Lundbaek et al. **http://www.jgp.org/cgi/doi/10.1085/jgp.200308996**

To investigate the extent to which the changes in inactivation are coupled to changes in channel activation, we examined the kinetics of channel activation and inactivation at $+20$ mV.

METHODS

The time course of inactivation was fitted by a simple fitting procedure in pClamp 6.0 (Axon Instruments, Inc.). From the time point where the rate of current decay by visual inspection was judged to be maximum, the current $(I_{\text{Na}}(t))$ was fitted by the expression:

$$
I_{\text{Na}}(t) = I_1(\exp(-t/\tau_1)) + I_2(\exp(-t/\tau_2)) + I_3,
$$

where τ_1 and τ_2 are the inactivation time constants. I_1 and I_2 are the corresponding amplitudes, and I_3 signifies noninactivating current and noise. (The time course of inactivation was best fit by a sum of two exponential distributions; but the fit of the steady state inactivation was not improved when fitted as a three-state process [not depicted]). Following Sarkar, S.N., A. Adhikari, and S.K. Sikdar. 1995. *J. Physiol.* 488:633–645, the time course of current activation $(I_{\text{Na}}(t))$ was determined by transforming the measured currents as:

$$
I'_{\text{Na}}(t) = I_{\text{Na}}(t)/I_1(\exp(-t/\tau_1)) + I_2(\exp(-t/\tau_2) + I_3),
$$

using the values for I_1 , τ_1 , I_2 , τ_2 , and I_3 obtained from the fit to the inactivation time course. Subsequently, $I'_{\text{Na}}(t)$ was fitted with the expression:

$$
I'_{\text{Na}}(t) = 1 - \exp(-(t - k)/\tau_{a})^{3},
$$

Figure S1. The effects of TX100, β OG, and cholesterol concentration on the kinetic parameters of the time course of inactivation at $+20$ mV. (Top left) Effects of 30 M TX100 (∇) or 2.5 mM β OG (\triangle) on τ_1 and τ_2 . Control cells (). (Top right) Effects of 30 μ M TX100 (∇) or 2.5 mM β OG (\blacktriangle) on $I_1/(I_1 + I_2)$ and $I_2/(I_1 + I_2)$. Control cells (\bullet). Effects of cholesterol content on τ_1 and τ_2 (bottom left) and $I_1/(I_1 + I_2)$ and $I_2/(I_1 + I_2)$ (bottom right). Cholesterol depletion significantly altered τ_2 (P < 0.05). Mean \pm SEM, $n = 5, 6, 6$ (TX100, β OG, timed controls); 9, 8, 6 (cholesterol-enriched, cholesteroldepleted, timed controls for cholesterol experiments).

1 J. Gen. Physiol. © The Rockefeller University Press • 0022-1295 Volume 123 May 2004 http://www.jgp.org/cgi/doi/10.1085/jgp.200308996

where k is a phenomenological delay and τ_a is the activation time constant. (Initial analysis showed that an exponent of three gave a better fit than two or four [not depicted].) Neither k nor τ_a were significantly altered by changing the filter and sample frequency from 10 and 40 kHz ($n = 3$) to 50 and 200 kHz, respectively $(n = 3)$ $(P > 0.4$ and $P > 0.4$ [not depicted]).

RESULTS

Effects of OG, TX100, and Cholesterol on the Kinetics of Inactivation

In control cells, the time course of inactivation was best described by a double-exponential decay with a major fast component and a minor slow component: $\tau_1 = 0.20 \pm 0.01$ ms, $I_1/(I_1 + I_2) = 0.87 \pm 0.04$; $\tau_2 = 1.4$ \pm 0.16 ms, $I_2/(I_1 + I_2) = 0.13 \pm 0.04$ ms. The top panels in Fig. S1 show the effects of 30 μ M TX100 or 2.5 mM β OG on τ_1 , τ_2 , $I_1/(I_1 + I_2)$ and $I_2/(I_1 + I_2)$.

Neither $TX100$ nor β OG altered these parameters. The bottom panels in Fig. S1 show the effects of cholesterol on the inactivation kinetics; increasing the cell cholesterol content altered neither τ_1 nor τ_2 nor their relative contributions to the current. Decreasing the cholesterol content increased τ_1 from 0.17 ± 0.01 ms to 0.26 ± 0.01 ms with no change in the relative contribution of the fast component.

Effects of OG, TX100, and Cholesterol on the Kinetics of Activation

None of the experimental maneuvers altered the acti-

FIGURE S2. (A) Effects of 30 μ M TX100 (\blacktriangledown) or 2.5 mM β OG (\blacktriangle) on the time constant of activation, τ_a . Control cells (\bullet). (B) Effects of cholesterol content on τ_a . Every 5 s the cells were depolarized to $+20$ mV from a holding potential of -80 mV. Neither the addition of micelle nor manipulation of cholesterol content changed $\tau_{\rm a}$ relative to timed control experiments ($P > 0.05$). Separate control groups for experiments with micelle-forming compounds and experiments with cholesterol were done at similar times from membrane rupture as the experimental group. Experimental conditions as in Fig. S1.

vation time constant (τ_a) significantly, but the time course of activation is so fast that small changes in τ_a may have been masked by the time constant of the voltage clamp. Fig. S2 A shows the (lack of) effects of 30 μ M TX100 and 2.5 mM βOG on $(τ_a)$; Fig. S2 B shows the corresponding (lack of) effects of changes in cholesterol content.

Whereas neither the application of the micelle-compounds or cholesterol enrichment altered the phenomenological delay (*k*) relative to its value in timed control experiments, cholesterol-depletion decreased *k* from 0.17 ± 0.02 ms in the timed control experiments to 0.10 ± 0.01 ms (P < 0.05). We do not understand why.

In conclusion, none of the experimental maneuvers, except for the effect of cholesterol-depletion on τ_1 , have major effects on the kinetics of channel activation and inactivation at $+20$ mV. That said, we are not able to discern modest changes (decreases) in τ_a , which would tend to be obscured by the time course of the membrane charging. (The cholesterol-enrichment–induced changes in *V*act certainly indicates that channel activation is effected by the maneuver.)