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1. Parameter selection for coherent modules 

 

We have two p-value threshold parameters to identify coherent modules in our method : one for 

expression coherence (τe) and the other for functional coherence (τf). Final predictions are made once 

coherent modules are identified with a specific combination of the two parameters (see subsection of 

‘Identification of coherent modules’ in Methods section in the main text). We varied the two parameters 

by taking all 16 combinations of four different statistically significant values : 0.001, 0.005, 0.01, and 

0.05 (Table S1). Then, a positive predictive value (PPV) was calculated for final predictions from each 

combination. For our parameter selection, PPVs were calculated with respect to the combined reference 

of the literature and conserved motif references (a total of 3962 TF-gene pairs; see Methods in the main 

text), rather than to calculate them for each of the references as in the main text (where we aimed at more 

careful analysis). The choice of the two parameter values, τe = 0.005 and τf = 0.05, in the main text was 

made on the basis of the highest PPV among the 16 combinations (the grey cell in Table S1). All those 

combinations gave rise to at least 100 TF-gene pairs. Note that increasing p-values does not necessarily 

provide a superset of or more predictions because functional intersection should be applied to more 

coherent modules dropping out some of coherent linker genes identified at lower p-value thresholds.  

 

Table S1. Positive predictive values (PPVs) from 16 combinations of the two parameters, τe and τf

τf 

0.001 0.005 0.01 0.05 

0.001 36 38 39.9 44.8 

0.005 41.5 44.1 45.8 53.1 

0.01 40.2 43.1 45.1 51.1 
τe

0.05 40.2 43.5 45.8 48.5 
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2. Further validation of our algorithm 
 

We presented the validation results for our proposed algorithm in the main text (see subsection 3.1 in 

Results section). We further assessed our 3-step algorithm against several other alternative methods from 

the three steps, (1) expression coherence, (2) functional enrichment, and (3) module intersection, by 

calculating the two performance measures, PPV and SNST (see Methods in the main text). Here we 

present results based on the combined set of the two references as in Section 2 above. Similarly to the 

main text, we first confirm the validity of our algorithm by assessing our predicted 177 TF-gene pairs in 

view of the ChIP-chip results alone we started with. We get higher PPV and lower SNST as we expected 

(‘ChIP_all’ in Figure S1). To be more conservative, we removed all uncharacterized genes from the ChIP-

chip results and the same conclusion was drawn (‘ChIP_anno’ in Figure S1).  

 

We also validated our method by checking our prescription at each step. That is, we asked if each 

prescription is a contributing factor for better prediction power. First, all genes which appear at least twice 

(naïve linker genes or NLG) among expression coherent modules without functional enrichment do not 

yield higher PPV at the expense of SNST (‘NLG_ECM’ in Figure S1), neither do all TF-gene pairs in 

coherent modules (‘All_CM’ in Figure S1). This means that functional intersection is an important step. 

We also tested those functionally enriched genes which appear at least twice in coherent modules. These 

so-called coherent weak linkers (or CWLs) are different from coherent linker genes (CLGs) in the main 

text because CLGs should appear in all coherent modules with the same enriched functional category. As 

seen in Figure S2, CWLs yield less PPV as well, suggesting that CLGs show a stronger signal. In addition, 

even if we take either naïve or functional linker genes from all initial TMs without incorporating 

expression data, they give rise to less PPV too (‘NLG_TM’ and ‘FLG_TM’ in Figure S1).  

 

In addition, we assessed significance of our increased PPV and SNST by randomly sampling TF-gene 

pairs from each alternative method as many as our predicted TF-gene pairs (177 pairs). A p-value is 

calculated as the fraction of 10,000 sets of 177 random TF-gene pairs which give rise to a performance 

measure equal to or larger than our proposed method. All p-values for both PPV and SNST are less than 

0.05 (see Figure S2 for part of this significance test results). Therefore, we conclude that our proposed 

method is valid. 
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Figure S1. Comparison of performance measures for alternative methods 
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Figure S2. Significance of our performance. We show distributions of PPVs (upper panel) and SNSTs 

(lower panel) for random sets of 177 TF-gene pairs from some of the alternative methods in Figure S1. 

The legend indicates the following : ‘ARP1’, from ChIP-chip original results with annotated genes only 

(‘ChIP_anno’ in Figure S1); ‘ARP2’, from all pairs in CMs (‘ALL_CM’ in Figure S1); ‘ARP3’, from 

coherent weak linkers (‘CWL’ in Figure S1). ‘ARP4’ is based on coherent linker genes from random 102 

ChIP-chip modules corresponding to our 102 expression coherent modules. 
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3. Overlaps with GRAM and MA-Networker 

 

Here we investigate overlaps of our method with the two other methods we compared in the main text. In 

Table S2 (and Figure S3), we compared PPVs for unique and overlapping predictions of GRAM, MA-

Networker, and our algorithms. In general, overlapping predictions are more reliable with respect to the 

literature reference compared with any unique predictions made by a single algorithm. This is not true for 

the case of overlapping predictions by all the three algorithms with respect to the conserved motif 

reference (41% in the red cell). Our total predictions and the overlap with GRAM yields better PPVs (the 

pink cells). In addition, our unique predictions achieve as good PPV for conserved motifs as the 

overlapping predictions (the green cells). On the other hand, the overlap of 469 pairs predicted by both 

GRAM and MA-Networker does not yield as good PPVs as our predictions (11.5% and 42% for the two 

references respectively; not shown in the table). 
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Table S2. Further comparison of prediction performances. We calculated PPVs for unique and 

overlapping predictions (TF-gene regulatory pairs) made by GRAM, MA-Networker, and our algorithms 

(named ‘bar’, ‘gao’, and ‘our’ respectively in the table). For two algorithms A and B, ‘A \ B’ in the table 

means the set of unique predictions made by A but not B and ‘A & B’ the intersection of predictions made 

by both A and B. ‘our final’ is the 177 final predictions from our algorithm and ‘overlap of all’ is the 

intersection of predictions made by all the three algorithms. ‘PPV_lit’ and ‘PPV_motif’ are PPVs with 

respect to the literature and conserved motif references respectively (see Methods in the main text). 

‘N_pairs’ is the number of TF-gene predictions in each column. See Figure S3 for diagrams of this table. 

 

 our final our \ bar bar \ our our & bar our \ gao gao \ our our & gao overlap of all

PPV_lit (%) 13.6 5.4 5.3 27.3 10.9 5.9 17.9 25.6 

PPV_motif (%) 48 46.8 23.5 50 50 38.3 44.8 41 

N_pairs 177 111 1452 66 110 1205 67 39 

 

 

 

Figure S3. Diagrams of prediction performances. The three diagrams represent Table S2 above. The pair 

of values in each parenthesis shows (PPV_lit, PPV_motif) of the corresponding column in Table S2. 
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4. Analysis of ChIP-chip data by Harbison et al. 
 

During revision of the manuscript, we applied our method to the larger ChIP-chip dataset by Harbison et 

al. (Harbison et al. 2004) to compare with the algorithm, ReMoDiscovery, (Lemmens et al. 2006) which 

used that dataset. 

 

Lemmens et al. (Lemmens et al. 2006) recently developed a module discovery algorithm which integrates 

ChIP-chip, gene expression and, in contrast to our method, conserved motif datasets in a concurrent way. 

We took the 134 TF-gene pairs from their highly reliable seed modules, the number of which is similar to 

that of our predicted pairs (108; see below). When we tried their algorithm locally, we were not able to 

find stringent parameter values (5 parameters) which would give a comparable number of predictions. 

The 134 pairs yield PPV of 12.9% with respect to the literature reference. Here, we did not consider the 

conserved motifs from Harbison et al. as a reference as this would be circular. 

 

With this new ChIP-chip dataset our method generated a total of 1989 modules (bicliques) with 5 or more 

target genes at a p-value threshold of 0.001 and applied to the same gene expression data by Spellman et 

al. as Lemmens et al. and the MIPS annotation dataset. As described in the main text, we varied our two 

parameter values of τe and τf to achieve the highest PPV of 14.8% at τe = 0.001 and τf = 0.005 with 

prediction of 108 TF-gene pairs. The increase of 1.9% of our method against 12.9% PPV by 

ReMoDiscovery may be insignificant considering the fact that we predicted 26 less pairs. The overlap 

between the 134 pairs of ReMoDiscovery and the 108 pairs of our method is 9 (3 of them are found in the 

literature reference). Note also that both 14.8% and 12.9% PPVs by the two methods are similar to 13.6% 

we achieved using the older ChIP-chip data by Lee et al. (Lee et al. 2002) in the main text. 

 

Therefore, we conclude that (1) using the improved ChIP-chip data by Harbison et al. does not yield a 

significant increase in prediction precision with respect to the literature reference we used and that (2) 

both our method and ReMoDiscovery which utilize three types of data sources achieve similar precision 

but make different predictions of TF-gene regulatory interactions. 
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