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Histone synthesis and DNA replication (S phase) begin simultaneously in the
HeLa cell life cycle. While these macromolecules are made, the cytoplasm contains
a class of small polyribosomes which are absent in postmitotic (G,) cells and which
disappear following exposure to cytosine arabinoside, an effective inhibitor of both
DNA and histone synthesis. These polyribosomes incorporate a relative excess of
lysine over tryptophan into their nascent polypeptides, supporting the hypothesis
that they are the cytoplasmic site of histone synthesis.' The present report de-
scribes: (a) the isolation of both histone-like polypeptides and 7-9S RNA
species from these polyribosomes, and (b) the relationship between this 7-9S RNA
and histone synthesis with specific reference to the possibility that it is messenger
RNA.2

Materials and Methods.-IMost of the techniques used in the present work have
been described in previous publications. These include maintenance of HeLa
S3 cells in suspension culture,3 preparation of cytoplasmic polyribosomes with the
detergent Nonidet P40 (NP40),4 analysis of polyribosomes in sucrose gradients,5
and extraction of histones and their separation into different electrophoretic groups
on acrylamide gels.'

Cell synchronization: Although cells were usually synchronized by selective
detachment of mitotic cells from monolayers,3 such populations become asynchro-
nous late in the DNA-synthetic (S) and premitotic (G2) phases of the cell life cycle.
For studies at those times, cells were synchronized by treatment in suspension with
2 mM thymidine6 for 16 hours, resuspension in fresh medium for 8 hours, followed
by a second exposure to the drug for 16 hours. After a second resuspension in
fresh medium, 90 per cent of the cells divided within 9 to 12 hours.

Identification of polyribosome-associated polypeptides: To label nascent poly-
peptides with nearly equivalent amounts of radioactivity from each amino acid,
108 S-phase cells, resuspended in 10 ml of tryptophan, lysine, and serum-free
growth medium,3 were incubated for one minute with 50,c C'4-lysine and 500 ,uc H3-
tryptophan. Cytoplasmic extracts were prepared with NP40,4 centrifuged through
sucrose gradients, and analyzed for optical density at 260 mu and for acid-precipi-
table radioactivity.3 Appropriate fractions from the gradients were pooled, and
polyribosomes were pelleted at 104,000 X g for one hour. Nascent polypeptides
were released by treatment with 100 Mg/ml of ribonuclease at 37°C .7 The samples
were dissolved in 1% sodium dodecyl sulfate (SDS), 0.5 M urea, 0.1% 2-mercapto-
ethanol (ME); dialyzed against 0.1% SDS, 0.1% ME in 0.01 11 phosphate at pH
7.4; and electrophoresed On 7.5% acrylamide gels.' G,- and S-phase cells pre-
treated for one hour with 40 ug/ml cytosine arabinoside were similarly processed.

Analysis of rapidly labeled, polyribosom.e-associated RNA: Synchronized cells at
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specific stages of the cell life cycle were concentrated to 4 X 106/ml and 25 ml were
incubated with 300 Ac uridine-6-H' (9.3 c/mMI) for 30 minutes at 370C. Cyto-
plasmic extracts were centrifuged through sucrose gradients, appropriate fractions
pooled, and RNA was released with 1% SDS-0.1% ME for 30 minutes at 370C.
The RNA was precipitated with two volumes of ethanol at -200C for 24 hours,
pelleted by centrifugation, and resuspended in 0.01 M phosphate buffer (pH 7.4)
containing 1% SDS, 0.1% ME, and 2 X 10-3 M EDTA. Samples were electro-
phoresed for 16 hours at 50 volts on 2.4% acrylamide gels containing 2 X 10-' 31
EDTA.8

In some experiments, cytosine arabinoside (40 jig/ml) or actinomycin D (5 jtg/ml)
was added after the pulse and aliquots were removed subsequently for gel electro-
phoresis. Radioactive precursors were purchased from New England Nuclear,
Boston, Mass. Actinomycin D was the gift of Merck, Sharp and Dohme; Noni-
det P-40 was the gift of the Shell Chemical Co.

Results.-Analysis of HeLa cell histones on SDS-acrylamide gels resolves two
major groups of histone polypeptides which we have arbitrarily termed C and A.'
When compared to histone fractions from HeLa cells prepared according to the
method of Johns and Butler,9 group C, a single peak, coelectrophoreses with the
lysine-rich (fi) fraction (mol wt calculated'0 as approx. 20,000), while group A, a mul-
tiple peak, coelectrophoreses with the slightly lysine-rich (f2<,f2b) and arginine-rich
(f3) fractions of Johns and Butler (mol wt approx. 13,000).10 None of these frac-
tions contain tryptophan."' 12 When synchronized cells, making DNA and his-
tones in S phase, were pulse-labeled with H'-tryptophan and C14-lysine, only the
small polyribosomes showed the high ratio of lysine to tryptophan incorporation
characteristic of histones (Fig. 1, top panel). This and other data' suggested that
small polyribosomes were the site of histone synthesis. More direct evidence has
now been obtained by acrylamide gel analysis of nascent polypeptides released from
polyribosomes (Fig. 1, panels A-C). All sizes of polypeptides released from large
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(panel A) and medium-sized (panel B) polyribosomes show a uniform ratio of ly-
sine: tryptophan incorporation, essentially 1: 1 under the conditions of these experi-
ments (cf. Materials and Methods). In contrast, polypeptides released from small
polyribosomes show a significantly increased ratio of lysine to tryptophan incorpora-
tion in two diffuse peaks, the migration of which approximates that of histones ex-
tracted from cell nuclei and simultaneously analyzed on marker gels (Fig. 1, panel
C). Following treatment with cytosine arabinoside only these lysine-rich, trypto-
phan-poor nascent polypeptides disappear, consistent with a selective inhibition of
histone synthesis. These findings, and the absence of comparable differences in
peptides isolated from G1 cells, offer additional support for the hypothesis that small
polyribosomes of S-phase cells are the site of histone synthesis.

Rapidly labeled, polyribosore-associated RNA: Exposure of S-phase HeLa cells
to cytosine arabinoside not only inhibits DNA and histone synthesis but also causes
a significant decrease in the amount of small polyribosomes (Fig. 2, top panel).
When rapidly labeled, polyribosome-associated RNA is extracted from treated and
untreated cells and analyzed on acrylamide gels (Fig. 2, panels A-C), a drug effect
is seen only in the RNA isolated from small polyribosomes (panel B). All samples
contain heterogeneous 45-12S and 5-4S peaks; the small polyribosomes from cells
in S contain, in addition, a rapidly labeled and sharply defined peak migrating at
about 7-9S which is absent in both treated S cells and G1 cells (Fig. 2, bottom panel).
These small polyribosomes are disrupted on treatment with EDTA and the 7-9S
RNA disappears with them from the 120-200S area of the gradient. The sedi-
mentation value of 7-9S for this RNA has been confirmed in sucrose gradients.
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When electrophoresed onl 5% (instead of 2.4%) acrylamiide gels it resolves into 9S
and 7S peaks, indicating the presence of at least two RNA species. These RNA's
are sensitive to RNase, but not DNase, and do not incorporate H3-thymidine.
This material is not an RNA-protein complex since its rate of migration is not
affected by prior digestion with pronase and it is not labeled with radioactive amino
acids. Since these 7-9S RNA species are absent from the single ribosome area of
the gradient (Fig. 2, panel C), they are not low-molecular-weight contaminants from
the top of the gradient. Finally, small "histone" polyribosomes and 7-9S RNA
can be quantitatively recovered from cytoplasmic extracts prepared by osmotic
shock and Dounce homogenization5 without the addition of sodium desoxycholate,
indicating that neither is membrane-associated. These characteristics, together
with the selective sensitivity of both 7-9S RNA and "histone" polyribosomes to
cytosine arabinoside treatment, suggest that this RNA may be histone messenger.
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FIG. 3.-Polyribosome profiles, associated rapidly labeled RNA, and synthesis of
histones at various stages of the DNA synthetic (S) phase. At the indicated stage
in the S phase of the cell life cycle, 108 thymidine synchronized cells were pulsed with
H3-uridine for 30 mmn. Polyribosomes were analyzed in sucrose gradients as described
for Fig. 1 and the uridine radioactivity in RNA extracted from the small polyribo-
somes (shaded area, column 1) was analyzed on acrylamide gels (column 2) as de-
scribed in the legend of Fig. 2. Simultaneously, 2 X 101 cells were pulsed with 5 j.Lc
C'4-lySine for 20 mmn, histones were extracted from the nuclei with 0.1 N HCl and
zsnalyzed on acrylamide gels (column 3) as described in Materials and Methods.
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Temporal relationships of polysomal 7-9S RNA, DNA replication, and histone
synthesis: Cells obtained by thymidine synchronization were analyzed during
the S and G2 phases of the cell life cycle for small polyribosomes, associated 7-9S
RNA, and histone synthesis. Cells selectively detached in mitosis were used for
similar experiments during the GI phase and the transition to S. The results of
these experiments are shown in part in Figure 3 and are summarized in Figure 4.
The synthesis of group C and A histones begins at the onset of DNA replication
(taken as time 0 in Fig. 3) and simultaneously newly synthesized 7-9S RNA be-
comes associated with small polyribosomes. The optical density of the histone
polyribosome region (shaded area, Fig. 3, column 1) increases to a maximum four
hours into S, as do the rates of DNA and histone synthesis (Fig. 4). The amount of
newly synthesized, polyribosome-associated 7-9S RNA is maximal two hours earlier
and has declined about 20 per cent when histone synthesis has peaked. It should
be emphasized that the electropherograms (Fig. 3, column 2) represent only RNA
made and associated with polyribosomes during a 30-minute uridine pulse, and not
the total amount of RNA present. The actual quantity of 7-9S RNA probably
reached a maximum at the same time as histone polyribosomes and histone synthe-
sis. By seven hours into S, newly synthesized 7-9S RNA is no longer detectable on
polyribosomes, but histone synthesis remains measurable at a rapidly declining rate
for about two additional hours. The optical density of the histone polyribosome
area declines in parallel with histone synthesis.
Half life of 7-9S RNA on polyribosomes as measured by the effects of actinomycin D

and cytosine arabinoside: To estimate the time that 7-9S RNA remains associated
with polyribosomes, cells 21/2 hours into S were pulse-labeled with H3-uridine for
30 minutes and treated with actinomycin D to inhibit further RNA synthesis (Fig.
5A). The half life of labeled 7-9S RNA on polyribosomes is one hour, in marked
contrast to other heterogenous, rapidly labeled and polyribosome-associated RNA
species which have a half life of three hours in actinomycin D-treated cells. The
synthesis of group A histones and DNA decrease in parallel with the amount of

-EDNA ACTINOMYCIN D CYTOSINE ARABINOSIDE
@ C HISTONES 10 DNA SYNTHESIS 100

0L---O A HISTONES _ -00 SYNTHESIS OF A HISTONES
NEWLY SYNTHESISED 8S RNA ON SMALL POLYRIBOSOMES 0S ENA ON SMALL POLYIISOM *ES

0[-' 6 A 60X B

/ t o\ N' \0230 56 NO ZE11A6

HOURS AFTER MITOSIS C -20a-, 20

FIG. 4.-Rates of DNA replication I I I I
group A and C histone synthesis, and 0 20 40 60 80 100 120 20 40 60
the amount of newly synthesized MINUTES
7-9S RNA (called 8S in the figure)
associated with polyribosomes FIG. 5.-(A) Effects of 5 ,jg/ml actinomycin D on (1)
throughout the HeLa cell life cycle. prelabeled 7-9S (called 8S in the figure) polyribosomal
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with 20-min C14-lysine pulses. 7-9S terials and Methods.
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in the legend of Fig. 2 and in Materials 7-9S polysomal RNA, the rate of DNA replication, and
and Methods. synthesis of the A group of histones.
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7-9S RNA. Under the same conditions, synthesis of group C histones (not shown
in Fig. 5) has a half life of about 90 minutes.

Cytosine arabinoside (Fig. 5B) induces its effects more rapidly than does actino-
mycin D. The synthesis of DNA, A-group histones, C-group histones, and the
amount of labeled 7-9S RNA associated with polyribosomes all fall to background
levels within 30 minutes. All other RNA and protein species appear unaffected
under these experimental conditions.

Discussion and Summary.-Several properties of the polysomal 7-9S RNA here
described suggest that it is messenger RNA for group A histone polypeptides. (a)
It associates with polyribosomes more rapidly than ribosomal RNA, and mainte-
nance of this association is Mg++-dependent. (b) It is associated only with poly-
ribosomes of the size responsible for histone synthesis, and only when histones are
made, i.e., during the DNA-synthetic phase (S) of the cell life cycle. (c) It
rapidly and selectively disappears from polyribosomes when histone synthesis is
inhibited with cytosine arabinoside. (d) Its one-hour half life on polyribosomes
after treatment with actinomycin D is the same as the half life of group A histone
synthesis under the same conditions. (e) The size of the smallest of the RNA
peaks is consistent with that expected of messenger RNA for the polypeptides of
group A histones, which have molecular weights of about 13,000.
The kinetics of 7-9S RNA synthesis as measured by its association with poly-

ribosomes imply that the HeLa cell controls synthesis of group A histone polypep-
tides principally at the level of messenger transcription. Thus, at the transition of
cells from G1 to S, newly synthesized 7-9S RNA becomes associated with polyribo-
somes and histone synthesis begins. Two hours before it ends, messenger transcrip-
tion apparently ceases and the remaining messenger decays with a one-hour half
life, effectively accounting for the absence of histone synthesis in the subsequent
mitotic and G1 phases of the cell life cycle.

After treatment with cytosine arabinoside, histone synthesis and the amount of
7-9S RNA associated with polyribosomes decline about four times faster than after
exposure to actinomycin D. This suggests that there may also be a translational
control of histone synthesis, conceivably functioning as a fine adjustment of the
amount of histones made during chromosomal replication.-3
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