
Boosting Nai ve Bayesian Learning on a Large Subset of MEDLINE®

W. John Wilbur, MD, PhD

National Center for Biotechnology Information (NCBI)
National Library of Medicine, Bethesda, MD 20894

We are concerned with the rating ofnew documents ranking as possible. All of our test sets are con-
that appear in a large database (MEDLINE) and are structed to have one hundred positive examples and
candidates for inclusion in a small specialty data- we rate a method by its average precision on the top
base (REBASE(VJ. The requirement is to rank the one hundred ranks. This form of scoring is done be-
new documents as nearly in order of decreasing cause we expect a user of our system will not examine
potential to be added to the smaller database as more than about one hundred documents and we
possible, so as to improve the coverage ofthe smaller wish to optimize for the relevant material they will find
database without increasing the effort of those who in that interval. Also we have only studied the par-
manage this specialty database. To perform this ticular data set on which our application is based.
ranking task we have considered several machine This too is motivated by practical considerations.
learning approaches based on the nai ve Bayesian Most methods of machine learning that have been
algorithm. We find that adaptive boosting outper- published have shown good performance on some
forms nai ve Bayes, but that a new form of boosting data set and it is abundantly clear that what works
which we term staged Bayesian retrieval outperforms well on one data set may not work as well on another.
adaptive boosting. Staged Bayesian retrieval in- We have therefore studied the data that is most perti-
volves two stages of Bayesian retrieval and we fur- nent to our application.
ther find that if the second stage is replaced by a
support vector machine we again obtain a signifi- EVALUATIONAMEHOD
cant improvement over the strictly Bayesian ap- The version of REBASE (a restriction enzyme data-proach. base) we study consists of 3,121 documents con-

VINRODUCI'ION prising titles and abstracts mostly taken from the
research literature. The majority (all but 692) of these

Many methods of machine learning have been tested documents are contained in the MEDLINE database
on document classification tasks and we would refer and have Medical Subject Headings (MeSH®) as-
the reader to several articles that summarize some of signed to them. Each REBASE document was used as
the recent work in the field 1-4. Virtually all of this a query in a form of vector cosine retrieval to obtain
work has been done on data sets consisting of no from the MEDLINE database the approximately 200
more than a few thousand documents. However, we closest neighbor documents (scores were required to
work with large data sets (as many as eleven million be greater than 0.1). When this set was pooled
documents, the current size of MEDLINE). In such 117,476 MEDLINE documents were obtained that did
large sets neural nets, classification trees, rule-based not belong to REBASE but all had some level of simi-
systems, or support vector machines are difficult or larity to at least one document in REBASE. We de-
impossible to train in realistic time. On the other hand note this set by NREBASE as they consist of docu-
naive Bayes is a very efficient machine learning ments that have already been rejected for membership
method, perhaps the most efficient method currently in REBASE. Thus REBASE provides positive exam-
available5. Our aim has therefore been to find ways of ples and NREBASE negative examples of what we
improving the performance of naive Bayes with as wish to learn by machine methods.

ltdreiei e apa5 hIn order to test the results of learning a form of cross
validation was used. One hundred documents were

shown that Adaboost6 can be used to improve on randomly selected from REBASE, denoted RTEST,
naive Bayes, with naive Bayes as the weak learner. and the remainder denoted RTRAIN. The same frac-
We find that a different form of boosting can yield tion of NREBASE (3,764 documents) was likewise
even greater improvement. randomly selected for testing and denoted NRTEST
A word is in order about our method of evaluation. while the remainder were denoted NRTRAIN. The
All of our methods produce continuous scores rather training and test sets were thus composed as
than binary classifications. This is important because TRAIN=RTRAIN UNRTRAIN
our purpose is to produce a ranking of the test set (1)
with the positive examples as near the top of the TEST=RTEST NRTEST
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This whole procedure was repeated one hundred sult9-11. We have found that performance is im-
times to produce a set of one hundred training and proved with this learner ifwe remove from the scoring
testing pairs (TRAIN*, TEST, ).-. This collection any terms with weights less than 1.5 and we will refer

was udhuoo sufrevui f to this as feature selection (weight > 1.5). Such feature
was used throughout our study for the evaluation of selection (weight>1.5) is used implicitly in all the
all learning methods. Any particular method was applications of naive Bayes in the following algo-applied to learn on TRAIN, and the results of leam- rithms.
ing were applied to rank TEST, . The result of ranking Adaptive boostng ofnar ye Bayes
TESTi was computed as the fraction of the first one We have implemented the Adaboost algorithm of
hundred ranks filled with members of RTESTi, i.e., Freund and Shapire6 with the naive Bayesian algo-
the precision, prec , over the top one hundred ranks. rithm as the weak learner. The general form of the
The figure of merit for a particular method was then algorithm is as follows.
the average over all numbers {prec}100 Input: Sequence of training examples {VA, y
To test the significance ofthe difference between two y, the label of xi;
learning methods a bootstrap method was used7. This Initial normalized set of weights {wI}1 assigned to
method is a shift method8 based on re-sampling the the training examples;
training-testing pairs and comparing the two methods WeakLeam, a weak learning algorithm;
on each re-sampling. This re-sampling is done 10,000 Integer Tspecifying the number of iterations.
times in our case. This results in a significance test
well able to detect differences significant at the 1% Do fort = 1, .. ., T
level. 1. Normalize the weights to probabilities,

N

AIGORrIHMS = -/1
Throughout our discussion we deal with documents 2. Call WeakLearn, providing it with p' and
and each document is preprocessed into a list of key {( ,y 4lv, and get in return a hypothesis
terms. This preprocessing step involves extracting
individual words from titles and abstracts and dis- h,X -4[0,11
carding those on a list of 310 common stop words. No N
stemming is done. We have then considered two 3. Calculatetheeffor £, (4)-yi
options. Option SINGLE in which all single nonstop 4. Set = g /1(1-4)E
terms and all MeSH terms are taken as the set of key 5. Update the weight vector by
terms to represent a document. Alternatively, option +=W_-> I1i-I N
DOUBLE in which all single nonstop terms, and all

O combined,hypothesis
adjacent pairs of nonstop terms without punctuation Outut: combined hypothesis
between, together with all MeSH terms are taken as TX)l T l
the set of key terms to represent a document. Given a h/x) =
particular key term representation, a document is
considered to have an attribute corresponding to The combined hypothesis can be used for ranking or
each key term occurring in the database of all docu- for categorization by defining
ments. The value of the attribute corresponding to a categ|ryf()=1, ifhf(x)>I/ 2 (2
particularkey term is I if the term is in the document caeoy~0, otherwise
and 0 otherwise. Thus each document is represented In the catego form Freund and Shapire6 show that
by a long vector consisting mostly of zeroes, but gthe categorfotheu and Shypotei show the
sparsely populated with l's corresponding to the the error rate of the combined hypothesis obeys the
terms that actually occur in that document. bound
NaF ve Bayes E5.2TH16=11-4). (3)
The naive Bayesian algorithm is based on the %- The Adaboost algorithm leaves ambiguity at two
sumption that the values of attributes are distributed points and we must fill in the details. First, there is the
independently within the classes to be learned. Thus necessity to define the function h, on all training and
each term can be weighted separately based on its testing documents at each iteration of the algorithm.
distribution in the training set. One scores documents Our procedure for defining h is as follows. On a
in the test set by summing the weights of the terms . . .

d

. . ..... . . .. . gl~~~ven iteration when the weak learner has beenthey contain and then ranks the documents based on g
t-'heresultant s Fr dtals te readr may trained it is used to assign a score to each training

919



document. The scores are used to rank the training have scores > log(l9) and denote this set by
documents. We then apply the pool adjacent viola- NRTRAIN*. The use of log(19) is motivated by the
tors algorithm12' 13 to find that probability distribu- following argument. If one assumes a neutral prior
tion prob, which gives the probability that a docu- and that the naive Bayesian model perfectly fits the

data, then Bayes stage 1 scores yield a prediction that
ment is in RTRAIN, which is non-decreasing as a a doumn isi TANwtrbblt> . > . . . . , ,. . ~~~~~adocument iS in RTRAIN with probabilityfunction of score, and which assigns maximal likeli-
hood to the training data. For any training example x, p(x E RTRAIN ) =1/ (I+e-1 (x)). (9)
we then define It is then not difficult to show that
h (x) = prob,(score(x,)) (4) p(xe RTRAIN)20.95 if and only if

For testing we must also be able to compute h, (xi) score(x)> log(19) where log is the natural log.
This works well in our setting given the relative sizes

when xj is a test document. For this purpose we of the sets RTRAIN and NRTRAIN. With a different
define data set the procedure may require some modification
ms =MaxxE.uN score(X, (5) for best results. Typically NRTRAIN* has about 2000,IETRAIN ~~~~~~~~documents in it. They represent those documents inThen we define a function f, on the test set scores NRTRAIN that based on stage 1 scoring have a high
by probability ofbelonging in RTRAIN.

ms, if ms < score(xj ), else We next train naive Bayes on RTRAINuNRTRAIN*.
f1 (score(xy )) = Min(score(x1 )/x, e TRAIN & (6) The ranking of TEST is now done in two steps. First

score ft > score (xj TEST is divided into two disjoint sets: TEST# which
1score(x,) >score(xj)Jconsists of those documents whose stage 1 scores

The function f, assigns a training set score to each are less than or equal to log(19) and the remainder,
test set score and this allows us to extend h, to the TEST*. Members of TEST# are ranked by their stage

testsetdocmenb 1 scores. Members of TEST* are ranked by the com-
htest)setpdoumentscoreftj .by) bination scorel+3*score2 of the score from stage I
h,(x1) = pro#4f(Rscore(x1))) . (7) and the score from stage 2. Finally, all members of
The second place in the iterative cycle where we must TEST* are ranked above the highest scoring member
define behavior is after the weights have been up- of TEST#. Here the factor 3 in the formula
dated. At this point it is left open how one selects a scorel+3*score2 is empirically determined. It was
subset of the training set on which the weak learner is chosen to give the best results. However, the results
trained in the next cycle of the algorithm. The only are not very sensitive to its precise value.
consideration is to try to obtain a low error, q, in the Staged Bayes-Svm
next step of the algorithm. Our procedure at this point The first stage here is identical to Staged Bayes just
is to rank all training documents in order so that the described and the selection of the set NRTRAIN* is
errors of the just completed predictions form an n- done in the same way using the score cutoff log(19).
creasing sequence {Ih, (.N) yYi} (y, is the label we In the second stage, in place ofnaive Bayes, we train

a linear support vector machine on the set
are trying to predict, I if in REBASE, 0 if in RTRAINuNRTRAIN*. The resultant scores are then
NREBASE). The weights have already been normal- used as stage 2 scores to rank the test set just as in
ized at this point to form the probabilities {p' } and we staged Bayes, with the exception that we use

reorder these probabilities to correspond to the rank- scorel+10*score2, instead of scorel+3*score2 in
ing based on the errors just described. The sum of the ranking TEST*. The value 10 was chosen to offset

the smaller size of the scores coming from the linear
i is 1 and we choose the largest J such that support vector machine as compared with naive

, p, < 0.2 (8) Bayes trained on the same second stage sets.
We use Platt's14' 15 sequential minimal optimization

and the set {x;},, is removed from TRAIN and the method of training support vector machines. We
Bayesian learner is trained on the remainder in the have followed the author in taking the error tolerance
next iteration. for the KKT conditions to be 0.01. We tested 1.0, 0.5,
Staged naf ve Bayes 0.1, and 0.05 as values for C (the bound on LagrangeWeSfirstaged innalive Bayes the whole training set

multipliers) and found that all gave close to the same
We first train naive Bayes on the whole training set results with 0.1 and 0.05 as the best and essentially
and score both the whole training set and the whole eqiantThvlu0.1geadcrsdprfm
test set. This scoring completes stage 1. For stage 2 equivalent. The value 0.01 gave a decreased perfonii-west select.ThisfscorinompleTRA ste t e 1.Fou sthage 2 ance by 0.5%. In the work reported here we use a C of
we select from NRTRAIN just those documents that 0.1. In order to obtain efficiency in training we prune
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the set of attributes by using a chi-square criterion2. ceive nonzero weights in the SINGLE case and 75,000
Each term is assigned the chi-square value coming in the DOUBLE case. When we remove weights that
from the contingency table relating RTRAIN versus fall below 1.5 in absolute value the 75,000 in the dou-
NRTRAIN and term-present versus term-absent. ble case are reduced to about 35,000 weighted terms.
Those termns are retained that have a chi-square value In this way we obtain a richer representation of the
greater than 3.84. The number 3.84 is chosen as the documents and the terms are selected for significance.
95% confidence limit that terms actually have a distri- The result is improved performance and it is based on
bution correlated with the division a purely statistical phrase selection. We are led to
RTRAIN/NRTRAIN we desire to learn. The result is hypothesize that we are seeing some of the benefit
roughly from 800 to 900 terms coming from the 5,000 that Cohen and Singei4 have found with RIPPER and
training documents. With the specifics stated here, a sleeping experts for phrases which incorporate fea-
typical training run requires about 40 minutes on a tures more complex than single words.
sun ultra 10 processor. This must be repeated for each The implementation of Adaboost that we describe in
of the one hundred training-testing pairs in order to the ALGORITHMS section is based on naive Bayes,
rate a particular choice ofparameters. DOUBLE, weight>1.5. It is actually quite efficient. The

error at each retraining is on the order of 0.01 and this
RESULTS leads to a decrease in the error limit6 on the training

The average precision over the top one hundred set by a factor of 0.2 for each iteration. After eight
ranks based on the one hundred test sets are con- iterations the error on the training set must go to zero,
tained in Table 1 for the different methods tested. but we find slightly better performance by stopping

the training after six iterations. One could hope for a
Table 1. Test resultsfor the six different algorithms greater improvement in performance from the use of

examined. Adaboost. Elkans5 reports results of Adaboost on

Algorithm Average precision over two data sets. On the "German credit" data set (1000
top 100 ranks examples) he observed a decrease in error rate from

Naive Bayes, SINGLE 71.4% 25.1% to 24.0% after three rounds of boosting and onNalive Bayes,SINGLE 71.40/o the "Diabetes in Pima Indians" data set (200 examples)
error decreased from 20.3% to 18.7% after ten rounds

Naive Bayes, DOUBLE 74.6%/o of boosting. Though these data sets are much smaller
than ours, the improvements seen with boosting seem

Naive Bayes, DOUBLE, 76.5% quite comparable to our results. Clearly the problem is
weights>1.5 not difficulty learning the training set, but rather an

Adaboost, naive Bayes 77.8% inability to generalize that learning to the test set. It
as WeakLearn appears that the combined hypothesis of Adaboost is
Staged naive Bayes 78.90/o simply too complex to generalize as well as we would

desire.
Staged naive Bayes- 80.0%/o The essence of boosting is to train and evaluate the
Svm training and then train again focusing on the problem

cases that were found on the previous training.
The algorithms are listed in order of increasing effec- Staged Bayes does this in two steps. The first training
tiveness in Table 1. We used the bootstrap method is routine. The second training involves all the posi-
mentioned in the EVALUATION METHOD section to tive examples and about 2,000 negative examples that
test all consecutive pairs of algorithms and found that the first training has been unable to separate from the
all differences are significant at the 1% level. positive examples. Depending on the composition of

the training set, the exact composition of the set on
DISCUSSION which the second training takes place could vary. In

our case we keep all the positive examples because
Feature selecton IS an smportantlissue in applying a they are relatively few in number. There are two rea-
learning method. Bayesian learning has commonly sons, which suggest themselves as to why staged
been done with single words. Dumais, et al.1, expen- Bayes improves on our version of Adaboost. First,
mented with the addition of syntactic phrases, but with only two training cycles the resultant combined
found no benefit. Here we have included all contigu- hypothesis is much simpler and this could lead to
ous word pairs without punctuation or stop words in improved geineralization. Second, Adaboost trains
moving from SINGLE to DOUBLE and see a strong repeatedly on subsets of the original training set and
benefit. This greatly increases the number of possible then these hypotheses take part in the scoring for any
features from 265,234 to 1,562,939 for the 120,597 member of the test set. On the other hand our p-
documents. Only about 28,000 features actually r- proach in staged Bayes is to perform the second
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training on a select subset and then to apply the
criterion used to select that subset also to the test set.
In this way we restrict the scoring done based on the
second training to that part of the test set most like
the examples used in its training. We believe this
could result in improved performance.
Having found that Staged Bayes leads to desirable
performance, it is a short step to substitute a support
vector machine for the second stage Bayes learning.
This still preserves a good level of efficiency on our
data set, because the training set only consists of
about 5,000 documents. This makes good intuitive
sense, because the Bayesian first stage learning is
used to remove from further consideration training
examples that are so far from the margin between
positive and negative examples that they would not
likely function as support vectors in the training of a
support vector machine even if applied to the whole
training set16.
In future work we hope to investigate whether one
may use more stages in Staged Bayesian retrieval to
further improve performance and whether the tech-
nique can be better understood theoretically.
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