ROENTGEN: Case-based Reasoning and Radiation Therapy Planning*

. Jeffrey Berger
Artificial Intelligence Laboratory
University of Chicago
Chicago, IL 60637

ABSTRACT

ROENTGEN is a design assistant for radiation ther-
apy planning which uses case-based reasoning, an ar-
tificial intelligence technique. It learns both from spe-
cific problem-solving experiences and from direct in-
struction from the user. The first sort of learning is
the normal case-based method of storing problem solu-
tions so that they can be reused. The second sort is
necessary because ROENTGEN does not, initially, have
an internal model of the physics of its problem do-
main. This dependence on ezplicit user instruction
brings to the forefront representational questions re-
garding indezing, failure definition, failure ezplanation
and repair. This paper presents the techniques used by
ROENTGEN in its knowledge acquisition and design ac-
tivities.

INTRODUCTION

ROENTGEN is an artificial intelligence research effort
with the practical goal of developing a computerized
design assistant for radiation therapy planning (RTP).
ROENTGEN, the program, has the following character-
istics:

o It suggests suitable therapy plans for a given pa-
tient, points out possible problems with a plan
under consideration, explains the cause of failures
when they are observed, suggests repairs to cor-
rect a failed plan, and so on. It also has the ability
to design therapy plans autonomously.

e ROENTGEN learns therapy planning by remember-
ing successful plans. It functions as an assistant
and designs its own plans by being reminded of
these successful plans.

e ROENTGEN also learns from explicit instruction.
The human expert can tell the system what fea-
tures of a patient affect the design of a plan.
ROENTGEN will take these features into account
when looking for plans for future patients.

The kind of behavior we want for the system and
the nature of RTP have led us to build ROENTGEN as a
case-based reasoner[10]. Case-based reasoning (CBR)
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is an emerging research paradigm in Al. Researchers
have investigated the power of this paradigm in var-
ious domains including planning[4], law[1], design[7],
medical diagnosis[2, 8] and many other fields[5).

CASE-BASED REASONING

The primary source of knowledge for the CBR sys-
tem is its memory of past problem-solving experiences.

When solving a new problem, the CBR system re-
trieves a similar case from its case memory. Next, the
system adapts the solution from the retrieved case to
account for any important differences between the new
problem and the retrieved one. Then the system ap-
plies this suggested solution to the current problem. If
this solution works, the system is done. If this solution
fails, the system repairs it so that it correctly solves
the new problem. Finally, the system stores the new
solution back in its case memory in such a way that
the failure will be avoided in similar circumstances.
In this way, the system learns from its own problem
solving experience.

The motivation behind CBR is that it is often eas-
ier to repair a nearly-correct solution than to build a
fresh one from first principles. The paradigm takes
advantage of the regularity which exists in many nat-
ural problem areas: small changes in the features of
a problem usually result in small changes to the solu-
tion. ROENTGEN uses a case-based approach in order
to take advantage of this regularity in the domain of
radiation therapy planning.

CASE-BASED RADIATION THERAPY
PLANNING

ROENTGEN’s basic process diagram is shown in Fig-
ure 1. ROENTGEN’s design cycle is: 1) from a patient
description and prescribed dose to the target, retrieve
a similar past case; 2) adapt the plan from the case to
the current patient; 3) detect faults which occur when
the proposed plan is simulated; 4) check for and cor-
rect errors in system knowledge; 5) determine if the
plan is successful, repairing it if it isn’t; 6) store the
successful plan for future use.

The Retriever

ROENTGEN’s first task, when it starts designing a
plan for a new patient, is to remember a similar patient
it has seen before. This is the Retriever’s job.

In order to find similar cases, the Retriever relies on
the fact that therapy plans can be classified into types
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according to the number and arrangement of their con-
stituent beams. Moreover, each type has its own set
of patient/tumor geometry preconditions and causally
significant feature dimensions.

For example, in an opposed beam plan, two beams of
photons are directed into the patient from opposite po-
sitions on the patient’s periphery. These plans require
as a precondition that there be a corridor through the
patient’s body which contains the target but does not
contain any vital, radiation-sensitive tissue. Unless
this precondition is met in a patient, it is unlikely that
an opposed beam plan can be successfully used.

A causally significant feature dimension for opposed
beam plans is “target depth ratio”. Variation along
this dimension requires changes in the relative weights
of the two beams in the plan if it is to continue to
perform satisfactorally. The feature is defined to be
the ratio of the distance from the skin surface to the
target center and the distance from the skin surface
through the target to the skin on the opposite side of
the patient.

When the Retriever is presented with a new patient,
it tests for the applicability of each type of plan known
to the system. If the patient/tumor geometry satisfies
the preconditions for a type of plan, the causally signif-
icant feature dimensions for that type are used to find
the best match! among cases with plans of that type
in Case Memory. From all these best matches, the Re-
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Figure 1: System diagram

1See section The Storer, for a more detailed description of
how the match is computed.

triever then selects the one with the highest match
score. If there is a tie, the case with the simplest
plan—fewest beams, fewest different beam energies,
etc.—is selected. ROENTGEN will use the plan from
the selected case in the design stages that follow.

The Adapter

Since there are sure to be differences between the pa-
tient for whom the plan is being designed and the one
retrieved from memory, the retrieved plan will have
to be adapted to the exact details of the new patient.
The Adapter is the module charged with this task.

The Adapter adjusts the retrieved plan to account
for differences between the retrieved and current pa-
tients using its adaptation knowledge. It is concerned
with the same feature dimensions which the Retriever
used to find a good match in memory. Recall that
each such feature dimension has an effect on some plan
parameter for plans of this type. This effect is rep-
resented by a table of feature value/parameter value
pairs from the prior patients.

For example, suppose the system has learned that
target depth ratio affects the relative weights of the
two beams in an opposed beam plan. Suppose further
that the system has seen two patients in which this
affect was exhibited: one with a target depth ratio of
.50 and relative beam weight ratio of 1.0 (the beams
are left on for the same amount of time), and another
with a target depth ratio of .32 and relative beam
weight ratio of 1.5 (the second beam is on two thirds
as long as the first beam). These value pairs will be
in a table indexed under the opposed beam plan type
in ROENTGEN’s Adaptation Knowledge base. When
working with an opposed beam plan, the Adapter will
check the actual value of the target depth ratio in the
current patient and use the table to interpolate the
corresponding value of the relative beam weights. It
sets each parameter for which it has a table to its inter-
polated value. So, ROENTGEN proposes the retrieved
plan with some of its parameters adjusted by interpo-
lation as a plan for the new patient.

The Detector

We now have a proposed plan for the new patient.
The Detector’s job is to determine what the results of
applying the plan will be.

A human designer uses a computerized dose calcu-
lator to determine the results of applying a treatment
plan. The dose calculator takes the specification of a
plan and the cross section of the patient and calculates
the dose distribution the plan will produce. The in-
formation in the array is displayed as a contour map
superimposed on the image of the patient cross sec-
tion. The designer looks at this map to determine
whether the target is receiving the prescribed dose,

211



whether there are any vital tissues which are receiving
too much radiation, and whether any other seriously
undesirable conditions exist.

The Detector uses the results of the dose calcula-
tor as well. But it needs some way to interpret the
significance of the information contained in the dose
array and the tissue contours of the patient cross sec-
tion. This knowledge resides in the Fault Knowledge
base. The expert user builds up this knowledge base by
providing definitions of fault conditions as they have
occurred in patients the system has seen. Some faults
warrant rejecting the plan that produces them. Oth-
ers are not so serious; plans producing them may still
be deemed acceptable.

The definitions of fault conditions are written us-
ing a language of primitives which allows the user to
specify regions of the cross section corresponding to a
particular tissue, refer to the dose deposited there, ex-
press whether or not that dose exceeds the limit for the
involved tissue, and so on. All the conditions needed to
make a judgement about the acceptability of a treat-
ment plan can be expressed in this language.

The Detector looks for all the fault conditions that
have been defined for the type of plan being used and
the region of the body in which the treatment is being
given. It produces a list of all the faults it discovers.

Expectation Failure?

ROENTGEN will be unable to contribute positively
to the design process if the knowledge it’s using in the
given situation is in error. So, the system needs to
determine whether the knowledge used on this patient
is correct. Now that the results of the proposed plan
are known, it can make that determination.

When ROENTGEN applies a plan adapted from a case
in Case Memory, it has expectations about what the
results will be. These expectations are simply the list
of faults the Detector uncovered when the retrieved
plan was applied to the retrieved patient. Because the
new patient is similar to the retrieved patient and the
current plan is similar to the retrieved plan, ROENT-
GEN expects that the results will be similar too.

If the results of applying the proposed plan are as ex-
pected, ROENTGEN assumes its knowledge is adequate
to handle the current patient. If, on the other hand,
the results are not as expected, ROENTGEN assumes its
knowledge is deficient in some way.

The Corrector

If ROENTGEN experiences an unexpected fault, its
knowledge is deficient in some way. The Corrector’s
Jjob is to correct ROENTGEN’s knowledge so that the
unexpected fault is explained. While this is accom-
plished, the plan will be repaired so that it no longer
produces the unexpected fault.
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A fault can be unexpected in several ways. One
way is when the patient on which the current plan was
originally used and the new patient differ along some
causally significant feature dimension, but ROENTGEN
is currently ignorant of this feature and its effects. The
fault is being produced because there is a relationship
between the feature dimension and some parameter in
the plan which must be maintained if the fault is to be
avoided, and the particular parameter value is not cor-
rect in the current plan. Generally, this sort of problem
will occur when ROENTGEN has relatively little expe-
rience. All previous patients which were treated with
the current type of plan must have had essentially the
same value on this feature dimension, and hence were
able to use the unchanged parameter value from the
original plan of this type.

In this situation, the Corrector must correct ROENT-
GEN’s Index Knowledge and its Adaptation Knowl-
edge. The Corrector asks the-human expert to provide
a definition of the feature dimension of which ROENT-
GEN was unaware. She does this using the language
of primitives which is part of the system. The Correc-
tor adds this new feature dimension to the dimensions
used by the Retriever when looking for plans of the
current type. In this way, ROENTGEN learns new sig-
nificant features for memory indexing.

Next the expert is asked to repair the plan, setting
the maladjusted plan parameter to its correct value.
With the corrected value, the Corrector can make a
new entry in the Adaptation Knowledge base. The
Corrector computes the feature value for the new pa-
tient and the original one. The Corrector gets the
affected parameter value from the original plan and
the corrected value for the same parameter in the pro-
posed plan. It makes a feature/parameter table for
the Adapter and places the feature/parameter value
pairs from the two patients in the table. The table is
placed in the Adaptation Knowledge base where it will
be used by the Adapter for future patients. Then the
Corrector adds an entry to its Explanation Memory
which links the fault it didn’t expect, the type of plan
being used, and the feature/parameter table it just
built. This packet of information is used to explain
the causes of faults to novice therapy designers.

Finally, note that at the completion of processing by
the Corrector, the user will have repaired the plan so
that it no longer produces the unexpected fault that
caused this module to become active. The repaired
plan can be passed back to the Detector to make sure
other faults were not introduced by the repair process.

The Storer

We are now at a point where a successful treatment
plan has been developed for the patient. If the system



can remember this plan and the circumstances under
which it is appropriate, in the future it may avoid the
work that went into making the plan. This is the job
of the Storer.

The Storer adds new cases to memory, but only
when 1) the plan has been approved by the human de-
signer, and 2) the case required an extension of ROENT-
GEN’s RTP knowledge. If ROENTGEN has learned
about a new causally significant feature dimension,
then the Storer builds a case from the new patient,
plan, and plan results. By storing this case so that it
can be found when needed by the Retriever, ROENT-
GEN and the designer will avoid having to repeat the
effort involved in producing this plan.

The Storer adds the new case to the segment of Case
Memory containing the cases with plans of the new
case’s type. Next, the Storer must update the Index
Knowledge used by the Retriever. First, if ROENTGEN
learned a new, causally significant feature while mak-
ing the plan for this patient, the new feature must be
added to the system’s Index Kowledge. Second, the
Storer must update the knowledge even for already-
known features.

As cases are added to memory, how closely two pa-
tients match on a given feature dimension changes.
Patients which were close enough on a feature dimen-
sion to be good matches when there were fewer cases
should not match as well when cases which lie between
them on that dimension are added to memory. Hence,
the Storer alters the system’s Index Knowledge to re-
flect these changes.

Once this is done for all the causally significant fea-
ture dimensions of the plan type, the Storer’s job will
be complete. The Retriever will use this new scheme
to retrieve cases in the future.

DISCUSSION
ROENTGEN as Advisor

The preceding description of ROENTGEN’s modules
is focussed on the early stage of the system’s life when
it is primarily concerned with learning new types of
plans, and new features which are important when re-
trieving and adapting plans. Once it has accumulated
enough of this sort of information, it will be able to
carry out its role of advisor or critic. The Retriever
and Adapter can combine to suggest candidate plans
to a novice designer. The Detector can be run on the
results of a plan to point out faults which the human
designer may want to correct. The Explanation Mem-
ory can be used to determine the cause of faults pro-
duced by a plan the novice has developed.

Related Work

One of the main characteristics which distinguishes
the CBR approach from other Al paradigms is the

role and nature of domain knowledge. CBR efforts
have been aimed at producing reasoning systems which
have much less ezplicit knowledge about the domains
in which they work than do traditional AI systems.
To construct complete, explicit models of even rela-
tively simple real-world domains is an extremely time-
consuming, if not ultimately impossible, task. The
case-based paradigm seeks to avoid this hard work
while still producing powerful systems by focusing on
remembering rather than creating solutions. ROENT-
GEN is unique in case-based research for the degree to
which it shuns even the small amounts of explicit do-
main knowledge built into such systems. It relies on
the human expert to tell it what features are impor-
tant for memory indexing, what faults in plan results
look like, how to repair problematic solutions and so
on. As such, ROENTGEN represents a further advance
within case-based research.

ROENTGEN differs from previous Al work in RTP[9,
6] in several ways. Its knowledge is memory-based
rather than rule-based. Hence, it will learn new plans
through its experience and become more capable at
its task over time. ROENTGEN is an interactive system
as well as a stand-alone one. It can support the hu-
man designer with suggestions throughout the design
task and ask the designer to supply knowledge it needs
to solve a problem. This knowledge then becomes a
permanent part of the system’s knowledge. Finally,
ROENTGEN doesn’t attempt to produce an “optimum”
plan. The question of whether or not a plan is accept-
able is left to the human designer. This is a strength,
not a weakness. Researchers in RTP have not yet
reached a consensus on an objective definition of plan
optimality[3].

Future Work and Evaluation

Future work. Geometry is all-important for
ROENTGEN. In our approach, we’ve assumed that if
two patients have similar geometry and similar dose-
to-target prescriptions, successful plans for them will
also be similar. But, other factors may also influ-
ence the physician’s therapy plan choice. To a cer-
tain extent, these other factors might be translatable
into changing the dose tolerances for sensitive tissues
in the patient. The faults the Detector looks for are
functions of these tolerances. Hence, if the patient has
poor pulmonary function, explicitly lowering the lung
tolerance for that patient would cause ROENTGEN to
be relatively more protective of the lungs. However,
this would only effect the current design effort. Some
way of representing these other factors would still have
to be worked into the memory indexing machinery.

While geometry is all-important for ROENTGEN,
it currently looks at the geometry of a single two-
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dimensional section of the patient. Most external
beam radiotherapy currently being provided is two-
dimensional, i.e., all the beams in a plan lie in a single
plane. But, three-dimensional planning is an active
area of research in RTP. Planning in three dimensions
is much more complicated and less well understood
than in two. Because of the much larger number of
plans possible in three dimensions, a computer-based
assistant should be that much more of an aid. An
area of future work is to extend ROENTGEN’s abilities
to three-dimensional RTP.

Evaluation. As for evaluation, there are three ques-
tions we would like to have answers to:

e At what level does ROENTGEN perform when func-
tioning autonomously with a mature case-base?
Are its plans distinguishable from those of an ex-
pert? A novice?

e How does ROENTGEN affect the performance of a
novice or expert designer when it functions as an
assistant to the human?

¢ What is ROENTGEN’s effect on the work of a treat-
ment center? Are different sorts of plans produced
at centers which use ROENTGEN as opposed to
ones that don’t? Is the amount of time to pro-
duce plans less? What is the effect on training
time?

We will need more experience with ROENTGEN in a
clinical setting to devise a reliable and convincing test
of its effects on practice.

CONCLUSION

ROENTGEN is a case-based system which works on
RTP problems. It learns by remembering therapy
plans as they are designed by human experts and by
explicit instruction from the human user. ROENTGEN
has no built-in knowledge of the RTP domain and re-
lies on communication with the human user by way of
vocabularies of primitives which can be used to define
success preconditions for types of plans, causally im-
portant features, and faults in plan application. After
building up its case memory and other domain knowl-
edge, it can function as an autonomous therapy plan-
ner, or an assitant which provides suggestions or points
out problems to a human planner. ROENTGEN’s case-
base and domain knowledge can also serve to pool the
expertise at a treatment center so that the experience
of the most skilled therapy planners is available to the
entire planning staff.
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