Server-based Approach to Web Visualization of Integrated 3-D Medical
Image Data

Andrew V. Poliakov, Ph.D., Evan Albright, M.S, David Corina Ph.D., George Ojemann, M.D.,
Richard F. Martin, Ph.D. and James F. Brinkley, M.D., Ph.D.
Structural Informatics Group, Department of Biological Structure
University of Washington, Seattle, Washington USA

ABSTRACT

Although computer processing power and network
bandwidth are rapidly increasing, the average
desktop is still not able to rapidly process large
datasets such as 3-D medical image volumes. We
have therefore developed a server side approach to
this problem, in which a high performance graphics
server accepts commands from web clients to load,
process and render 3-D image volumes and models.
The renderings are saved as 2-D snapshots on the
server, where they are uploaded and displayed on the
client. User interactions with the graphic interface
on the client side are translated into additional
commands to manipulate the 3-D scene, after which
the server re-renders the scene and sends a new
image to the client. Example forms-based and Java-
based clients are described for a brain mapping
application, but the techniques should be applicable
to multiple domains where 3-D medical image
visualization is of interest.

INTRODUCTION

The Web has made it possible for the average user to
access unprecedented amounts of information.
Initially, most of this information was in the form of
static html pages. Increasingly, the information is
dynamically generated using web technologies like
common gateway interface (CGI), Java applets,
Active Server Pages, Java Server Pages, etc., that
connect to backend servers or legacy applications.
This approach has lead to the emergence of the
application service provider (ASP) model, in which
computationally demanding or high bandwidth
operations are performed on a server, and the results
are presented to the user via the Web. Such an
approach is becoming increasingly commercially
viable because the client need not worry about the
details of the complex operations performed on the
server.

A prime candidate for the ASP approach is 3-D
medical image visualization and analysis. Although
2-D images are commonly sent to the client, where
they are either displayed directly or processed
further, 3-D image volumes are generally too large to
be sent in a reasonable time over current networks,

1067—5027/01/$5.00 © 2001 AMIA, Inc.

533

and none but the highest level client machines have
the computational power to process and visualize 3-D
image datasets. Even with high performance client
hardware the application programs needed to display
and render 3-D datasets are not easily installed or run
by the average user. For special-purpose 3-D image
data the difficulties are even greater because much of
the software is only available in research labs and is
not yet “industrial strength”.

In this paper we describe an example ASP approach
to 3-D medical image data visualization over the
Web, in which computationally intensive operations
such as 3-D rendering are done at a server, and 2-D
image snapshots of the renderings are sent to the
client. A remote user visualizes and manipulates the
3-D data using either a standard forms-based
interface or a Java applet. The techniques are
described in terms of a system for mapping and
visualizing language areas in the brain, but they
should be applicable to other areas such as
teleradiology, distance learning, or surgical planning.

LANGUAGE MAPPING IN THE BRAIN

As a part of the Human Brain Project, the Structural
Informatics Group (SIG) at the University of
Washington is developing software tools for
processing, integrating and visualizing multimodality
data for language mapping. Prior to surgery for
intractable epilepsy, structural magnetic resonance
(MRI) and functional magnetic resonance (fMRI)
image volumes are collected. The structural MRI
image volumes provide an anatomical substrate on
which to map functional information. The fMRI
image volumes depict areas of the brain that are
activated during language tasks. During surgery a
procedure called cortical stimulation mapping (CSM)
is used to locate areas of language on the cortex that
need to be avoided during surgery. A goal of the
mapping project is to integrate and visualize these
diverse forms of language data in order to better
understand language organization in the brain. The
epilepsy cases present a unique opportunity because
the CSM data provide a “gold standard” against
which the fMRI and other non-invasive methods can
be compared.

The software tools we are developing run on high-
end Linux or Silicon Graphics computers in SIG, and
allow 1) reconstruction of 3-D models of the cortical
surface, veins and arteries from MRI scans, ii)
reconstruction of the 3-D location of the CSM sites
with respect to the 3-D models, iii) integration of
fMRI image volumes with the 3-D structural models,
iv) quantitative correlation between fMRI and CSM
language areas, and v) visualization of the integrated
data. These capabilities are implemented in two
stand-alone applications, the Brain Mapper'and the
Brain Visualizer’.

These stand-alone applications are limited to
computer facilities within SIG. Although they can be
accessed remotely, our collaborators found it
inconvenient to use them, in part due to the sluggish
response that an application might have on a remote
X server. Running the application locally requires
high performance hardware and massive data storage,
and involves maintaining and updating the software.
These reasons, plus the fact that the tools were
originally designed with the ability to function as
remote servers, created an opportunity to develop a
web-based approach.

SYSTEM ARCHITECTURE

OGI Script Java Applet
L_%’)

: !

3-DImage
Volumes

Figure 1.

Figure 1 shows the architecture of our server-side
visualization approach. The graphics server accepts
Lisp-like commands over a dedicated port that is
accessed by a Java or CGI client program. The
server loads integrated fMRI and MRI 3-D image
volumes, 3-D models, and stimulation sites. In
response to Lisp-like commands such as (take-
snapshot) the server renders the resulting 3-D scenes,
saving the rendered images as 2-D snapshots that are
accessed by the client over the web. User interaction

534

at the web browser or Java applet causes additional
Lisp-like commands to be sent to the server, which
processes those commands, renders the image, and
returns a new snapshot to the client The following
sections describe this process in more detail.

Server side

The graphics server, as well as many of our other
visualization and analysis tools, utilizes Skandha4 --
a general-purpose in-house graphics toolkit’.
Skandha4 combines a subset of Common Lisp --
useful for fast interactive programming and
prototyping -- with the ability to add pre-compiled C-
based primitive functions that significantly accelerate
computationally demanding routines. = Skandha4
supports 3-D graphics, with drivers for IRIX GL and
OpenGL available. It includes a module for
processing and storing MRI data, with support for the
Montreal MINC 3-D image volume file format*’,
which is becoming a standard for the Human Brain
Project. Skandha4 also includes a GUI module that
provides a local event-driven interface. All the
functionality of Skandha4, including the GUI
module, is accessible via Lisp functions. By
separating the processing functions from the GUI
functions it is possible to create different front-ends
for the same functionality. For example, the
standalone Brain Mapper and Brain Visualizer
applications were created by combining functions in
the GUI module with those in the image processing
and rendering modules. The web applications
described in this paper were created by calling these
same functions remotely.

Skandha4 is designed to operate in either server
mode or standalone mode. A connecting client needs
to implement a simple ASCII networking protocol’ to
access all the functionality of the Skandha4 modules.
In server mode, Skandha4 implements a pre-forking
model, i.e. the server forks several subprocesses in
advance, so that each of them can handle a new
client. This, plus the ability to perform off-screen
rendering, makes Skandha4 well suited as a backend
graphics server to support interactive visualization on
the web.

In addition to the Brain Browser web interface
described in this paper, Skandha4 in server mode is
also used for intelligent 3-D scene generation by an
educational application that dynamically constructs
3-D anatomical scenes from 3-D model primitives®.
The server functionality for the 3-D scene generator
is achieved simply by starting the server process with
a different set of Lisp files than those used for the
Brain Browser.

Client side

Forms-based CGI web interfaces. Figure 2 shows
an example web interface we developed to present
stimulation sites from multiple patients in a common
frame of reference. Although simple as far as web
interfaces go, this CGI script serves the useful
purpose of giving our collaborators remote access to
the data and computational tools, which otherwise
they would find hard to use. The interface is
implemented as a perl script that makes use of the
perl CGI module. It allows the user to select a group
of patients for which stimulation sites can be
visualized after being transformed into Talairach
space’. To provide a visual reference for the site
locations, we used a 3-D model derived from the
average of 305 brains of normal patients’. The sites
identified as language-essential were distinguished by
size and color. Rotating and zooming was
implemented to let the user adjust the rendering of
the 3-D scene. Performance of this web interface
was improved by preloading the average brain model
into the graphics server.

Java-based applet. Java provides a much more
flexible programming environment than forms-based
CGI for web-based applications, at the cost of slower
startup and potential incompatibility with the web
browser. Our Java-based web interface is
implemented in Java 1.1 (supported by both Netscape
4.x and IE 5.x), with the Swing GUL. This “Brain
Browser” applet provides nearly the same
functionality as that of our stand-alone Brain
Visualizer application’, which was developed in
order to visualize integrated data from structural
MR, functional MRI and surgical stimulation sites.

Figure 3 is a screen shot of the entire desktop with
the running applet. The web page that launches the
applet is in the lower left, the applet itself is in the
upper right, and the Java console is in the lower right.
The applet is configured to echo in the Java console
all the commands sent to the server.

When started, the applet connects to the server and
lets the user choose a patient. The server loads MRI
3-D image volumes for anatomy, veins and arteries,
and the corresponding 3-D models. The user can
then control the server using the GUI shown on the
right-hand side of the applet. User interaction with
the GUI is translated into a sequence of commands
that are sent to the server. For example, in figure 3
the user has already loaded the CSM sites (small
round spheres) by clicking a button that sends the
(xsr-load-map-sites) command to the server, as
shown in the Java console window. The user has
loaded one of the fMRI volumes, which is used to
brighten the color of the 3-D brain model in areas of

535

fMRI activation, and has adjusted the Axial, Sagittal
and Coronal sliders shown in figure 3 These sliders
select three cutting planes, which are sent to the
server to mask out a segment of the 3-D brain surface
model. The server sets to invisible those surface
facets that are within the segment to be masked, then
texture-maps the structural MRI intensity values onto
the three cutting planes, renders the image, and sends
a snapshot back to the user. With the controls shown
in the figure the user could then click the “Unmask
Wedge” button, which would send the (xsr-unmask-
wedge) command to restore the masked surface, or
could click the “Remove Brain Map” button, which
would send the (xsr-remove-map-sites) command to
remove the stimulation sites from the image.

The user can also click one of the other tabs to access
additional controls. The “Functional Properties” tab
brings up controls for manipulating fMRI
visualization properties, and the “Viewport Controls”
tab controls the camera, including rotation and zoom.

A working demo of this applet can be found via the
demos page of the UW Human Brain Project
http://sig.biostr.washington.edu/projects/brain/demos.
html. Response time is about 12 - 20 seconds when
the graphics server is running on a quad Intel
Pentium IIT 550 Mhz processor. Most of this time
(10-15) seconds is spent rendering the 3-D scene on
the server.

DISCUSSION

In this paper, we describe a server-side approach to
visualization of large 3-D image datasets. This
approach makes sense at this time because 1)
Internet bandwidth is not yet high enough to support
massive transfer of large image datasets; 2) Client-
side rendering technologies (e.g. Java-3D, VRML
viewers) are still in development, and may be too
slow to efficiently render large 3-D models (on the
order of a million triangles) derived from 3-D
medical image volumes. These factors are of course
changing daily, and in the near future most
processing may take place at the client. In the
meantime the server-side approach offers a working
solution that can migrate to the client as software and
hardware improves. By concentrating the
computationally intensive operations at the server, a
single upgrade to server processing power can
dramatically improve performance for many clients.
Software improvements such as parallel rendering
should improve the performance even more, as we
have shown in preliminary studies.

The server-side approach has of course been possible
for a long time, and non-web based access to servers
via X Windows or VNC have become popular.

There is nothing wrong with these approaches, but
they do require high bandwidth connections, and the
choice of platform may be limited. (i.e., the need for
a client that can run an X server). Running
applications remotely in this manner has well known
security implications, and accessing a computer
behind a firewall typically requires a special setup.
More importantly, such an approach requires that the
users be proficient, at least somewhat, with a
particular operating system and environment.

On the other hand, creating a custom web interface
can make an application truly accessible for anyone.
Such an interface makes possible collaboration
among a distributed and diverse group of researchers,
who can use the interface to share information and to
stimulate new ideas. This situation is increasingly
becoming the case with the UW Human Brain
Project, which involves a collaboration between
groups in the departments of Biological Structure,
Radiology, Neurosurgery, and Psychiatry. Individual
researchers in these departments routinely use these
web-interfaces to visualize integrated language-
related data without having to come to the SIG lab or
needing to understand how to install or use the
underlying applications.

Although this paper describes a specific application
in brain mapping, the techniques should be applicable
to other areas that involve visualization of large 3-D
image datasets. Current teleradiology systems
primarily deal with 2-D images. Inclusion in these
sites of interactive 3-D models obtained from patient-
specific 3-D image datasets could potentially
improve clinical diagnosis. Remote access to 3-D
image visualization servers from the operating room
or radiation treatment room could improve surgical
and radiation treatment planning without requiring
expensive installation of custom software.

3-D image visualization servers could be coupled
with web-accessible multimedia databases, such as
the one we are building for the UW Brain Project’, in
order to integrate remote experiment management
with remote visualization capabilitiess. =~ When
accessed via a Web-based medical record system
such as the UW’s Mindscape®, a 3-D visualization
server could bring advanced imaging tools directly to
the primary care provider. All these applications
could greatly improve access to biomedical
information, without requiring any investment in
software technology besides a personal computer, a
web browser, and a fast Internet connection.

536

ACKNOWLEDGEMENTS

This work was funded by Human Brain Project grant
DC02310. We also thank Intel for a generous

equipment grant.

REFERENCES

1. Hinshaw, K.P. and J.F. Brinkley, Incorporating
constraint-based shape models into an interactive
system for functional brain mapping, in
Proceedings, American Medical Informatics
Association Fall Symposium. 1998 pp. 921-925.

2. A. V. Poliakov, K. P. Hinshaw, C. Rosse and J.
F. Brinkley, Integration and Visualization of
Multimodality Brain Data for Language
Mapping, Proceedings, American Medical
Informatics Association Fall Symposium
Washington, D.C., 1999.

3. J. F. Brinkley and J. S. Prothero, Slisp: A
flexible software toolkit for hybrid, embedded
and distributed applications, Software -- Practice
and Experience, vol. 27, pp. 33-48, 1997.

4. Automatic 3D Inter-Subject Registration of MR
Volumetric Data in Standardized Talairach
Space D. L. Collins, P. Neelin, T. M. Peters and
A. C. Evans, Journal of Computer Assisted
Tomography, 18(2), 192-205, 1994.

5. A. C. Evans and D. L. Collins and S. R. Mills
and E. D. Brown and R. L. Kelly and T. M.
Peters, "3D statistical neuroanatomical models
from 305 MRI volumes", Proc. IEEE-Nuclear
Science Symposium and Medical Imaging
Conference, 1813-1817, 1993.

6. B. A. Wong and J. F. Brinkley, Dynamic 3-D
scene navigation in web-based anatomy atlases,
Proceedings, American Medical Informatics
Association Fall Symposium Orlando, Florida,
1998.

7. R. M. Jakobovits and J. F. Brinkley, Managing
medical research data with a Web-interfacing
repository manager, Proceedings, American
Medical Informatics Association Fall
Symposium, Nashville, pp. 454-458, 1997.

8. Tarczy-Hornoch, P., T.S. Kwan-Gett, L. Fouche,
J. Hoath, S. Fuller, K.N. Ibrahim, D.S. Ketchell,
J.P. LoGerfo, and H.I. Goldberg, Meeting
clinician information needs by integrating access
to the medical record and knowledge resources
via the Web. Proc AMIA Annu Fall Symp, 1997:
pp. 809-13.

“{1risrs

Figure 2. Forms-based interface for mapping multiple patients to an “average” brain. Left. Patient selection, Right:.
Mapped sites.

Brain Properties

0 50 0 50
Sagital 15
e

w=Back » =+ -@l 4 | Qsearch CHFavortes Gmi%-&
| Address [€] http -//quad biostr.washington.edu/~andrew/cg-bin/Brain_Browser.c \

Brain Browser Web Interfacc

[waming: Applet Window
This applet is used to visualize functional MRI and stimulation sites in individual
patients.

Just/people/andrev/public] hul/veb interface/results/226880
Brain (tak

[Taking snapshot

{libpng warning: iTXt chunk not supported.

It does require fast Internet connection. P8 70 £1is

fWrote results/arbitrary.done: 0"Done taking snapshot. "

.png file extension. Do nothing.

You would need to enable Java in order to run it. It attempts making a connection to this computer, and Creating New Image
your security settings (configuration of your web browser, or security policy of your Internet Service fictempting (xsr-load-map-sites)
; #<Gobject: #0x838dbc>

Provider) may prevent you from running the applet. \dding Brain Nep #<Gobject: §OxBIBEMC>
I

No patient is selected. For some of these patients, certain data may be incomplete or not ‘;mi;mvl (;“: 'om:;ﬂ:‘z:e;(‘m/x;up;e/-n?m/v;r;:;:c_hmmb—:

. ["/usr/people/andrew, c, 'veb-interface/results . Ry

available. You may wish to use patient AF980803, if you are looking for a Demo. bl et ¢ shot) sl

[Taking snapshot
. A . {1ib; : iTXt chunk t ted.
Loading of structural or functional MRI volume may take up to 40 seconds. After that, it S ppd £ AR
should take about 10-20 seconds to refresh the scene. Mrote results/arbitrary.done: O"Done taking snapshot. "

.png file extension. Do nothing.
reating New Image

Resolution is set to NORMAL. o
Contact: Andrew Poliakov Ll_.l L
Back to Andrew’s Home Page. Close

#Astart] | 1 & 3 || Bavia 2001 4.coc .| € Jran Browser Web.. [Brain Mapper Ap.. BBlavaconsoe | Lo NES TR T
Figure 3. Applet interface for visualizing integrated 3-D image data from a single patient.

537

