
Supporting Text 4:
Supplementary data for Drosophila segment polarity network

S4.1 Boolean network model

In the main text, we consider an existing Boolean network model of the segment polarity network
(from Albert & Othmer (2003) and Chaves et al (2005)).

This model corresponds to a 1 dimensional array of cells, with each individual cell having the
same 13 Boolean functions, shown in Table S4.1 (and justified in Albert & Othmer (2003)). Some
interactions, such as those involving wingless and hedgehog proteins (WG and HH respectively),
are inter-cellular so that the protein in one cell can trigger a response in the neighbouring cell.
Because of a previous developmental stage, sloppy paired protein (SLP) is only present in the
posterior of each parasegment in this case (cells 3 and 4). Because the parasegments start off 4
cells wide and the expression pattern associated with the main proteins are assumed to repeat
every 4 cells, previous models primarily considered a 4 cell ring of cells where inter-cellular
interactions can occur between cells 1 and 4. It is this 4 cell version of the model that is
considered here.

There are 10 attractors for this model that are all fixed points (i.e. attractors only have a single
state). The 10 fixed points (shown in Fig.S4.1) were found analytically in Albert & Othmer
(2003) and confirmed using the algorithm in Irons (2006). The absence of any limit cycles was
also confirmed using the algorithm in Irons (2006).

The wild type expression pattern is represented by the attractor A1. This is characterised by
WG and EN / HH expression in 1 cell wide stripes either side of the parasegment boundary
(in cell 4 and 1 resp). As discussed in Albert & Othmer (2003), the fixed points A2 and A3

correspond to expression patterns observed under experimental conditions, where certain genes
are over-expressed or silenced. Temporarily inducing hh across the embryo, following heat shock,
leads to the broader WG, EN and HH stripes seen in A2. A3 can occur whenever any of en, wg
or hh is mutated. Significantly delaying wg initiation or disrupting inter-cellular signalling can
also have the same result. The model has also been shown to be consistent with other mutations,
caused by knocking out genes. However, these ′knock-outs′ change the underlying model and
lead to novel fixed point attractor cycles. These attractor cycles are not considered here but
provide further evidence that the model is suitable.

As an aside, all 10 attractors are fixed points and so they will still be attractors for a Boolean
network model with asynchronous updates. Therefore, since identification of subsystems only
depends on attractors, there is no real advantage in considering asynchronous updating schemes
here. However, asynchronous updating schemes would alter the basins of attraction for the 10
attractors, and so may be advantageous when studying other aspects of the model.

S4.2 Occurrence of subsystems in attractors

This model has 19 subsystems, shown in Figure 4 and Table 1 of the main text. For each of
these subsystems, the set of attractors containing the subsystems (occurrence set) is shown in
Table S4.2. These occurrence set can then be used to identify the hierarchical links in Table
S4.3 (satisfying Definition S2.21 in Section S2.3 of Supporting Text 2 )
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Table S4.1: Boolean functions for each node in cell i. The subscript for a node corresponds to
the cell index. For example if i = 2, then HHi−1 corresponds to the protein HH in cell i− 1 =
1. Each row (containing node states) represents a set of conditions (at time t) that lead to the
node taking state 1 at time t + 1. If none of these conditions are met, the node takes state 0 at
time t + 1

Node State Condition
at

t + 1

SLPi 1 i (mod 4) = 0 OR i (mod 4) = 3
0 Otherwise

wgi 1 CIRi = 0 AND CIAi = 1 AND SLPi = 1
1 CIRi = 0 AND CIAi = 1 AND wgi = 1
1 CIRi = 0 AND SLPi = 1 AND wgi = 1
0 Otherwise

WGi 1 wgi = 1
0 Otherwise

eni 1 SLPi = 0 AND (WGi−1 = 1 OR WGi+1 = 1)
0 Otherwise

ENi 1 eni = 1
0 Otherwise

hhi 1 CIRi = 0 AND ENi = 1
0 Otherwise

HHi 1 hhi = 1
0 Otherwise

ptci 1 CIRi = 0 AND ENi = 0 AND CIAi = 1
0 Otherwise

PTCi 1 ptci = 1
1 HHi−1 = 0 AND HHi+1 = 0 AND PTCi = 1
0 Otherwise

cii 1 ENi = 0
0 Otherwise

CIi 1 cii = 1
0 Otherwise

CIAi 1 CIi = 1 AND PTCi = 0
1 CIi = 1 AND (HHi−1 = 1 OR HHi+1 = 1)
1 CIi = 1 AND (hhi−1 = 1 OR hhi+1 = 1)
0 Otherwise

CIRi 1 CIi = 1 AND PTCi = 1 AND HHi−1 = 0 AND HHi+1 = 0 AND hhi−1 = 0 AND hhi+1 = 0
0 Otherwise
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Figure S4.1: Visual representation of the 10 attractors, for the Boolean network model of the
Drosophila segment polarity network. Each attractors is a fixed point (i.e. a single state) for
13× 4 = 52 nodes corresponding to 13 genes / proteins in 4 cells (1 to 4).
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Table S4.2: Table showing the occurrence sets for each of the 19 subsystems (in Fig.4 and Table
1 of the main text). For each subsystem Si, its occurrence set Ci is the set of attractors that
contain Si

Subsystem Occurrence set
SA CA = {A1, A2, A3, A4, A5, A6, A7, A8, A9, A10}
SB1 CB1 = {A1, A2, A4, A5, A6}
SB2 CB2 = {A3, A7, A8, A9, A10}
SC1 CC1 = {A2, A7, A8, A9, A10}
SC2 CC2 = {A1, A3, A4, A5, A6}
SD1 CD1 = {A7, A8}
SD2 CD2 = {A1, A2, A3, A4, A5, A6, A9, A10}
SE1 CE1 = {A4, A5}
SE2 CE2 = {A1, A2, A3, A6, A7, A8, A9, A10}
SF1 CF1 = {A3, A4, A6, A7, A8, A9, A10}
SF2 CF2 = {A1, A2, A5}
SG1 CG1 = {A1, A3, A4, A5, A6, A7, A9}
SG2 CG2 = {A2, A8, A10}
SH1 CH1 = {A7, A8, A9, A10}
SH2 CH2 = {A1, A2, A3, A4, A5, A6}
SI1 CI1 = {A1, A4, A5, A6}
SI2 CI2 = {A2, A3, A7, A8, A9, A10}
SJ1 CJ1 = {A3}
SJ2 CJ2 = {A1, A2, A4, A5, A6, A7, A8, A9, A10}

Table S4.3: Table showing hierarchical links between individual subsystems. For each subsystem,
Sx, the final column shows all of the subsystems, Sy, that it is hierarchically linked to. From
these links, the direct ones are shown in the second column.

Subsystem Direct Links All Hierarchical links
SA − −
SB2 SF1, SI2 SA, SE2, SF1, SI2

SB1 SH2, SJ2 SA, SD2, SH2, SJ2

SC2 SG1, SH2 SA, SD2, SG1, SH2

SC1 SI2, SJ2 SA, SE2, SI2, SJ2

SD2 SA SA

SD1 SH1 SA, SB2, SC1, SE2, SF1, SH1, SI2, SJ2

SE2 SA SA

SE1 SI1 SA, SB1, SC2, SD2, SG1, SH2, SI1, SJ2

SF2 SB1 SA, SB1, SD2, SH2, SJ2

SF1 SA SA

SG2 SC1 SA, SC1, SE2, SI2, SJ2

SG1 SA SA

SH2 SD2 SA, SD2

SH1 SB2, SC1 SA, SB2, SC1, SE2, SF1, SI2, SJ2

SI2 SE2 SA, SE2

SI1 SB1, SC2 SA, SB1, SC2, SD2, SG1, SH2, SJ2

SJ2 SA SA

SJ1 SB2, SC2 SA, SB2, SC2, SD2, SE2, SF1, SG1, SH2, SI2
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S4.3 Using subsystems to understand attractors

As can be seen in Figure 5 of the main text, it is possible to use 13 subsystems to provide a hier-
archical breakdown of the 10 attractors. Here, we demonstrate the main regulatory mechanisms
involving these subsystems. This then allows us to understand this breakdown.

In Figure 5 (of the main text), the attractors are split up into 4 main groups depending on the
occurrence of SB1, SB2, SC1 and SC2. We first analyse how the 4 subsystem collections S1 =
{SB1, SC1}, S2 = {SB2, SC2}, S3 = {SB1, SC2} and S4 = {SB2, SC1} are regulated. Table S4.4
and Table S4.5 then summarises these findings

The following analysis uses the results from Table 2 of the main text, which describes how each
subsystem is regulated. It must be noted here that, if a subsystem collection S can trigger an
individual subsystem Sy, then so can any collection S′ ⊃ S (when it occurs in the same attractor)

Case : S1 = {SB1, SC1}

From Table 2 of the main text, it is evident that the subsystem collection Sa = {SA, SB1, SC1}
will be sufficient to regulate SA, SB1 and SC1. Therefore SA, SB1 and SC1 form a regulatory unit
whereby, once they are fixed in place, they can maintain their own occurrence (in an attractor).

Moreover, as can be seen from Table 2 of the main text, Sa = {SA, SB1, SC1} is capable of
regulating SD2, SE2, SF2, SG2, SH2, SI2 and SJ2. Therefore, Sa = {SA, SB1, SC1} is sufficient
to control the remainder of the network. In this case, we get attractor A2.

Case : S2 = {SB2, SC2}

Both Sb1 = {SA, SB2, SC2, SF1, SG1} and Sb2 = {SA, SB2, SC2, SD2, SE2} form regulatory
units. i.e. once they are fixed in place, they can maintain their own occurrence (in an attractor).

Sb1 = {SA, SB2, SC2, SF1, SG1} is capable of regulating SD2, SE2, SH2, SI2 and SJ1. Therefore,
Sb1 = {SA, SB2, SC2, SF1, SG1} is sufficient to control the remainder of the network. In this
case, we get attractor A3.

If Sb2 is fixed in place, the system is forced to adopt subsystems SF1, SG1 and so we return to
Sb1 . This is because SB1, SD1 and SE1 can’t occur (since it is impossible to have both SB’s,
SD’s or SE ’s in the same attractor). Therefore SF2 / SG2 would require SH2 / SI2, which would
require SF1 / SG1 (but it is impossible to have both SF ’s or both SG’s in the same attractor).

Case : S3 = {SB1, SC2}

Sc = {SA, SB1, SC2, SD2} form a regulatory unit. i.e. once they are fixed in place, they can
maintain their own occurrence (in an attractor).

Sc = {SA, SB1, SC2, SD2} is then capable of regulating SG1, SH2, SI1 and SJ2. Therefore, Sc

= {SA, SB1, SC2, SD2} is sufficient to control the remainder of the network, except the nodes
associated with SE1, SE2, SF1, SF2. Extra regulatory events specify these 4 subsystems to form
the attractors A1, A4, A5 and A6.
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Case : S4 = {SB2, SC1}

Sd = {SA, SB2, SC1, SE2} form a regulatory unit. i.e. once they are fixed in place, they can
maintain their own occurrence (in an attractor).

Sd = {SA, SB2, SC1, SE2} is then capable of regulating SF1, SH1, SI2 and SJ2. Therefore, Sd

= {SA, SB2, SC1, SE2} is sufficient to control the remainder of the network, except the nodes
associated with SD1, SD2, SG1, SG2. Extra regulatory events specify these 4 subsystems to form
the attractors A7, A8, A9 and A10.

Table S4.4: For the 4 main sets of attractors, the subsystems in the second column are those
responsible for distinguishing them from the remaining sets. The last column shows the subsys-
tems necessary to regulate and control these key identifiers

Attractor cycles Key (group) identifiers Key regulators
Ca = {A2} {SB1, SC1} Sa = {SA, SB1, SC1}
Cb = {A3} {SB2, SC2} Sb = {SA, SB2, SC2, SF1, SG1}
Cc = {A1, A4, A5, A6} {SB1, SC2} Sc = {SA, SB1, SC2, SD2}
Cd = {A7, A8, A9, A10} {SB2, SC1} Sd = {SA, SB2, SC1, SE2}

Table S4.5: Subsystems that distinguish each attractor from its group in Table S4.4

Attractor cycle Key (individual) identifiers
A1 S = {SE2, SF2}
A2 n/a
A3 n/a
A4 S = {SE1, SF1}
A5 S = {SE1, SF2}
A6 S = {SE2, SF1}
A7 S = {SD1, SG1}
A8 S = {SD1, SG2}
A9 S = {SD2, SG1}
A10 S = {SD2, SG2}
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