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This paper presents TraumaSCAN, a prototype com- The case description shows that an unnecessary diag-
puter system for assessing the effects ofpenetrating nostic test was going to be ordered as a result of the
trauma to the chest and abdomen. TraumaSCAN physicians' uncertainty about the spatial relationships
combines geometric reasoni7ng about potentially in- among vital anatomical structures. This uncertainty
jured anatomic structures with (probabilistic) diag- was cleared up by the immediate availability of an at-
nostic reasoning about the consequences of these in- las of cross-sectional anatomy. However, the depth in-
juries. We also present results obtained from test- formation that is missing from 2D images may render
ing TraumaSCANretrospectively on 26 actual gunshot them insufficient for conveying information about how
wound cases. objects in the 2D images are spatially related in 3D

INTRODUCTION space. Rosse has suggested that the anatomical rea-
soning skills ofhealth care providers may be enhanced

Assessment of penetrating trauma requires knowledge by the use of 3D computer-based spatial models of the
of the relationships among human anatomy, physiol- human body [13]. Computer simulations of penetrat-
ogy, and physical manifestations of injury. In medical ing injury using such 3D models could thus serve as
practice, situations sometimes arise in treating pene- training tools and/or diagnostic- aids.
trating trauma patients in which spatial relationships
between different anatomical structures is not clearly TraumaSCAN [10] is a computer-based system that
understood, as the following case description illus- provides a means of simulating and evaluating the con-
trates [3]: sequences of penetrating injury to the chest and ab-

domen. A fundamental requirement of the system is
A patient presented to the Emergency Cen- the ability to reason about the consequences of injury
ter with a knife embedded in the right lower in the face of uncertainty. One source of uncertainty is
paraspinal chest and no other abnormal that it may not be possible to accurately measure the
physical findings on examination. Anterior- extent of damage associated with a particular mecha-
posterior and lateral roentgenograms of the nism of injury. Another source of uncertainty is vari-
chest showed the tip of the knife just an- ability in the amount of information available about
terior to the seventh thoracic vertebra with patient signs, symptoms, and test results. The Trauma-
the blade just to the right of the vertebra. SCAN approach integrates knowledge about anatomy,
The physicians caring for patient recognized physiology, and patient findings (signs, symptoms,
that the descending aorta was anatomically and test results). To assess the effects of penetrating
too far to the left of the vertebral column trauma, the system combines geometric/spatial reason-
to be injured, but were concemed enough ing about potentially injured anatomic structures (us-
about anatomical proximity to the esophagus ing 3D models ofthe human anatomy) with probabilis-
to consider a contrast study of the esopha- tic reasoning about consequent diseases.
gus. The availability ofan atlas of cross sec- TraumaSCAN consists of the following components
tional anatomy of the thorax at the T-7 level (see Fig. 1):
showed that the esophagus was also too far
to the left at this level to be injured and the 1. PpathSCAN [7, 8, 9], an interactive, graphical
contrast study was not done based on this in- user interface in which penetrating injuries may
formation. The knife was removed in the op- be simulated, and a 3D geometric reasoner cou-
erating room and the patient was observed. pled to this interface,
He was treated for a delayed pneumothorax 2. a diagnostic reasoner based on Bayesian networks
and recovered without further consequences. which assesses patient injuries given probabilities
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of injury to particular anatomic structures and, if is identified, the probability of injury to each structure
available, information about patient findings, is calculated (as described in [9, 10]).

3. methods for communicating between the geomet- If a penetrating trauma case involves multiple gun-
ric reasoner and diagnostic reasoner g shot wounds, the reasoner also identifies different in-

jury hypotheses that are plausible for the given set of
wounds. For example, consider a patient presenting

VP*&pahS4C.Ak1*#-T
with two anterior entry wounds and two bullets lodged

(pehmetril in the body. If one wound and bullet are in the left
Rteasozer) chest area, and the other wound and bullet are in the

right chest area, there are two possible hypotheses* for
b= > ; Xthe paths that the bullets may have taken:

1. The bullet on the left entered through the left
chest and the bullet on the right side entered
through the right chest (i.e., the paths of dam-

Patient age are parallel from anterior to posterior- Figure
Signs andc I)iagrosffc 2(a))

- EReasoxer 2. The bullet on the left entered through the right
chest and the bullet on the right side entered
through the left chest (i.e., the paths of damage

Figure 1: TraumaSCAN components and their interac- cross - Figure 2(b))
tions (a) (b)

TraumaSCAN's geometric and diagnostic reasoners
are coupled bi-directionally. Given surface wound or
bullet location information for a particular penetrat-
ing trauma case, the geometric reasoner computes the
probabilities that different anatomic structures are in- \ l /
jured and passes these probabilities on to the diag- bullet
nostic reasoner. The diagnostic reasoner uses these
probabilities as well as any information about patient entry wound
findings to determine the most likely diseases present.
Feedback from the diagnostic reasoner helps the ge- Figure 2: Two penetration path hypotheses for the
ometric reasoner refine its reasoning about anatomic same set ofwounds and bullets
structure injury. The sections that follow give describe
the different components that comprise the Trauma- These two hypotheses could yield markedly different
SCAN system. potential consequences for a patient. The task of de-

termining the most likely hypothesis for a situation in-
GEOMETRIC REASONING volving multiple gunshot wounds is performed by the

PpathSCAN makes use of a rotatable 3D torso model diagnostic reasoner.
which includes 3D models of internal anatomic struc-
tures. It is based on Jack(3[1], a system for displaying PROBABILISTIC REASONING
and animating three-dimensional figures given their
polygonal surface representations. A user can enter TraumaSCAN's diagnostic reasoning system is based
external wounds onto the torso model and place bul- on Bayesian networks [2, 4, 6, 11]. A Bayesian net-
lets within the torso model. To assess a particular pen- work is a directed acyclic graph comprising a set of
etrating trauma case, the geometric reasoner takes as nodes which correspond to random variables, and di-
input the provided surface wound and bullet location rected edges between the nodes which represent prob-
information, and constructs a 3D model of the dam- abilistic relationships among the random variables.
age that corresponds to the mechanism of injury. Po- Bayesian networks allow the dependence and indepen-
tentially injured anatomic structures are identified by dence relationships among events in a domain to be
determining whether their 3D representations intersect explicitly modeled, and enable inferences to be made
with the 3D models of damage constructed. Once the 'TraumaSCAN does not model projectile ricochet because it is
set of anatomic structures that may have been injured difficult to predict when and how it occurs.
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Figure 3: Bayesian network model for TraumaSCAN

even when there is only partial knowledge available wound) are used to model the fact that a pneumoth-
about the domain. They are thus well-suited to the orax can occur as a result of a chest wound (without
task of diagnostic reasoning under conditions of un- a lung being hit). This fact can be directly observed
certainty, and is not based on the output of the geometric rea-
The Bayesian network software used by TraumaSCAN soner. Diseases represented as nodes in the network
is JavaBayes (developedby Fabio Cozman at Carnegie are: right and left simple pneumothoraces, right and
Mellon University). TraumaSCAN's network model left tension pneumothoraces, pericardial tamponade,
covers the most common subset of chest and abdom- tracheal injury, decsending thoracic aortic injury, lac-
inal diseases and consists of 51 variables (Figur 3). erated diaphragm, non-specific intra-abdominal injury,
The network model was created by identifying causal gi-tract injury, and left and right renal injury. Findings
and associational relationships among anatomic struc- represented as nodes are right and left decreased breath
ture injury, diseases, and patient findings in the domain sounds, distended neck veins, shock, muffled heart
of chest and abdominal trauma. These were identified sounds, weak leg pulses, hemoptysis, stridor, lavage
from the rule base of TraumnAID [14, 15], and by con- blood results, obtun;dation, awareness, peritoneal irri-
sulting with a trauma surgery expert (Dr. John Clarke). tation, free air, distended abdomen, tenderness, guard-

ing, rebound-tenderness, and ileus (TGRI), positive x-
The oot odeorte nework(Hyp hasas is vaues ray for lacerated diaphragm, right and left renal ivp

the different hypotheses identified by the geometric reut,adhmtra
reasoner, as well as the value "other" which represents Data was not readily available for estimating the con-
the fact that the geometric reasoner may not capture all ditional probabilities of disease given anatomic struc-
injury possibilities. The hypotheses from the geomet- ture injury, and symptoms given disease, so these prob-
ric reasoner are considered to be equally likely, while abilities were elicited from the trauma surgery expert.
"other" is considered less likely and has a fixed prior Over 400 probabilities had to be obtained in this man-
probability of 1%. The network has nodes that repre- ner. Although studies have shown that expert estimates
sent injury to the lungs, heart, trachea, descending tho- may not be optimal for diagnosis [5, 12, 16], methods
racic aorta, diaphragm, liver, intestine, ,stomach, and exist for augmenting the estimates of experts with em-
kidneys. Two nodes (right-chest-wound and left-chest pirical data as it becomes available over time [6].
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Diagnostic reasoning for a trauma case is performed TEST RESULTS
after the geometric reasoner calculates the probabil-
ities of injury to anatomic structures for that case TraumaSCAN was tested on 26 gunshot wound cases
and writes these probabilities to a database using the obtained from MCP-Hahnemann University for which
XML Bayesian Interchange Format (XMLBIF). The the correct disease diagnoses were known. Each case
database already contains the expert's estimates for included a written set of findings observed by the
the conditional probabilities ofdifferent diseases given trauma team at the time the patient was cared for and
anatomic structure injury and of different symptoms the -set of injuries or diseases diagnosed. Informa-
given diseases. The diagnostic reasoner reads in these tion about external wound locations for each case was
probabilities and can then compute the posterior prob- marked (by a physician or research assistant) on paper
abilities of disease and anatomic structure injury. Ob- diagrams, each depicting anterior, posterior, left lateral
servations about patient findings can be made prior to and right lateral views of a torso. Information about
computing the posterior probabilities, but the compu- bullet locations, if any, were also indicated based on
tations can be performed in the absence of such obser- radiology reports. These wound and bullet locations
vations. were transcribed onto TraumaSCAN's 3D torso model

to determine the system's assessment ofthe cases.

BI-DIRECTIONAL COMMUNICATION Table 1 gives TraumaSCAN's true positive rate, true
negative rate, false positive rate, and likelihood ra-

Communication between the diagnostic and geometric fio at different thresholds for the presence of disease
reasoners is based on updating databases of anatomic for the 26 gunshot wound cases. These results are
structure injury probabilities. As described above, for assessments performed by the system using in-
PpathSCAN updates a database that provides the ini- formation about surface wound and bullet locations
tial probabilities required by the diagnostic reasoner. before patient findings are entered into the Bayesian
Once the diagnostic reasoner computes the posterior network (i.e., the Bayesian network reasoned with in-
probabilities for the network nodes, and identifies the complete information). The corresponding area un-
most plausible hypothesis for a trauma case, it in
turn updates a database that is read by PpathSCAN. Thresh- TPR TNR FPR LR
PpathSCAN then displays the posterior probabilities old (%) (%) ( (%) _____
of anatomic structure injury and the posterior proba- 0 100.00 0.00 100.00 1
bilities for each disease represented in the Bayesian 10 80.00 93.69 6.31 12.69
network. It also alters the colors of those anatomic 20 66.67 94.59 5.41 12.33
structures in the 3D torso model that have nodes rep- 30 64.44 94.59 5.41 11.92
resenting their state of injury in the Bayesian network 40 64.44 94.59 5.41 11.92
as follows: 50 64.44 94.59 5.41 11.92

60 57.78 95.50 4.50 12.83
* Anatomic structures with a posterior probability 70 46.67 95.50 4.50 10.36

of injury that is in the range [0,0.25) are shaded 80 22.22 97.30 2.70 8.22
green. 90 6.67 99.10 0.90 7.40

* Anatomic structures with a posterior probabil- 100 0.00 100.00 0.00
ity of injury that is in the range [0.25,0.50) are Table 1: Pre-finding diagnostic accuracy results at dif-
shaded yellow. ferent thresholds

* Anatomic structures with a posterior probabil-
ity of injury that is in the range [0.50,0.75) are der the receiver-operator characteristic (ROC) curve is
shaded orange. 0.8647. An interesting implication if this trend holds

* Anatomic structures with a posterior probability on a larger set of cases is that physicians may not have
of injury that is in the range [0.75, 1.0] are shaded to enter large amounts of data on the patient's state to
fuchsia. obtain a good diagnostic outcome.

Evaluation of the system after patient findings were

These colors were selected in such a way that there is entered produced a higher true positive rate overall,
no correspondence between them and the normal col- but also a slightly higher false positive rate (Table 2).
ors of any anatomic structure in the torso model. They The area under the ROC curve in this case was 0.8801.
are intended to provide visual cues as to the suspected Some ofthe findings recorded by health care providers
severity of injury to a structure. and used in TraumaSCAN turned out to be erroneous
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Thresh- TPR TNR FPR LR
old (%) (%) (%) (%)

0 100.00 0.00 100.00 1
10 91.11 87.39 12.61 7.22
20 82.22 87.39 12.61 6.52
30 80.00 87.39 12.61 6.34
40 80.00 90.09 9.91 8.07
50 75.56 90.09 9.91 7.62
60 73.33 90.99 9.01 8.14
70 71.11 93.69 6.31 11.28
80 62.22 95.50 4.50 13.81
90 24.44 98.20 1.80 13.57
100 0.00 I100.00 0.00

Table 2: Post-finding diagnostic accuracy results at
different thresholds

and this accounts in part for some ofthe false positives.
However, in the case of descending thoracic aortic in-
jury, analysis suggests that the model for this disease
in the Bayesian network may have been too simplistic.
An arc connecting this node to a node representing the
presence or absence of weak arm pulses is needed in
addition to the arc connecting it to weak leg pulses.

CONCLUSION

We have presented TraumaSCAN, a system for assess-
ing penetrating trauma in the face of limited informa-
tion about patient findings, and uncertainty about the
extent of injury. Initial results suggest that the system
holds promise as a diagnostic tool. However, a signif-
icantly larger number of cases would have to be eval-
uated in order to fully assess TraumaSCAN's diagnos-
tic abilities. A unique feature ofTraumaSCAN is that
it brings together two qualitatively different forms of
reasoning, geometric and probabilistic reasoning, and
uses the strengths of each reasoning method to rein-
force the other.
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