Building ICU Artifact Detection Models With More Data in Less Time
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As many as 86% of intensive care unit (ICU) alarms
are false. Multiple signal integration of temporal
monitor data by decision tree induction may improve
artifact detection. We explore the effect of data
granularity on model-building by comparing models
made from 1-second versus 1-minute data. Models
developed from I-minute data remained effective
when tested on 1-second data. Model development
using 1-minute data means that more hours of ICU
monitoring (including more artifacts) can be
processed in less time. Compression of temporal
data by arithmetic mean, therefore, can be an
effective method for decreasing knowledge discovery
processing time without compromising learning.

INTRODUCTION

False alarm rates in the intensive care unit (ICU) have
been reported to be as high as 86%.'? This can lead
to compromised patient care.*” Efforts to decrease
false alarms therefore have much potential for
effecting improvement in the ICU. Various methods
for improving monitoring have been proposed
(reviewed elsewhere®), but none have seen
widespread practical application. We have
previously found multiple signal integration of
temporal bedside monitor data by decision tree
induction to be one technique for detecting artifacts in
neonatal ICU data signals.” That study, however, was
limited because the data available for model
development were of 1-minute granularity (one value
per minute of monitored time), while in the actual
ICU setting, monitored signals are available at a
frequency of one value per second (1-second
granularity). Moreover, artifacts in the ICU tend to
be fleeting, on the order of seconds. A model built
from 1-minute data would presumably miss these
short-lived artifacts, and for that reason, would not be
expected to perform well practically. In this study,
we explore the effect of data granularity on model-
building by developing new models using 1-second
granularity data, and then comparing these with 1-
minute granularity models. We also evaluate the
performance of 1-minute models run on data of 1-
second granularity to simulate performance in the
ICU environment.
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METHODS

Two different sets of data were used for the
experiments: Set A consisted of approximately 200
hours of data values occurring at a frequency of one
value per minute (1-minute granularity), while Set B
consisted of approximately 74 hours of data values
occurring at a frequency of one value per second (1-
second granularity). Both sets were collected in 1996
from bedside monitors in the neonatal ICU (NICU) at
Simpson Memorial Maternity Pavilion in Edinburgh,
Scotland. Four physiological signals were present in
each data set: electrocardiogram (ECG) heart rate
(hr), measured in beats per minute; mean blood
pressure (bp) from an indwelling arterial line,
measured in millimeters of mercury; partial pressure
of carbon dioxide (co2), collected transcutaneously
and measured in kilopascals; and partial pressure of
oxygen (02), also collected transcutaneously and
measured in kilopascals. "Set A was derived from
more than 100 different patients (approximately two
hours of data from each patient), while Set B was
derived from'two different patients (approximately 24
hours from one patient and SO hours from another
patient). Raw data values were available from
bedside monitors at a frequency of one value per
second.  One-second granularity data therefore
reflects all values coming from the monitors. To
collect 1-minute granularity data, for each of the four
signals an arithmetic mean was calculated from the 60
raw values. Only these mean values were then
recorded for that minute of bedside monitoring.

Occurrences of artifacts in each of the data streams
were visually located and annotated retrospectively
by an experienced clinician (N.M.) working
constantly with the data collection system in the
NICU. Annotated sections of the data streams
manifested themselves as raw values affiliated with
asterisks, one asterisk per raw value marked as
artifact. A sample of the text data for annotated mean
blood pressure values of 1-minute granularity is
shown in Figure 1.

Derivation of feature attributes from the temporal
data streams consisted of calculating (for each of the
four signals) eight quantities thought to be potentially



clinically useful for ICU event detection. These
included moving mean (‘avg’), median (‘med’),
maximum value (‘high’), minimum value (‘low’),
range (‘range’), standard deviation (‘std_dev’), linear
regression slope (‘slope’), and absolute value of the
linear regression slope (‘abs_slope’). These eight
quantities were calculated for each successively
overlapping set of raw values. The number of raw
values from which to derive feature attributes had
been chosen arbitrarily to be three, five, and ten
values in the study that developed 1-minute decision
tree models,’ corresponding to time intervals of three,
five, and ten minutes, respectively.
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Figure 1.
values.

Sample annotated mean blood pressure

For this study, two different experiments were
performed. In Experiment 1, the numbers of raw
values with which to calculate feature attributes were
chosen to be 180, 300, and 600, such that with 1-
second granularity data, the identical quantities (in
terms of time interval length) are calculated. In this
way, previously developed (from Set A data) 1-
minute artifact detection models can be directly
compared to new artifact detection models developed
from the 1-second data (Set B). The eight derived
features, calculated for each of three time intervals
and for each of the four signals, resulted in multi-
signal feature vectors of size 96. These feature
vectors comprised the inputs to machine learning
programs; the output of these learning programs is a
model that can classify previously unseen feature
vectors as artifact or not. In Experiment 2, the
numbers of raw values with which to calculate feature
attributes were chosen to be three, five, and ten values
to be consistent with the 1-minute models in terms of
the number of values in each interval used to derive
features. This corresponds to using time intervals of
three, five, and ten seconds. The resulting 96-
dimensional feature vectors were run through the 1-
minute models.

Class labels were assigned to each feature vector of
96 values to facilitate supervised learning by decision
tree induction’ in Experiment 1, and testing of the
built models in Experiments 1 and 2. Labels were
assigned based upon the number of asterisks present
(zero or one asterisk associated with each raw value)
in the smallest time interval used in a given feature
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vector. The number of asterisks present in that time
interval divided by the number of raw values present
in the same interval gives the ‘artifact average’ value.
Artifact average values are thus between 0 and 1,
inclusive. For the blood pressure, carbon dioxide,
and oxygen signals, all feature vectors were given a
class label. Labels of ‘artifact’ were given to feature
vectors with artifact average greater than 0.5, while
labels of ‘non-artifact’ were given to feature vectors
with artifact average less than or equal to 0.5. For the
heart rate signal, the artifact class was given to only
those feature vectors with an artifact average of 1,
while the non-artifact class was given to those feature
vectors with an artifact average of 0. Feature vectors
with fractional artifact averages were not used to
derive heart rate artifact models. These labeling
methods were used in order to be consistent with the
labeling used in the comparison study. ®

Preprocessed data of 1-second granularity for
Experiment 1 were split into training (70%),
evaluation (9%), and test (21%) sets. Preprocessed
data of 1-minute granularity had been similarly split.
Each training set was used as input to c4.5,° a
decision tree induction system. Varying performance
of candidate models on the evaluation set helped to
determine which candidate model would be chosen as
each signal’s final model. After experimentation,
final models were implemented in the C language to
facilitate testing of each model on reserved test data.
Preprocessed 1-second data for Experiment 2 were
also split into training, evaluation, and test sets; only
the test set was used. One-minute models were run
on both 1-minute and 1-second test data, while 1-
second models were run on 1-second test data.

Performance metrics used for comparing different
models include sensitivity, specificity, and area under
the receiver operating characteristic (ROC) curve."
Sensitivity measures number of correct model-labeled
artifact cases out of total number of actual artifact
cases. Specificity measures number of correct model-
labeled non-artifact cases out of total number of
actual non-artifact cases. ROC curves were
determined by first assigning to each tree leaf the
probability of being an artifact for a set of cases that
percolates to that point. These probabilities were
based upon the ratio of artifacts to total cases in the
training data that fell into each leaf. The threshold for
considering a case to be artifact or non-artifact was
then set at each leaf probability value. The resulting
(sensitivity, 1-specificity) pairs were plotted to obtain
the ROC curve. The area under each ROC curve was
calculated by trapezoidal method.



RESULTS

Data were preprocessed as described in the Methods.
Table 1 shows the breakdown of data cases by set and
class label for each artifact signal type used in
Experiment 1 (feature attributes made of identical
time intervals). Table 2 shows the composition of the
test sets by class, one for each artifact signal type,
used in Experiment 2 (feature attributes made of
identical numbers of values).

Figures 2 through 5 show decision trees developed
from 1-second data. Class labels are represented by
‘1’ (artifact) and ‘0’ (non-artifact). Parentheses after
a class label indicate the number of training cases that
arrived at that node, shown where applicable as total
number of training cases that arrived at that node
followed by number of training cases incorrectly
classified at that node. Attribute names are a
concatenation of abbreviated signal name,
abbreviated derived feature name, and number of
values over which the derived feature was calculated.

Table 1. Breakdown of data cases by class label for
each signal in Expt. 1 (180, 300, and 600 values in
intervals used for derived feature calculation).

Signal | Class label Training | Evaluation | Test set
set set
bp Non-artifact 156,769 20,027 | 47,287
Artifact 441 50 132
Total 157,210 20,077 | 47,419
co2 Non-artifact 153,083 19,557 | 46,178
Artifact 4,127 520 1,241
Total 157,210 20,077 | 47,419
02 Non-artifact 151,646 19,362 | 45,723
Artifact 5,564 715 1,696
Total 157,210 20,077 | 47,419
hr Non-artifact 153,862 19,656 | 46,419
Artifact 474 76 139
Total 154,336 19,732 | 46,558

Table 2. Breakdown of data cases in test sets by
class label for each signal in Expt. 2 (3, 5, and 10
values in intervals used to derive features).

Signal Class label Test set
Blood Non-artifact 44,176
pressure | Artifact 220
Total 44,396
Carbon Non-artifact 42,936
dioxide Artifact 1,461
Total 44,397
Oxygen Non-artifact 42,545
Artifact 1,852
Total 44,397
Heart Non-artifact 43,936
rate Artifact 393
Total 44,329
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bp_med180 <=0 : 1 (441.0)
bp_med180 > 0 : 0 (156769.0)

Figure 2. Blood pressure artifact detection decision
tree model built from 1-second data.

c02_med180 <= 0.2 : 1 (4053.0/3.0)
co2_med180> 0.2 :

| o2_low180 > 16 : 1 (30.0/3.0)
02_low180 <= 16 :

| co2_avg180 > 0.4 : 0 (153040.0/9.0)
| co2_avg180<=04:

| | hr_range180 <= 51 : 1 (40.0)

| | hr_range180 > 51 : 0 (47.0/1.0)

Figure 3. Carbon dioxide artifact detection decision
tree model built from 1-second data.

02_med180 <= 0.5 : 1 (4725.0)
02_med180>0.5:

| o2_avg180 <=15.7:

| 02_med180 <= 15.9 : 0 (150362.0/57.0)

| 02_med180 > 15.9 :

| | o2_std_dev180 <= 8.67 : 0 (638.0/61.0)

| | o2_std_dev180 > 8.67 :

| 1 | hr_avg600 <=161.8 : 0 (100.0/6.0)

| | | hr_avg600>161.8:

I | | | co2_std_dev300 <=2.2: 1 (190.0/5.0)
| 1 1 | co2_std_dev300>2.2: 0 (80.0/17.0)
02_avg180 > 15.7 :

| 02_med180 <= 20 : 0 (601.0)

| o02_med180 > 20: 1 (514.0/1.0)

Figure 4. Oxygen artifact detection decision tree
model built from 1-second data.

hr_high180 <=0 : 1 (474.0)

hr_high180 > 0 : 0 (153862.0)

Figure 5. Heart rate artifact detection decision tree
model built from 1-second data.

Final decision trees developed from 1-minute data are
reproduced in Figures 6 through 9 for convenience in
comparing models. Table 3 shows results for each
model run on test set data of its same granularity and
for 1-minute models run on the two different types of
preprocessed 1-second test sets.

DISCUSSION

Previous work showed that multi-signal detection of
ICU artifacts by decision trees built from 1-minute
data do well (ROC areas ranging from 89.41 to
99.93%).° In the current study, we found that
decision trees built from 1-second data also perform
effectively, even more so in fact (ROC areas ranging
from 99.40 to 100.00%). Admittedly, 1-second data
by nature contain more information than 1-minute



data. Surprisingly, however, models built from 1-
minute data performed extremely well on test sets
derived from 1-second data. Recall that our a priori
assumption was that a model built from 1-minute data
would not perform well when run on 1-second data
because it would miss the short-lived artifacts found
in the 1-second data; we have found that this is
clearly not the case. ROC areas for Experiment 1
ranged from 96.30 to 100.00%, while ROC areas for
Experiment 2 ranged from 99.70 to 100.00%. For
three of the models (bp, co2, hr), 1-minute models
run on 1-second data in both Experiments 1 and 2
performed better than the same 1-minute models run
on 1-minute data. The 1-minute oxygen model run on
1-second data in Experiment 1 (ROC area 98.81%)
performed well but not better than the 1-minute
model run on 1-minute data (ROC area 99.93%). The
results of running the 1-minute model on 1-second
data in Experiment 2 (ROC area 99.92%) were equal
to the results of the 1-minute model run on 1-minute
data (ROC area 99.93%).

bp_med3 <=4 : 1 (114.0/3.0)
bp_med3>4:

bp_range3 <=7 : 0 (10959.0/72.5)
bp_range3>7:

| bp_med10 > 46 : 0 (126.0/23.7)

| bp_med10<=46:

| bp_std_dev3 <=5.51 : 0 (78.0/28.5)
| bp_std_dev3>5.51:

| | co2_low10<=5.3:1 (46.0/10.1)
| | co2_low10>5.3:

| | | hr_highS <= 157 : 0 (27.0/12.8)
| | | bhr_high5> 157 :1 (21.0/8.2)

Figure 6. Blood pressure artifact detection decision
tree model built from 1-minute data.

co2_med5 <= 0.7 : 1 (207.0)

c02_med5 > 0.7 :

| o2_high3 > 14 : 1 (166.0/34.0)

| o2_high3 <=14:

| co2_range3 <= 0.6 : 0 (10686.0/102.0)
| co2_range3 > 0.6:

| | co2_low5 <=4.5:1(117.0/22.0)

| | co2_low5>4.5:

| 1 | co2_slope3 <=0.5: 0 (150.0/26.0)
| | | co2_slope3>0.5:1(45.0/17.0)

Figure 7. Carbon dioxide artifact detection decision
tree model built from 1-minute data.

These findings can be exploited: in situations in
which an event develops slowly over several minutes,
e.g., in some cases of pneumothorax, pneumothorax
detection models could be developed with 1-minute
data and then run on 1-second data processed using
the same time intervals, as done in Experiment 1. On
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the other hand, in situations in which an event is
fleeting, such as a short-lived false alarm lasting only
seconds, models for false alarm detection could be
developed with 1-minute data and then run on 1-
second data processed using the same numbers of
values, as done in Experiment 2. We found our a
priori assumption—that 1-minute models would
perform poorly on 1-second data—to be incorrect.

02_med3 > 20 : 1 (90.0/1.6)
02_med3 <=20:

| o2_low3>0:0(11026.0/1.6)

| o2_low3<=0:

| | o2_med5<=0:0(154.0/5.4)

| | o2_med5>0:

| | | o2_med3<=0.5:1 (79.0/1.6)
| | | o2_med3>0.5:0(22.0/6.3)

Figure 8. Oxygen artifact detection decision tree
model built from 1-minute data.

hr_low3 <= 113 :
hr_range5 > 78 : 1 (180.0/3.0)
hr_range5 <= 78 :
| hr_low10 <= 30 : 1 (60.0/1.0)
| hr_low10>30:
| | hr_med5 <=121: 0 (145.0/21.0)
| | hr_med§>121:
| 1 | o2_low10>6:1 (41.0)
| 1 | o2_lowl0<=6:
| | | | hr_range3 <=38: 0 (30.0/10.0)
| | | | hr_range3 > 38 : 1 (37.0/8.0)
r_low3 > 113:
hr_std_dev3 <= 8.14 : 0 (10565.0/66.0)
hr_std_dev3 > 8.14 :
| hr_range3 > 36 : 1 (41.0/6.0)
| hr_range3 <=36:
| hr_low5 > 129 : 0 (160.0/28.0)
| bhr_low5 <= 129 :
| | o2_low10 <=4 : 0 (35.0/6.0)
| | o2_low10>4:
| |1 | bp_abs_slope10 <=0.21 : 1 (38.0/5.0)
| 1 1 | bp_abs_slope10 > 0.21 : 0 (37.0/15.0)

Figure 9. Heart rate artifact detection decision tree
model built from 1-minute data.

—_—————— e e ——————————

A comparison of the decision tree models themselves
is also interesting. For blood pressure artifact
detection, both models found the median of three
minutes of blood pressure raw values (‘bp_med3’ in
1-minute model and ‘bp_medl80° in 1-second
model) to be a useful first predictor of artifact status.
For detection of carbon dioxide artifacts, both models
also found median value a useful first predictor,
though the 1-minute model calculated median over 5-
minute time intervals (‘co2_medS5’), while the 1-
second model calculated it over 3-minute time
intervals (‘co2_med180°). In the oxygen artifact
detection models, not only was the median over three



minutes present in each model, but both models used
two identical threshold values for labeling a feature
vector as artifact (‘o2_med3 > 20’ and ‘o2_med3
<= 0.5’ in the 1-minute model, ‘o2_medl80 >
20’ and ‘o2_med180 <= 0.5 in the 1-second
model). The presence of identical attributes and
thresholds is further reassurance that effective model
development does not depend on use of one specific
granularity of data. Usefulness of the median value in
this domain is consistent with findings by Makivirta.'

Table 3. ROC curve areas for each model run on the
test set of its own granularity, and for the 1-min
models run on two different types of 1-sec test sets
(Expt. 1 used 180, 300, and 600 values for feature
derivation; Expt. 2 used 3, 5, and 10 values).

Signal | 1-min 1-sec 1-min 1-min
model model model run | model run
runon l- | runon 1- | on l-sec on 1-sec
min test sec test test set test set
set set (Expt 1) (Expt 2)

bp 89.41% | 100.00% 100.00% 100.00%

co2 93.29% 99.70% 99.25% 99.70%

02 99.93% 99.40% 98.81% 99.92%

hr 92.83% | 100.00% 96.30% 99.95%

Our results indicate that while artifact detection
models developed from 1-second data are effective
when run on 1l-second data, so too are models
developed from 1-minute data effective when tested
on l-second data. This is a very important finding
since developing models with 1-minute data has a
tremendous advantage: during model development,
more hours of ICU monitor data can be processed in
less time. This is useful not only in general, but
especially for data intensive domains such as the ICU.
Because of the relative scarcity of artifacts, scattered
sparsely amongst all the ‘normal’ values, voluminous
amounts of physiological data streams need to be
examined to ensure robust model development. The
l-minute  models required processing  of
approximately 48,000 raw data values (200 hours
multiplied by 60 minutes per hour multiplied by 4
data signals), while the 1-second models required
processing of approximately 1,065,600 raw data
values (74 hours multiplied by 3600 seconds per hour
multiplied by 4 data signals). Thus, developing
models from 1-minute data required roughly two
orders of magnitude fewer calculations to process
more than 2.5 times the number of monitor-hours.
Moreover, these 1-minute models still performed well
‘in the clinical setting’ scenario, i.e., on 1-second
monitor data. Data compression of temporal data by
arithmetic mean, therefore, can be an effective
method for decreasing knowledge discovery
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processing time without compromising learning.
Future studies should focus on validating these
techniques in other domains.
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