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In an era when whole organism genomes are being
routinely sequenced, the problem ofgene finding has
become a key issue on the road to understanding.
For eukaryotic organisms a large part oflocating the
genes is accomplished by predicting the likely loca-
tion ofsplice sites on a DNA strand. This problem of
splice site location has been approached using a
number of machine learning or statistical methods
tailored more or less specifically to the nature of the
problem. Recently large margin classifiers and
boosting methods have been found to give improve-
ments over more traditional methods in a number of
areas. Here we compare large margin classifiers
(SVM and CMLS) and boosted decision trees with the
three most common models usedfor splice site detec-
tion (WMM, WAM, and MDT). We find that the
newer methods compare favorably in all cases and
can yield significant improvement in some cases.

INTRODUCTION

Over the past decade as DNA sequence data on many
organisms has begun to accumulate, increasing efforts
have been made to mine this data for the genes that
are responsible for phenotype and in many cases are
the key to increased understanding of diseases. Genes
are typically recognized in a two-step process. First
different signal and content recognizers are crafted
that predict the likely location of start sites, splice
sites, stop sites, exonic regions, and intronic regions,
etc. Then a generalized hidden Markov model is used
to find the most likely gene locations among all the
possibilities1' 2. As the field has developed it has be-
come apparent that for eukaryotic organisms accurate
splice site detection is critical to gene finding and that
if this task can be successfully accomplished fairly
simple methods may use the results for successful
gene prediction3-5. Thus splice site recognition is a
task important in its own right.
A number of different approaches have been tried for
the detection of splice sites. Neural networks have
been implemented6-8. Solovyev and Salamov9 based
linear discriminant functions on a number of different
local sequence characteristics around potential splice
sites. But much of what has been done has been
based on three somewhat more general approaches to
sequence classification. First, the position specific
weight matrix approach (WMM) proposed by
Staden'° has been used2 4' 1j. This model assumes

independence of bases along the sequence. The fact
that there are dependencies between adjacent bases
along the sequence has led to a second model by
Zhang and Marr'2, the weight array model (WAM).
This model or variants of it have found use in detect-
ing both donor and acceptor sites2' 11 13. 14. Finally, the
maximal dependency tree (MDT) has been proposed
by Burge and Karlin2. This model accounts for de-
pendencies of higher order and not limited to adjacent
bases. It also finds use in current systems2 3.
Our interest is in the models WMM, WAM, and
MDT. The reasons are, first, the models are relatively
simple and easily trained. Second, judging by the
number of adherents, they have been the most suc-
cessful approaches to splice site detection. Our goal is
to compare these three models with each other and
with approaches that have recently emerged in the
field of machine learning as having superior perform-
ance. Wide margin classifiers in the form of the Sup-
port Vector Machine (SVM)'s and the CMLS algo-
rithm'6 have shown outstanding performance on text
classification tasks. Support vector machines have
also been used successfully for image recognition,
protein homology detection, and gene expression
array analysis". Boosting is a technique that has re-
cently been applied to text categorization tasks'8-22.
Here we apply the Adaboost algorithm with decision
trees as the weak learner as described23'24

ALGORITHMS

Weight matrix model (WMM) and naive Bayes'.
These two approaches are closely related. The weight
matrix model considers for each position i in the
sequence and each base s the probability pi (s) that
base s occurs at position i in splice sites. Then a
weight is calculated as a log

wi (s) = log pi (s) (1)
The score for a given sequence is just the sum of the
weights at each position in that sequence. This differs
from naive Bayes' in that naive Bayes' also uses the
probability that a base occurs in non-splice sites.
Further Bayes' adds a weight for the absence of a
base from a position as well as the weight for the base
that is present. For more details on naive Bayes' the
reader may consult refs22' 25. We include naive Bayes'
because it is commonly used as a baseline with which
to compare other methods.
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Weight array model (WAM). The WAM accounts
for dependencies between adjacent bases in the se-
quence. It adds to the weights for the WMM score
the additional weights

wi (s,s') = iog[p, (s,s')/(pi (s)pi, (s'))] (2)
that account for any interaction between base s at
position i and base s' at position i + 1 . See ref'2.
Maximal Dependency Tree (MDT). The MDT
begins by computing a consensus sequence for splice
sites based on the training data and the positions to be
considered. Let Ci be the consensus indicator func-

tion so that Ci (sequ) is 1 or 0 depending on whether
sequ has the consensus base at position i or not. For

any other position j let Xj (sequ) equal the base
that occurs in sequ at position ]. Define

2 (Ci,Xj) to be the *2 statistic for Ci versus X
and for any position i define

Si =Ej,iX2 (Ci,Xj ).(3)
Then perform the first split at that position i with
maximum value Si. In the split send all sequences
with the consensus base to one child node and all the
other sequences to the other child node (a binary
tree). At each child node carry on the process of
finding the sums in (3) and splitting at the position
with maximal sum. Do this recursively on child nodes
until one of three conditions is satisfied: i) in this
branch all available positions have already been used
for splitting, ii) no significant dependencies are found
between remaining positions, iii) at least one child
node would have fewer than 175 sequences, which
would be too few to train a WMM model. Once split-
ting is completed a WMM model is trained at each
leafnode for scoring. See ref .
Support Vector Machine (SVM) and CMLS. De-
fine the loss fimction

(4)h(z) ll-zlz<

Assume we are given training data {(Ii,yi)}. where
y, is 1 or -l depending on whether the data point xi
is classified in the + or the - class. For SVM one
seeks that vector iw that minimizes

h*(yiX-.w_ 1)+AIli (5)
We solve this problem using Platt's sequential mini-
mal optimization algorithm26 27. We have found A = 5
to work well ( C = 0.1 in the usual treatment26' 28). For
the CMLS algorithm one seeks that vector iw that
mnmuzes

ih(yixiwV_l)]2 + A1ji12 (6)

The method of solution is a sophisticated gradient
descent as given by Zhang and Oles'6. We have found
A = 10-5 to work well for our data.
Boosted decision trees. We use an improved version
of Adaboost" and boost binary decision trees where
the splitting criterion is designed to minimize the
error limit computed in Adaboost. We have examined
trees of depths 1-5 and have found depth 3 to give the
best results and that is what we report here. There is
no set limit to the number of rounds of boosting to
use in learning. However, in examining many rounds
ofboosting one generally sees improvement early and
then a more or less stable performance with some
oscillation, which appears due to noise. We apply an
adaptation of the "one standard error" rule29. We
calculate the best performance in the first 100 itera-
tions and then calculate the standard deviation of the
score over the next 1000 iterations. We then take the
model that results from the fewest iterations and pro-
duces a score within this standard deviation of the
best score in the first 100 iterations.

TESTING METHODOLOGY

Test Sequences. In order to study splice site recogni-
tion, a large set of true splice sites and a large set of
non-splice sites were needed. These were constructed
from data associated with Genbank human contig
build 26.0. First, 14,047 human RefSeqs (mRNAs)
were aligned with all human contigs and their com-
plements (both strands). Those alignments that in-
volved at least 1 kb or at least 50% of the bases for a
RefSeq were considered valid. Any RefSeq that pro-
duced a unique valid alignment with 100% coverage
of the sequence was marked as valid. From the unique
alignments of such valid RefSeqs the splice sites
defined by adjacent exons with a 100% match to the
contig were extracted to form a set of donor sites and
a set of acceptor sites. Additional selection was done
to obtain a set of non-splice sites. Non-splice sites
were randomly sampled uniformly over the length of
contigs with the exclusion of any sites already identi-
fied in RefSeq alignments as possible true splice sites.
Possible true splice sites were identified by a valid
alignment in which adjacent exons achieved at least
95% identity with the contig. Following this selection
process all sites were screened and any containing 'N'
in the sequence were discarded. The result is a set of
35,136 donor sites, 35,097 acceptor sites, and
767,800 non-splice sites. The alignment program
used to define these sets for testing purposes "ge-
nome_alignments.c" was written by Richa Agarwala
(richa@helix.nih.gov) at NCBI.
Test Sets. All splice and non-splice sites consist of
50 bases, 25 bases before the proposed splice num-
bered negative and 25 bases after the proposed splice
numbered positive. From this data we constructed
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four test sets:
DN1: Donor set 1 consisting of all donor sequences
and all random sequences cut down to [-3,6] or nine
bases along the sequence.
DN2: Donor set 2 consisting of all donor sequences
and all random sequences [-25,25] (no reduction in
sequence length).
ACl: Acceptor set 1 consisting of all acceptor se-
quences and all random sequences cut down to
[-20,3] or 23 bases along the sequence.
AC2: Acceptor set 2 consisting of all acceptor se-
quences and all random sequences [-25,25].
Sets DN1 and ACI are defined to correspond to the
sequence segments used by Burge and Karlin2. Sets
DN2 and AC2 use more of the sequence and allow us
to assess the potential utility of longer sequences in
identifying splice sites.
For learning purposes one must identify the features
to be used. We mostly take the standard approach
where a feature is the occurrence of a base at a par-
ticular position in the sequence being considered.
Thus for AC2 each sequence possesses fifty features.
For this example there are 200 possible features
coming from the standard four bases "ACGU" and
fifty different locations along the sequence. However,
the occurrence of other letters such as 'Y' and 'R'
somewhat increases the number of possible features.
Only for the case of DN1 we have also considered a
pairs model in which features are pairs of positions
with the bases at those positions. In this case the
number of features is much greater.
In all cases there is no local weighting and a feature is
either present or absent.

EVALUATION

Our results are mostly given as lists of precisions at
the eleven recall values (0,10%, 20%, ...,90%, 100%)
and 11-point average precisions. These are calculated
in the standard way30. All test sets have been ran-
domly divided into thirds and all results are produced
by three-way cross validation.

RESULTS

We have studied DN1 most intensively largely be-
cause it is the data type for which the MDT learning
model was proposed. We applied all learning models
to it in standard form and also Bayes, SVM, and
CMLS to it with pairs of bases as features. Results for
single base features are shown in tables 1 & 2.

A comparison of these results suggests that WMM
and Bayes are equivalent in performance. They are
both outperformed by WAM, MDT, SVM, and
CMLS, which again are approximately equivalent.

Table 1. General machine learning techniques
applied to DN1. Precisions at given recall levels.

Rec- Bayes SVM CMLS Boost
all (single) (single) (single) iter=83
0.0 0.997 0.997 0.997 0.999
0.1 0.990 0.989 0.989 0.990
0.2 0.987 0.985 0.986 0.987
0.3 0.982 0.983 0.983 0.985
0.4 0.978 0.980 0.981 0.981
0.5 0.971 0.976 0.975 0.979
0.6 0.961 0.970 0.971 0.973
0.7 0.948 0.962 0.962 0.968
0.8 0.928 0.949 0.948 0.959
0.9 0.902 0.921 0.922 0.939
1.0 0.045 0.045 0.044 0.047
Avg 0.881 0.887 0.887 0.891

Table 2. Models historically
site detection applied to DN1.

proposed for splice

Recall WMM WAM MDT

0.0 0.997 0.997 0.994
0.1 0.990 0.990 0.989
0.2 0.987 0.987 0.987
0.3 0.983 0.983 0.983
0.4 0.979 0.980 0.978
0.5 0.973 0.975 0.973
0.6 0.963 0.968 0.967
0.7 0.949 0.960 0.961
0.8 0.929 0.949- 0.950
0.9 0.897 0.914 0.926
1.0 0.045 0.048 0.045
Avg. 0.881 0.886 0.887

Boosted trees at depth three outperform all of these
methods. We looked at the pairs model and found 11-
point averages for Bayes 0.884, SVM 0.890, and
CMLS 0.892. Thus all three improve and the latter
two methods give a result approximately as effective
as boosted trees with single base features. Because
the pairs formulation is expensive to create and to
train on, we did not consider it further.
We processed DN2, AC1, and AC2 with the standard
features and all the learning methods. The results are
shown in Table 3 along with the results for DN1 for
comparison. We also performed statistical tests be-
tween the best (Boost) and the next best (CMLS)
methods for all four test sets using the bootstrap shift
precision testP. All of the differences are statistically
significant at the 5% level.
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Table 3. 11-point average precisions for the vari-
ous test sets and splice site detection algorithms.

DN1 DN2 ACi AC2
Bayes 0.881 0.878 0.864 0.867
SVM 0.887 0.893 0.869 0.878
CMLS 0.887 0.893 0.869 0.878
Boost 0.891 0.896 0.876 0.884
wMM 0.881 0.886 0.858 0.860
WAM 0.886 0.870 0.866 0.859
MDT 0.887 0.876 0.826 0.819

Several observations are pertinent here. First, includ-
ing more sequence data does not seem to help but
rather hurts performance of the WAM and MDT
models. On the other hand the general learners are
almost always able to improve their performance with
more data. Second, boosting always gives the best
result for each test set. In particular the best donor
detection is with boosting on DN2 and the best ac-
ceptor detection is with boosting on AC2.
From a practical point of view one may expect to use
any method of splice site detection to limit the num-
ber of gene models that need be considered in the
process of gene identification. For this purpose one
would not only like splice site detection to be sensi-
tive, but also specific out to very high recall levels.
To show the potential advantage of the general mod-
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els for this purpose we have compared the best his-
torical model result with the best general learner
result for both donor and acceptor identification.
These are contained in Figures 1 and 2. One sees an

evident advantage in the Adaboost algorithm here.

DISCUSSION

One obvious question raised by the data in Table 3 is
why WAM, and MDT degrade when the sequence
segment considered is longer. While we cannot give a

definitive answer to this question, these models were
originally designed to give good performance in de-
tecting donor sites based on short segments of DNA
surrounding those sites [-4,+7] for WAM and [-3,+6]
for MDT. Information more distant from a donor site
is generally believed to be the result of a coding pro-
pensity or lack thereof and has been modeled by a
different method involving higher order Markov
processes3 4. What we have observed here is consis-
tent with this approach. It seems that SVM, CMLS,
and the tree boosting approach do not have the limi-
tations that are evident forWAM and MDT.
A second observation is that SVM and CMLS are
almost the same in performance. One might have
guessed that this would be the case based on the close
relationship between the solutions they find (see (5)
and (6)). In our experience CMLS usually has a slight
edge (evident if more decimal places are included in
the results). This was also noted on text classification
tasks'6. The really significant advantage of CMLS is
speed. What took us days to do with SVM we were
able to do in as many hours with CMLS.
Finally one cannot ignore the outstanding perform-
ance of Adaboost applied to decision trees. Boosted
decision trees have given some of the best results
reported in text classification32 33. Decision trees al-
low one to take account of dependencies between
features and boosting allows one to combine the
results of multiple trees in an efficient manner to
improve results. While the method is greedy in which
trees it considers it has the advantage of avoiding the
need to make all possible trees or look for all possible
dependencies between features. While we used a
splitting criterion proposed by Schapire and Singer23
we also tried the CART and C4.5 splitting criteria and
found essentially no difference in performance. Thus
it is the boosting and not the particular splitting crite-
rion that is producing the good performance.
Future work. In future work we hope to experiment
with the general learning algorithms on even longer
human sequence segments. It may be possible to push
performance even higher and make screening for
splice sites more efficient by this approach. In the end
we hope that our results will lead to an enhancement
of practical systems for gene identification. The gen-
eral learning methods may also provide some advan-
tage in dealing with the large number of different
organisms with their own peculiarities that are re-
sponsible for more and more sequence data. One may
hope to make use of this data without having to build
specific models to fit each such organism.
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