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This work demonstrates how seemingly anonymous
DNA database entries can be related to publicly
available health information to uniquely and
specifically identify the persons who are the subjects of
the information even though the DNA information
contains no accompanying explicit identifiers such as
name, address, or Social Security number and contains
no additional fields of personal information. The
software program, REID (Re-Identification of DNA),
iteratively uncovers unique occurrences in visit-disease
patterns across data collections that reveal inferences
about the identities of the patients who are the subject
of the DNA. Using real-world data, REID established
identifiable linkages in 33-100% of the 10,886 cases
explicitly surveyed over 8 gene-based diseases.

INTRODUCTION

DNA is understood to be as, or more, personal
than a fingerprint. But having a database of only
DNA entries is often believed to be anonymous
because the data look anonymous. After all, if a DNA
entry is not accompanied by any explicit
demographics, how could the person who is the subject
of the DNA be identified? Associating only DNA
information to named persons seemns impossible in this
situation, yet this work demonstrates how the release of
autonomous collections of DNA by hospitals, for
example, can re-identify patients to their DNA.

DNA sequences are increasingly becoming a
part of the patient medical record.1 This trend is the
result of several factors. First, the cost of sequencing
has been declining for over a decade due to automated
sequencing while the storage capacity of computers has
grown tremendously yet declined in price.

Second, many diseases are increasingly being
found to have a DNA component, which can be used
for diagnostic confirmation of the presence or absence
of a disease. In some situations it is a deterministic
component to disease, such as in Huntington's disease
and cystic fibrosis.2'3 In other situations, it acts as a
probabilistic component that helps to establish the
chances ofbeing afflicted with a certain disease.4

Third, DNA is a valuable conimodity for
institutions that release the information for research
purposes. Many fields from population genetics, basic
science, and statistics are interested in such datasets.
Recently, DNA information has been of great interest
to the biopharmaceutical industry, for example, where
single nucleotide polymorphisms (SNPs) and allelic
variants of genes have shown promise for tailoring
drugs to specific genotypes.5

Importantly, DNA is unlike typical family
history or the results of a patient's longitudinal medical
record. DNA has an undetermined amount of latent
information that corresponds to undiscovered genes or
relationships between the genotype (DNA sequence)
and phenotype (clinical observation).

The collection of DNA into these population-
based databases occurs at many different kinds of
institutions. Collection can be found at government
research sites, such as the National Cancer Institute,
which are the result of clinical trials and basic research.
Other collections of DNA may be found at hospitals
like Massachusetts General Hospital or Rush
Presbyterian of Chicago, as the result of diagnostic
testing. Databases of DNA sequences are harbored at
commercial companies, such as decode Genetics,
Celera Genomics, and Incyte Genomics, where the
gene discovery is of high conmercial value.67 These
DNA collections are autonomously controlled, so
decisions about sharing DNA data are made locally and
independently.

BACKGROUND

There have been several computational
systems presented that help render data anonymous.
These include Scrub8, which locates personally
identifying information in unrestricted textual
documents, and the Datafly9 and Mu-Argus'0 systems,
which attempt to render field-structured person-specific
databases sufficiently anonymous. Last year we
introduced the CleanGene System, which addresses
linear DNA information within genetic databases"'.

CleanGene conputes the likelihood that a
DNA database entry can be re-identified to the
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particular person from which the DNA originated. It
takes genotype-phenotype relationships into account,
which allow for inferences to be discerned about the
expected clinical or DNA information, depending on
which dataset is used as the basis for inference. When
inferring clinical information from DNA, CleanGene
utilizes knowledge about the type of mutation that the
DNA harbors and discerns between different types of
mutation to recognize a specific gene-based disease
whose diagnosis code can appear in the clinical
information. For example, it is well known that
Huntington's disease has a strong inverse relationship
between the size of the CAG triplet repeat expansion
and the age of onset of the disease.2 Thus, the repeat
size estimates the age at which the diagnosis code will
appear in the clinical information.

In comparison to CleanGene, this work
addresses the situation more generally and does not
involve any specific knowledge of genotype-phenotype
relationships. Instead, this work uses the mere
existence of the DNA entry in multiple data sets to
draw inferences about where the person has been. The
person's visit pattern is then linked to other information
to explicitly identify the person. As a result, this
approach is simpler than CleanGene and requires
virtually no specialized knowledge.

Before we describe how this new system
works and report real-world results, we will take a
moment to talk about publicly available hospital data
and its identifiability. The National Association of
Health Data Organizations (NAHDO) reported that 44
of the 50 states (or 88%) have legislative mandates to
gather hospital-level data on each patient vist.12 Many
states have subsequently distributed copies to
researchers, sold copies to industry and made versions
publicly available. These data collections are expected
to remain available because they are not regulated by
HIPAA. While the publicly available versions do not
include any explicit identifiers such as name or
address, they do include demographic fields such as
{5-digit ZIP, gender, date ofbirth).

Experiments were conducted to determine
how many individuals within geographically situated
populations had combinations of demographic values
that occurred infrequently.'3 It was found that 87%
(216 million of 248 million) of the population in the
United States had reported characteristics that likely
made them unique based only on {5-digit ZIP, gender,
date of birth). Matching these values against a
population register, like a voter list or local census
data, re-identifies the result to particularly named
individuals. 4

Therefore, the approach taken in this work is
to link the visit pattern found in publicly available
hospital discharge data to the pattern of entries found in
multiple hospital DNA databases, thereby relating

hospital discharge data to DNA entries and revealing
demographics such as {5-digit ZIP, gender, date of
birth) specific to DNA entries. The expanded results
are then linked to particularly named individuals.

METHODS

This work concerns the development of a new software
program named REID (Re-Identification ofDNA). The
methodology behind REID relies on the facts that DNA
are unique to each person, has minimal change over
time, and is becoming routinely collected and
subsequently shared. Consider the following
hypothetical scenario in which REID would operate.

In 1994, Alice visits the University of Chicago
Medical Center, where her is DNA sequenced as a
diagnostic test for a particular disease. Two years later,
Alice receives treatment for a disorder at Rush
Presbyterian Hospital (in Chicago). Once again,
Alice's DNA is sequenced. At both hospitals, the
linear sequence of Alice's DNA is stored in a DNA
database. There may be some variation between the
two sets of sequences, due to random mutation during
cell division over time, as well as difference in tissue
type that the DNA was procured from. However, the
difference between Alice's two samples ofDNA would
still be more similar to each other than Alice's DNA
would be to the sequences of some random individual,
Bob. REID uses these patterns of where Alice's DNA
appears, along with publicly and semi-publicly
available hospital discharge data to relate her DNA to
her by name.

m m

.1 I _Ilr I

DN6DNA3

Figure 1. DNA data to Patient-Hospital Matrix

Materials
This study uses publicly available hospital discharge
data from the state of Illinois. The databases cover the
years 1990 through 1997, with approximately 1.3
million hospital discharges per year (each database).
Collection information has compliance with greater
than 99% of discharges occurring in hospitals in the
state of Illinois.'5 Patient demographics, hospital
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identity, diagnosis codes, and procedure codes are
among the attributes stored with each database entry.

The REID system is written in Java and uses
Java Database Connectivity (JDBC) to connect to a
relational database, consisting of profiles for
individuals with diseases that have a known DNA
basis. These profiles are longitudinal, information over
time, datasets, which are constructed based on the
uniqueness of combinations of demographics of
individuals in the hospital discharge data. Each profile
consists of all inpatient visits during the eight-year time
period of this study. Figure 1 provides an example.

Computer Approach

Figure 2 shows the basic operation of the REID
algorithm. The actual algorithm includes some
attention to assumptions made in this basic operation,
but Figure 2 does provide a description of the basic
approach.

The basic approach begins in Step 1 by
constructing a matrix that itemizes which DNA is
found at which hospitals, thereby mapping a specific
patient to hospital visits based on DNA incidence. The
table on the right in Figure 1 provides an example.

In Step 3, each row in the matrix is visited and
compared, in step 3.2, to every other row to see if the

pattern of visits is unique. If there were no other
patients exhibiting the same visit pattern, then in Step
3.3, the information is linked to the identical
demographic pattem found in the hospital discharge
data to identify the {Date of birth, Gender, ZIP)
specific to the DNA's incidence pattern.

The basic REID algorithm assumes that DNA
and DISCHARGE are specific to the same disease
gene over the same population. Today it is not the case
that each hospital maintains its own DNA database for
each disease gene. However, the algorithm remains the
same if the hospital collects DNA for other diseases but
for which the sequence includes the disease gene that is
the subject of the re-identification. It is also not the
case that there exists a central collection ofDNA in the
United States but some are underway.
Assumptions.

The basic REID algorithm also assumes that
each patient has a unique {DOB, Gender, ZIP). As
noted earlier, this is only the case for 87% of the
population of the United States. However, a ZIP chart
is available that reports the identifiabilty of each ZIP,
so that likelihood measures could be assigned. This is
done in the full verision of REID, but not in the basic
version shown in Figure 2. In the ZIP codes that are
found in the real-world data on which the program was
executed, the identifiability of {DOB, Gender, ZIP)
was 98-100% unique."

Figure 2. Basic version of REID algorithm
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Input:
Table DNA(HID, Sequence), which is the union of all DNA available from hospitals specific to the disease gene.
HID is the hospital identification number and Sequence is the DNA from HID. Table DISCHARGE(HID, DOB,
Sex, ZIP,...), which is the union of all hospital discharge available for visits from the hospitals that include a
diagnosis specific to the disease gene.

OUtPUt:
ID(Sequence, DOB, Sex, ZIP) which relates DNA sequences to identifiable demographics specific to the persons
who are the subjects of the DNA sequences.

Method:
1. Construct table PATIENT(PID, HID1,...,HID.) where PID is a sequential number starting at 1, assigned at the

construction of the table; and, each PATIENT(HIDi) is a Sequence from HIDi in DNA and all
PATIENT(PID=i,HID,) is the same sequence.

2. Let ID be empty
3. forp v- 1 to IPATIENTI do:

3.1. count - 0
3.2. forp2 <-p + 1 to IPATIENTI do:

3.3.1. if PATIENT(PID=p, HID,,...,HIDJ) PATIENT(PID=-p2,HID,,...,HID,) then do:
3.2.1.1 count +-count+ 1

3.3. if count_ 0 then do:
3.3.1. ID +- ID u { {seq, dob, gender, zip) } where for each HID that has a Sequence for PID=p in

PATIENT, there exists exclusively HID1e DISCHARGE having same dob, gender, zip
associated with DOB, GENDER, ZIP, respectively.

4. return ID



Complexity.
The computational speed of the basic REID

algorithm provided in Figure 2 is as follows. Step 2
executes each IPATIENTI times. Within each iteration,
step 3.2 executes IPATIENTI times though some
efficiency is realized. If the DNA incidence pattern is
unique, as determined by the value of count being 0,
then the matching pattern is sought in DISCHARGE,
which requires a linear traversal through a matrix that
associates patients to hospital visits; it is constructed in
the same way as the DNA incidence matrix described
in step 1 except rather than using DNA information,
DISCHARGE is used. So, the overall computation
time is O(IPATIENT12). Therefore, on today's
computers, the algorithm operates in real-time.

Upper limit.
The maximum number of patients that can be

identified by REID is limited because as the number of
patients increase, there can be more patients that
possible combinations of hospital visits. One way this
limit is avoided is to prune the DNA data and the
hospital discharge data to only examine a specific
disease gene, as has been referred throughout. Even
still, the computational limit on the maximum number
of patients able to be re-identified, assuming optimal
distribution of DNA in hospital visits is:

MaxPatients = 2 -1.

Disease # of # of Average # Percent of
Gender Unique Hospitals People per Cohort

Individuals hospital Identified

Huntington's
disease 426 172 2.47 50.00%
Cystic
Fibrosis 1146 174 6.60 32.90%
PKU 772 57 1.35 75.32%
ereditary

Hemmor.
Telang. 42 159 2.70 52.21%
Friedreich's
Ataxia 129 105 1.22 68.99%
Sickle Cell
Anemia 7730 207 37/34 37.34%
Refsum's
yndrome 4 E__ 0.50 100.00%
uberous
clerosis 25 1I 2.10 51.600/

Figure 3. Selection of classes used for re-identification.

RESULTS
Figure 3 demonstrates the identifiability of different
DNA database entries based on the REID system.
Results are from 33-100% identified, with the success

rate decreasing as the number of patients increase. The
common fields used for this study were {hospital
visited, diagnosed disease }. The distribution of
hospital visits skew toward more visits at hospitals that
specialize in the treatments of certain types of
disorders, as well as the size of the hospital. Despite
the coalescence of hospital visits to several hospitals,
there are many hospitals with a smaller number of
hospital visits. An example of the number of hospital
visits for a specific disease is shown in Figure 4.

The relationship between identifiability and
the number of hospitals and individuals in the
discharge dataset is depicted in Figure 5. There is an
inverse power relationship between the average
number of patients per hospital (which is different than
the average number of hospital visits per hospital) and
the fraction of the individuals in the discharge database
that could be linked to their respective DNA database
entries.

Figure 4. Distribution of hospital visits for the DNA-
based disease tuberous slcerosis. The gender class is
male. The visits span 1990-1997 for all hospitals In the
state of Illinois.

Figure 5. Demonstrates the inverse relationship between
number of Individuals from a re-identified dataset that
can be linked to a de-identified DNA dataset.
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The power relationship does demonstrate that
as the ratio of hospital visits to number of hospitals
visited increases, the number of hospitals with a small
number of hospital visits declines.

DISCUSSION

These DNA re-identification experiments
demonstrate the effectiveness of REID at finding
inferences that uniquely identify DNA to the person
who is the subject of the DNA even when the DNA
data itself contains no additional fields of data.

The results are further alarming because the
number of common features in DNA are expected to
increase with time, thereby providing more inferences
to other fields of publicly and semi-publicly available
data. This underscores privacy concerns that impact on
the ability to conduct research 6'17"8, so these problems
must be addressed. We underscore the realization that
DNA includes latent information that may be useful at
a later time of study, but is not known at a particular
time. Such types of information may consist of SNPs
and allelic gene variants that can be used for specific
treatments or additional genes that have to be
discovered that play a role in susceptibility to disease.

The REID system architecture is not limited to
hospital discharge and DNA databases, or even
medical information in general. The system is
generalizes to other forms of data beyond DNA.
Further, the common approaches of generalization to
prevent linking9"10 may prove to be solutions to this
approach provided the DNA information remains
practically useful and not all data holders make the
same generalizations. Other possible solutions include
random removal or addition ofDNA from the data by
each data holder. Finally, it is important to note that
REID did not "link" values but exploited a generally
observed and inferable relation, making it different
than the classic privacy problem found when sharing
medical data.
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