsystem Ta (involving a node set Ma) that occurs in Ai and satisfies Ma ∩
N 6= ∅ (for a set N given in Step 5)

16

D: Step 6
All subsystem collections are removed from Ri in Step 6

Now, by Theorem S1.20 in Supporting Text 1 (Section S1.3), given an attractor A and node ni,
there exists a subsystem S = {xN

0 , xN
1 , ..., xN

q−1} for which

(a) ni ∈ N

(b) S occurs in A

Therefore, A and C cannot be true.

B cannot be true, because Procedure S2.11 always finds k-predecessors for Uj (by Theorem
S2.12)

D cannot be true, otherwise they would be collections of subsystems Sa, Sb ∈ Ri such that Sa

⊂ Sb ⊂ Sa (which is impossible).

Therefore, each Ri is non-empty

Part 1b

We need to show that any collection of subsystems Sx = {Tx1 , ..., Txf
} ∈ Ri triggers Sy in

Ai = {z0, ...,zp−1} (i.e. Definition S2.14 is satisfied)

First note that subsystem collections Tx1 , ..., Txf
, Sy all occur in Ai; since only subsystems that

occur in Ai are considered in the corresponding loop of the procedure.

Then, letting M1, ..., Mf , My be the node sets involved in Tx1 , ..., Txf
, Sy (resp) we get

(a) zMx
0 , ...,zMx

p−1 is the instance of Sx in Ai (where Mx = M1 ∪ ... ∪ Mf , see Definition S2.13)

(b) yMy

0 , ...,yMy

p−1 is the instance of Sy in Ai (from Step 3 of procedure)

Therefore, to show that Definition S2.14 is satisfied (i.e. Sx triggers Sy in Ai), we need to show
that

(c) For j = 0, ..., p− 1, zMx
j is a kj-predecessor of yMy

j in zj ∈ Ai (for some kj)

Now following from Step 4 and 5 in the procedure, there exists a set of partial states xN0
0 , ...,

xNp−1

p−1 such that for j = 0, ..., p− 1

E: xNj

j ∈ Uj

F: xNj

j is a kj predecessor of yMy

j in zj ∈ Ai (for some kj). This follows from E and Step 4.

Moreover, because of F, (a), (b), Definition S2.13 and Definition S2.14

G: xNj

j , yMy

j and zMx
j are all contained in the same attractor state zj ∈ Ai

17

Now, from Theorem S1.20 in Supporting Text 1 (Section S1.3), given a node ni ∈ N , it is possible
to find a subsystem Txa that occurs in Ai and involves a node set Ma satisfying ni ∈ Ma.

Therefore, for every node ni ∈ N , a subsystem Txa would be added to Sx in Step 5, thus implying
that

H: Mx = M1 ∪ ... ∪ Mf ⊇ N

Moreover, from Step 5a,

I: N ⊇ Nj (for j = 0, ..., p− 1)

Therefore, G, H and I imply

J: For j = 0, ..., p− 1, zMx
j contains xNj

j

Therefore, because of Lemma S2.10, F, G and J imply

- For j = 0, ..., p− 1, zMx
j is a kj-predecessor of yMy

j in zj ∈ Ai (for some kj)

This is the condition required to show Sx triggers Sy in Ai

Part 2

To show R = {S1, ..., Sg} is a regulation set of Sy, we need to show that the 2 properties of
Definition S2.15 hold.

First, property 1.

For any j ∈ 1, ..., g, Sj ∈ Ri for some i (otherwise Sj would never have been added to R in
Step 7 of the procedure). Therefore, Sj triggers Sy in Ai (by part 1b of this Theorem)

Now, property 2.

Suppose Sy occurs in an attractor Ai. Then, since Ri in non-empty (by part 1a of this Theorem),
there exists a collection of subsystems Sj ∈Ri that triggers Sy in Ai (by part 1b of this Theorem).

Therefore, since R is just a combination of the Ri’s (see Step 7 of procedure), there exists a
collection of subsystems Sj ∈ R that triggers Sy in Ai

References

Irons DJ (2006) Physica D 217 7–21

18

