
Appendix A

Determination of kTM

When w0 > wN, the fiber matrix in the TM is in tension, and kTM is assumed to be constant

and equal to kTM,N, the elastic constant at w = wN. kTM,N is estimated to be 7.35 × 10-3 cm

H2O/nm and is determined by requiring that the initial thickness of the TM, w0, in its

fully hydrated high filtration state be 500 nm when PL = 60 cm H2O. P0 counterbalances

the elastic restoring force and causes the fluid to drain out of region TM into the much

larger tissue space through the cleft and region E.

When w0 < wN, the fiber matrix in the TM is in compression, and kTM follows the non-

linear elastic law described by the theoretical predictions and experimental measurements

in refs. 1 and 2 for the compression of the thin subendothelial intimal matrix layer

beneath rat aortic endothelium due to pressure loading. Fig. 4 in ref. 2 shows the

relationship between its dimensionless thickness w as a function of PL. This relationship

is well described by a third-order polynomial, from which one obtains the elastic constant

kTM by evaluating dP/dw as a function of w. The compression pressure, P, in the

subendothelial arterial intima is -PL.

P = kI(w-wIN), [A1]

where wIN is the neutral position of the fiber matrix in the subendothelial intimal layer,

and kI is the elastic constant of the intimal layer under compression. kI is a function of (w-

wIN).
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where -Pmax is the maximum PL applied in ref. 2, 150 mm Hg. Therefore,
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where INk  is the elastic constant at wIN, and 
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Pd  evaluated at w = wIN. The

ratio of 
IN

I

k
k  as a function of 

_
w  is shown in Fig. A1. One notices that the increase in Ik

with 
_
w is non-linear.

Due to the similarity of the subendothelial matrix in the TM beneath the ECs in our

microvessels and that in the aortic intimal layer, we assume that the change in the elastic

constant of the TM under compression, kTM, follows the same relation as for the aortic

intimal layer, which is shown in Fig. 4 in ref. 2 and described in Eq. A4. Therefore, when

w<wN,
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where NTMk ,  is the elastic constant when w = wN, 7.35 × 10-3 cm H2O/nm, and 
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Pd  evaluated at w = wN. 
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 as a function of 
_
w  for the TM follows the

curve in Fig. A1. One finds that at the maximum compaction of the TM, w = 40 nm, or

_
w  = 0.6, 
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 is 2.7 and TMk  = 2.01 × 10-3 cm H2O/nm.

Fig. A1. Non-linear function for 
IN

I

k
k  as a function of

_
w  derived from Fig. 4 in ref. 2.
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