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Abstract.-A comparison of the elution profiles of 18 aminoacyl-tRNA's from
Novikoff hepatoma with those from normal liver on a methylated albumin-
kieselguhr column revealed the occurrence of new species of tRNA for histidine,
tyrosine, and asparagine in the hepatoma. In addition, the hepatoma tRNA's
for arginine, isoleucine, lysine, methionine, serine, alanine, and tryptophan eluted
at a higher salt concentration than the corresponding tRNA's of normal liver.
The remaining eight amino acids did not show any significant differences in the
elution profiles.

Several investigators have observed a marked increase in the tRNA methyl-
ases of tumor tissues.' Moreover, the tRNA's of certain tumors have been
shown to contain higher levels of methylated bases than the tRNA's of the
corresponding normal tissue.2 These findings suggest that there may exist major
differences between the tRNA population of tumor and normal cells, as a conse-
quence of increased methylation or of other factors. The possible role of changes
in the abundance and specificity of individual tRNA's in cell regulation and dif-
ferentiation is now widely recognized.3 Changes in the chromatographic profiles
of tRNA have been demonstrated in bacteria after phage infection,4 during
sporulation, and following changes in the growth media.6 More recently,
changes in the tRNA profiles of mammalian cells have been observed after
Herpes virus infection,7 in hamster cells transformed with adenovirus 7 or SV40
virus,8 and during the feeding of hepatic chemical carcinogens.9' 10 In an ex-
tensive study of mammalian tissues, Taylor et al.8 found that the column elution
profiles of tRNA's from different organs were usually similar. However, the elu-
tion profiles of phenylalanyl-, seryl-, glycyl-, and tyrosyl-tRNA from Ehrlich
ascites tumor differed appreciably from those of the corresponding normal mouse
organ tRNA's. Yang and Novelli have also described differences in the seryl-
tRNA elution profiles between two mouse plasma cell tumors."

In this communication we report comparisons of the methylated albumin-
kieselguhr (MAK) column elution profiles of 18 aminoacyl-tRNA's of Novikoff
hepatoma with those of normal rat liver. We have found that this hepatoma
contains new tRNA peaks for histidine, tyrosine, and asparagine in addition to
those present in normal rat liver. Furthermore, the hepatoma tRNA's for argi-
nine, isoleucine, lysine, methionine, serine, and tryptophan were eluted at a
higher salt concentration than the corresponding tRNA's of normal liver.

Materials and Methods.-Novikoff hepatoma tissue was harvested from the peritoneum
of Holtzman rats 5 to 7 days after inoculation, immediately frozen in liquid nitrogen, and
stored at -20°. Transfer RNA was prepared from livers of normal Holtzman rats and
from Novikoff hepatoma tissue by slight modifications of the phenQl extraction procedure
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described by Wevers et al."2 The tRNA was stripped of endogenous amino acids by in-
cubation in 0.2 M glycine buffer (pH 10) for 1 hr at 37°. It was then precipitated by the
addition of 0.1 volume of 20% sodium acetate and 2 volumes of ethanol. The precipitated
tRNA was dissolved in 0.01 M Tris (pH 7.4), dialyzed overnight against the same buffer,
adjusted to 5-10 mg/ml, and stored at -70°.
A crude extract of aminoacyl-tRNA synthetases from normal liver or hepatoma tissue

was prepared as previously described.'3 The reaction mixture for the preparation of
aminoacyl-tRNA contained, in a total volume of 1.3 ml: 100 mmoles Tris buffer, pH 7.4;
5 /umoles MgCl2; 10 Amoles ATP; 10 ,Mc "4C amino acid (specific activity 52 to 394 me/
mmole) or 100 Mc 'H amino acid (specific activity 81 me to 7.9 c/mmole); a mixture of
19 other nonradioactive amino acids, 1 Mmole each; 23 Mmoles Tris (to neutralize the 19
amino acids); 1 mg tRNA; and 0.4 ml of enzyme. If "4C amino acid was used to charge
normal tRNA, then 'H amino acid was used to charge hepatoma tRNA, or vice versa.
With amino acids of very high specific activity, the corresponding unlabeled amino acid
was added to raise the total amount to at least 0.03 /mole. To enhance the charging
reactions for arginine, leucine, phenylalanine, proline, and tryptophan, 5 Mmoles of gluta-
thione were included. Glutathione was also added in the case of asparagine, glutamic
acid, isoleucine, and lysine, because it suppressed the background incorporation obtained
in the absence of tRNA. After incubation at 37° for 15 min, the reaction mixture was
deproteinized with phenol; the aminoacyl tRNA was precipitated from the aqueous layer
with 3 volumes of ethanol and was kept at -20° for 1 hr.
The tRNA's of hepatoma and of normal liver labeled with either 'H or 14C amino acids

were suspended in 1 ml of 0.2 M NaCl in 0.05 III sodium phosphate (pH 6.8) and were
applied to a MAK column.9 The column was then washed with 80 ml of the same buffer,
followed by a linear gradient of either 0.3 AM to 0.7 11 NaCl or 0.35 3l to 0.6 M NaCl (all
in 0.05 M sodium phosphate buffer, pH 6.8). Fractions of 2 ml were collected in a refrig-
erated fraction collector, and their absorbance at 260 miz was measured. The tRNA in
each fraction was precipitated with trichloroacetic acid. The precipitate was washed on
membrane filters and counted in a liquid scintillation spectrometer with a toluene phos-
phor.

Reverse-phase freon columns were prepared as described by Kelmers et al. 14 The elution
scheme is given in Figure 4.
Results.-Of the 18 aminoacyl-tRNA's investigated, histidine, tyrosine, and

asparagine manifested the most striking differences in tRNA profiles between
Novikoff hepatoma and normal liver (Fig. 1). In addition to the major peaks
present in normal liver, the tumor contained tRNA peaks for each of these amino
acids which eluted at higher salt concentrations from the MAK column than the
corresponding normal peaks. The changes observed with histidine, tyrosine, and
asparagine were also apparent when the 14CC- and 'H-labeling of the hepatoma
and liver tRNA's were reversed.
The presence of novel tRNA's for these three amino acids in hepatoma sug-

gested that altered aminoacyl-tRNA synthetases might also exist in the tumor.
This was explored by comparing the MAK elution profiles of histidyl- and tyro-
syl-tRNA's of normal liver and hepatoma charged with aminoacyl-tRNA synthe
tases prepared from the hepatoma. The results shown in Figure 1D, E exclude
this possibility for these two amino acids.
In addition to the marked changes in histidyl-, tyrosyl-, and asparaginyl-

tRNA's noted above, the elution profiles of seryl-, arginyl-, isoleucyl-, lysyl-,
methionyl-, and tryptophanyl-tRNA's of the hepatoma were generally broader
and eluted at somewhat higher salt concentration than the corresponding com-
ponents in normal liver (Fig. 2). It is of interest that both of the lysyl-tRNA's
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FIG. 1.-MAK-column elution profiles of aminoacyl-tRNA's of normal rat liver and Novikoff
hepatoma. Hepatoma enzymes were used to charge the tRNA's in D and E, and liver enzymes
were used for all other profiles. A gradient of 0.3-0.7 M NaCl was used in A, B, and D;
0.35-0.6 M NaCl was used in C and E. Typical optical density (A260) profile is shown in B.
For additional details see Materials and Methods.

present in normal liver (Fig. 2D and ref. 9) showed this type of change in the
hepatoma. Presumably the changes described in Figure 2 reflect secondary
modifications of tRNA species present in normal liver and/or the appearance of
novel tRNA species in the hepatoma (similar to those seen in Fig. 1), which are

not well resolved from the normal species by the MAK column.
The remaining nine amino acids that we examined did not reveal any signifi-

cant differences in the elution profiles between hepatoma and normal liver
tRNA's (Fig. 3), except for a slight shift in the elution profile of hepatoma
alanyl-tRNA.
Because of the limited resolution of the MAK column, it seemed important to

confirm some of these changes in another chromatographic system. Figure 4
indicates that when examined on the reverse-phase freon column of Kelmers
et al.,14 tyrosyl-tRNA from the hepatoma contained a component which over-
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FiG. 2.-Elution profiles of serine, arginine, isoleucine, lysine, methionine, and tryptophan
specific tRNA's of hepatoma and normal rat liver. Liver enzymes were used to charge all
tRNA's. A gradient of 0.35-0.6 M NaCl was used, except for F, in which this gradient was
0.35-1.0M NaCl.
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FIG. 3.-MAK-column elution profiles of other amino acid specific tRNA's of rat liver and

hepatoma. A gradient of 0.35-0.6 M NaCl was used, except for E, in which the gradient
was 0.2-0.7 M.

lapped the tyrosyl-tRNA of normal liver, as well as a second component which
eluted distinctly later than the normal tyrosyl tRNA. This change in hepatoma
tyrosyl-tRNA elution profile is qualitatively similar to that found in the MAK
column. It is of interest that a qualitatively similar change in tyrosyl-tRNA
has been described by Taylor et al.8 in Ehrlich ascites tumor cells, in HeLa cells,
in adeno-7 virus tramfoued cells, and in fibroblasts-but not in other tissues.
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Discussion.-The results presented here clearly indicate the occurrence in a
hepatoma of new species of tRNA specific for histidine, tyrosine, and asparagine,
and a shift in the elution profiles of six other amino acid-specific tRNA's. These
changes in the tRNA population of a tumor may be due either to the synthesis of
new primary sequences, or to secondary modifications of pre-existing species of
tRNA's, or to a combination of these factors. Elution patterns of nucleic acids
from MAK columns are a function of their size, their GC content and primary
sequence, and their secondary structure.1 The new species of tRNA's for histi-
dine, tyrosine, and asparagine found in the tumor are eluted at a higher salt
concentration than the corresponding tRNA's of normal rat liver; the shift in
elution profiles of tRNA's for six other amino acids is also in the same direction.
Since the in vitro tRNA methylase activity of Novikoff hepatoma is known to be
about five times higher than that of normal liver,' it is possible that preferential
methylation in vivo of specific tRNA's underlies the changes in elution profiles
seen in the present study. Consistent with this explanation is the fact that
methyl-deficient E. coli phenylalanyl-tRNA elutes from the MAK column at a
lower salt concentration than the normally methylated species. 16 Further studies
are required to determine whether increased methylation is the sole explanation
for the changes seen in the present study or whether other factors are also
involved.
In assessing the biological significance of these findings, it must be stressed

that the Novikoff hepatoma is a relatively undifferentiated tumor which has
been maintained by serial transplantation for many years. It will be of interest,
therefore, to determine whether or not changes in the tRNA population also
occur in "minimal deviation hepatomas." These studies are now in progress.
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