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Model Testing. We tested the algorithm on simulated networks generated with a range of 

values for parameters P+, P−, Pi and Psi. For each parameter set, we initially create an 

ancestral network of N nodes. At each of the N possible self-interaction sites, we create a 

link with probability Psi. Between each of the ½N(N−1) pairs of proteins, we create an 

interaction with probability Pi. We simulate the WGD by duplicating the network in its 

entirety. If two proteins interacted with each other prior to the duplication, then all four 

pairs of their duplicates interact with each other in the duplicated network. If a protein 

was self-interacting, then its duplicates interact with each other and with themselves in 

the duplicated network. 

 

  We then simulate the divergence period. Every interaction that is present in the network 

is removed with probability P−, and every interaction that is absent is created with 

probability P+. The final network is a function of Pi and Psi (which determine the 

architecture of the pre-duplication graph) and P+ and P− (which describe the period of 

divergence).  

 

  We test the algorithm by checking whether it is able to determine the four parameters 

used in the construction when given a simulated network as its input. The algorithm 

successfully reconstructed Pi, Psi, P+, and P− for a wide range of parameter values. An 

example of the algorithm’s performance on a simulated network is illustrated in SI Table 

2. 

Error Estimation. We simulate networks using the S. cerevisiae best-fit parameters and 

the method described above. We then use the fitting algorithm described in the text to 

extract those parameters from the simulated networks. Because of the finite network size, 

the best fit values of Pi, Psi, P+, and P- in each network realization is somewhat different 

than the input values. We estimate the uncertainty in our S. cerevisiae fit parameters to be 

the standard deviation associated with the simulated network fits. 

 



Outlying Motifs. While in general the model is quite good in fitting the various motifs, 

there are some that lie outside the expected range. Particularly in the case of rare motifs, 

there is the possibility that the true frequency of the motif is masked by noise inherent in 

the proteomic data. Given enough statistical power, outlying motifs can suggest actual 

differences between the evolutionary process and our simple model. Such deviation from 

our model can offer interesting insight into the evolutionary process. Where the motifs 

are more frequent then expected it is possible that the motif is functional, and selectively 

preserved in the proteome (1). Similarly in the case of under-represented motifs, if the 

structure is for some reason unfavorable for the organism, those motifs will tend to 

disappear more rapidly than expected. 

  As an illustration, we point out the underrepresented motif,  . We denote the white 

nodes as A1 and A2, and the grey as B1 and B2. While it is possible that the present 

interactions are de novo, it is far more likely that they descend from an ancestral 

interaction between the parental proteins, A and B. Based on our fit, we expect about 24 

of these motifs, yet we only observe 5. Note that in this particular motif, protein A1 has 

retained interactions with both daughters of the other pair (B1 and B2), and presumably 

maintains the ancestral function with respect to the B pair. A2 however, has lost its 

ancestral functionality with respect to B, and its post-duplication functionality with 

respect to B1 and B2. A possible explanation could be that these motifs tend to delete the 

protein that has lost its edges, and hence do not survive as ohnolog pair motifs (i.e.  

 ). 

 

Dose Dependent Model. We suggest a simple dose-dependent model consistent with the 

possibility that duplicated self-interacting proteins are selectively preserved (2). In the 

case of a self-interacting protein A duplicating into A1 and A2, there will be three possible 

protein complexes: A1A1, A2A2 and A1A2 in a ratio of 1:1:2. If either gene develops a 

deleterious mutation that renders the complex non-functional, the total number of 

functional complexes will be reduced by a factor of 4, leaving only half the number 

present prior to duplication (SI Fig. 5). This mechanism will exert selective pressure on 

both ohnologs to keep them from acquiring deleterious mutations (3). This pressure could 



allow one of the ohnologs to acquire a mutation favoring the heterodimer, in which case 

the self-interacting nature of the proteins may eventually be lost. 

 

  This generation of paralogous interacting genes via the duplication of self-interacting 

proteins can contribute to the evolutionary formation of protein complexes (4). For 

example, the ohnologs PIP2 and OAF1 are transcription factors of the Zn2Cys6 zinc 

finger family of proteins. They are a WGD pair that interact with each other in the 

modern proteome, but do not interact with themselves (5). They presumably descend 

from an ancestrally self-interacting protein, from the WGD with a paralogous interaction, 

and subsequently lost their self-interactions. In broader contexts, hemoglobin α and β 

make up a duplicate pair. The α and β proteins interact with each other and with 

themselves to form the quaternary hemoglobin molecule (2 α and 2 β). Photosystem I 

could be yet another example of this phenomenon (6). The history of the hemoglobin 

complex and of photosystem I suggest that the preferential maintenance of ancestrally 

self-interacting duplicates may take place in other species as well (7). 

 

Expanded Model. We presented three possible mechanisms to explain the discrepancy 

between the estimated ancestral value of Psi, and the modern one: first, that the ancestral 

network had a higher Psi than today's network (mechanism 1), second, the ancestral Psi 

was roughly the same as the modern one, but the probabilities of adding or deleting 

interactions between ohnologs differ from the background rate of adding and deleting 

interactions (mechanism 2), and third, that the ancestrally self-interacting proteins were 

selectively preserved in duplicate to the modern day (mechanism 3) (8). The model could 

be naturally extended to account for these different possible mechanisms. 

 

  Mechanism 2 depends upon a difference existing between the probability of 

adding/deleting an edge between ohnologs (P+/-,ohnolog), and the probability of adding an 

edge between non-ohnologous proteins (P+/-,non-ohnologs). Thus, by replacing P+/- with P+/-

,ohnolog, and P+/-,non-ohnolog,, we can examine these differences. 

 

  Mechanism 1 and Mechanism 3 can be resolved by introducing a parameter 



distinguishing the retention probabilities of pairs descending from ancestrally self-

interacting proteins (Rsi) and from ancestrally non-self-interacting proteins (R¬si). When 

these retention probabilities are added, the Psi value that remains in the model represents 

the true self-interaction probability of the ancestral network, as opposed to the self-

interaction probability of the genes whose duplicates have survived.  

 

  We find that while the extended model cannot fully resolve the values of the added 

parameters, it provides analytical relationships between them. The complete system with 

the added parameters completely decouples into two separate subsystems, one describing 

the interactions within pairs of ohnologs (‘ohnolog-interactions’), and one describing all 

other interactions (‘ordinary-interactions’). This is because the equations describing the 

‘ohnolog-interactions’ no longer depend on Pi, P+,non-ohnolog, or P-,non-ohnolog. Thus all of the 

information the network contains about ‘ordinary interactions’ no longer contributes to 

the solution of the ‘ohnolog-interaction’ equations and vise versa. The equations 

describing the ‘ohnolog-interactions’ are therefore underdetermined. This subsystem is: 
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where Pohno is the observed probability of ohnolog interaction in the modern network, and 

Pdup is the observed probability of a gene being a member of an ohnologous pair. 

 

Eq. 2 sums the frequencies of each kind of ancestral protein (self-interacting and non-

self-interacting) multiplied by the retention probabilities of each type. The result is the 

observable frequency of WGD pairs in the modern network (Pdup). Eq. 3 sums the 

probabilities of interacting ohnologs resulting from the two types of ancestral proteins. 

This sum, normalized by the frequency of duplicates in the network, yields the 

observable frequency of interacting ohnologs (Pohno). Note that the only relevant data to 

Pohno are the probabilities of various temporal paths to interacting ohnologs. 

 



  The resulting decoupled subsystem describing the ‘ohnolog-interactions’ has 2 

equations and 5 unknowns, and cannot be solved uniquely. Additional types of data may 

be used in the future together with these expressions to solve for these new parameter 

values, thereby distinguishing between the three possible mechanistic explanations. 
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