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ABSTRACT

Human immunodeficiency virus (HIV) exemplifies the principles of Dar-
winian evolution with a telescoped chronology. Because of its high muta-
tion rate and remarkably high rates of replication, evolution can be ap-
preciated over periods of days in contrast to the durations conceived of by
Darwin. Certain selective pressures that drive the evolution of HIV in-
clude chemotherapy, anatomic compartmentalization and the immune
response. Examples of these selective forces on HIV evolution are de-
scribed.

INTRODUCTION

“Natural selection is daily and hourly scrutinising, throughout
the world, the slightest variations; rejecting those that are bad,
preserving and adding up all that are good; silently and insensi-
bly working, whenever and wherever opportunity offers. . ... We
see nothing of these slow changes in progress, until the hand of
time has marked the lapse of ages, and the so imperfect is our
view into long-past geological ages, that we see only that the
forms of life are now different from what they formerly were.”
—Darwin, “On the Origin of Species” (1)

Charles Darwin with astute observation of the natural world and
perspicacious insight proposed his theory of evolution by means of
natural selection. The principles of Darwinian evolution were suc-
cinctly summarized in a brilliant review of a new edition of On the
Origin of Species by Robert Pollack in 1997 (2) (Figure 1). Darwin
generated these principles almost 150 years ago with neither a glim-
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Principles of Darwinian Evolution

= All life shares a common ancestry
= Variation is intrinsic to life

= All differences among living things are
the result of differential viability
among the variants of previous forms

= Variation is intrinsic to life; therefore,
a species can attain neither perfect
form nor perfect stability

FiG. 1. Principles of Darwinian Evolution derived from reference 2.

mer of appreciation about the existence of nucleic acid nor its basis for
genetic information. Nevertheless his insights have stood the test of
time. The role (or opportunity) for those of us following his footsteps is
to embellish his theory and to generate supportive documentation.

One application of his theory, which Darwin could not have foreseen,
is the microbial world. Microbes outnumber us multicellular creatures
both in numbers of species and population size. They also have more
rapid replication rates. As a result they evolve more quickly. As Pol-
lack observed, “The strategy our ancestors have followed since they
first assembled into multicellular creatures bets on genetic stability
and complexity to create a species made up of individuals, each with a
reasonable chance of survival. The microbial strategy takes the oppo-
site tack. Their genetic simplicity and malleability allow them to
discard almost all progeny, always leaving a few genetic variants to
survive any contingency.” (2)

The introduction of human immunodeficiency virus (HIV) into the
human species in the past century (3) has become a global scourge
promising to be the primary infectious cause of mortality for years to
come (4). Its success as a pathogen and in evading therapeutic and
vaccination strategies is largely attributable to its ability to accelerate
Darwinian evolution. HIV, like all microbes with single stranded RNA
genomes, replicates with the high mutation rate of approximately one
nucleotide change per genome per replication cycle (5,6). This is at-
tributable to a reverse transcriptase enzyme with poor fidelity and the
lack of proof reading mechanisms which are available to eukaryotic
DNA. The rate of evolution of HIV is accelerated by a prodigious rate
of replication with 10'°-~10'! virus particles generated daily in each
infected individual (7), thus every possible mutation and many combi-
nations of multiple mutations are generated on a daily basis. More-
over, this high rate of mutation and high rate of replication is occurring
today in close to 50 million people (4).
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Much translational research on HIV has proven to represent the
need to deal with the capacity of the virus to adapt to selection pres-
sures. My colleagues and I have been investigating the evolution of
HIV in response to three selective pressures: chemotherapy, anatomic
compartments and neutralizing antibody. Selected aspects of these
investigations are summarized.

HIV DRUG RESISTANCE

Following the clinical trials with zidovudine (AZT), the first drug
shown to have antiretroviral activity (8,9), we examined serial isolates
from patients receiving AZT monotherapy. Progressive incremental
reductions in AZT susceptibility occurred in these isolates (Figure 2).
These increases in drug resistance were later shown to be attributable
to the cumulative acquisition of mutations in reverse transcriptase, the
gene for the target enzyme (10,11). This observation is consistent with
the adaptation of the virus during ongoing replication in the presence
of the selective pressure of active drug. In 1996, we proposed that in
the absence of selective drug pressure the probability of a resistant
population emerging as predominant is negligible (Figure 3) (12). As
the selective pressure of increasing drug activity is imposed, the prob-
ability of a resistant population emerging increases (13). At yet higher
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Fic. 2. Zidovudine (AZT) susceptibility of sequential isolates of HIV-1 from a patient
administered AZT (from reference 10).
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F1G. 3. Proposed theoretical relationship between antiviral drug activity and the
probability of the emergence of a drug resistant population. The opposing factors of
selective drug pressure and rates of virus replication are indicated (from reference 12).

levels of selective antiviral pressure replication is sufficiently re-
stricted to diminish the likelihood of outgrowth of a resistant popula-
tion. Finally, when replication is completely suppressed, although
selective drug pressure is high, resistant mutants cannot emerge. This
proposal was not confirmed until potent combination chemotherapy
could be designed, which permitted the dramatic suppression of plasma
HIV RNA below the levels of detection of standard assays (Figure 4)
(14,15).

Over the past several years testing for HIV drug resistance has
become the standard of practice in the management of the chemother-
apy of HIV patients and their drug regimens (16-18). As with much
antimicrobial chemotherapy, the selection for widespread resistance
has become a consequence of the success of these drugs. Similarly
transmission of drug resistance to newly infected patients is becoming
all too common (19).

ANATOMIC COMPARTMENTS

The composition of cell types, the distribution of cellular and hu-
moral immune responses, and drug disposition differ between the
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FiG. 4. The suppression of HIV replication in patients receiving potent combination
antiretroviral therapy. Patients were randomized to zidovudine plus lamivudine ZDV/
3TC which was the standard of care in 1995, to indinavir (IDV) an investigational
protease inhibitor, or all 3 drugs. The proportion of patients achieving the virological
endpoint of plasma HIV RNA being below the limits of detection is depicted (from
reference 14).

circulation and anatomic compartments. The central nervous system
(CNS) is important both as a target for HIV pathology and as a drug,
and possibly an immunologic, sanctuary. The genital tract is important
as the primary source of new HIV transmissions.

Since the early 1990s, investigators have described distinctive enve-
lope HIV sequences in the CNS compared to the circulation among
patients with established disease (20—24). This contrasts with subjects
studied during primary infection when partial sequence of the viral
envelope from CSF and blood are indistinguishable (unpublished data)
consistent with the transmission of a single genetic variant during
primary infection and the subsequent independent evolution of virus
populations during the course of infection. The selection for these
variants could be distinctive host cell tropism or possibly differential
immune selection. Doms and colleagues observed a trade-off between
resistance of HIV variants to antibody neutralization and their ability
to infect cells with a low density of the primary or secondary viral
receptors (25,26). This observation may explain the intra-host evolu-
tion of HIV in the CNS where putative target cells, the microglia and
to lesser extent astrocytes and microvascular endothelial cells, show
low primary and secondary receptor expression while effective neutral-
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Fic. 5. The anatomic compartmentalization of genetic variants examining the se-
quence of the reverse transcriptase of HIV is depicted. In this unrooted phylogenetic tree
variants found in the lymphoid and central nervous systems have evolved independently
(from reference 30).

izing antibody concentrations may differ from that in the systematic
circulation (27,28).

Variable penetration of antiretroviral drugs into the CNS consti-
tutes an additional and potentially clinically important selective pres-
sure shaping viral evolution (29). Wong et al examined autopsy tissues,
including brain, from 4 patients previously on failing antiretroviral
therapy and found that genetic resistance patterns differed between
virus populations in brain and those in lymph node and spleen (Figure
5) (30). Examples were found of the discordant absence of some resis-
tance conferring mutations in brain when non-CNS-penetrating anti-
retrovirals were used and of the discordant persistence of some mu-
tants in brain from past drug exposure, documenting the role of both
the imposition and withdrawal of antiretroviral drug selection on the
evolution of reverse transcriptase in the CNS (30). Recently, several
groups have observed that the prevalence of discordant resistance
between virus in cerebrospinal fluid and plasma approach 50% in
selected patient populations (31,32). These studies provide some in-
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sight into the complexity of viral evolution in vivo but there is clearly
a need for more systematic and longitudinal studies in the future to
better understand the rates and determinants of viral genetic diver-
gence in the CNS and their impact on disease progression and treat-
ment response.

Similar to the central nervous system, the male genital tract is an
anatomic compartment with a distinct hormonal, cytokine and immu-
nologic milieu, which is specific for the development and maturation of
sperm (33-35). This specialized environment also shapes the viral
population that is harbored there. Sequence analysis has revealed that
in some individuals, virus extracted from seminal plasma is similar to
that found in blood plasma, while in others it differs, with few correlates
to indicate why (35-39). It has been suggested that free virus may be
exchanged between the blood and genital tract compartments while a
subpopulation replicates in cells that are specific to the tissues of the
genital tract (34,39—41). Reasons for a viral population that is specific for
the genital tract could include adaptations that enhance interactions
with cells important in the infection process such as dendritic cells. These
cells have recently been shown to express a lectin, DC-SIGN (42) that
interacts with HIV envelope and potentiates infection. Currently, we are
using machine learning and phylogenetic techniques (43) in an attempt
to identify conserved genetic regions of HIV derived from semen. Iden-
tification of such “sequence signatures” may have significant bearing on
future vaccine development, since the vast majority of new HIV infec-
tions occur through exposure to HIV contained in genital secretions (40).

The male genital tract is not a homogenous compartment. It is
comprised of many different tissues contributing fluids and cells to
male genital secretions. Each of these tissues may represent sub-
compartments with their own environments for the development of
HIV, including differential pharmacologic penetration (38,40,44).
Since many antimicrobial medications do not penetrate well into the
fibromuscular prostate, allowing bacterial and fungal pathogens to be
harbored there, we investigated it as a reservoir for HIV when indi-
viduals are treated with antiretrovirals (39,45). Individuals who were
treated with antiretroviral medications and had HIV RNA viral loads
that were below the level of detection in the blood (<50 copies/ml) were
also undetectable in their seminal plasma (<25 copies/ml) except when
their prostate was stimulated by a digital massage before ejaculation
(46). The recovery of cell free virus only after prostate stimulation
implicated the prostate as a sanctuary for HIV during antiretroviral
treatment, which could have significant transmission implications in
both treated and untreated individuals (39).
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NEUTRALIZING ANTIBODY

The protective efficacy of most viral vaccines correlates with the
elicitation of neutralizing antibody (47). The induction of neutralizing
antibody to HIV by a candidate vaccine has been hampered by the
inability to design immunogens that induce neutralizing antibody to
most primary isolates of HIV (48). Even the role of neutralizing anti-
body in the natural history of HIV infection has been difficult to
characterize because assays for neutralizing antibody have been labor
intensive, slow and imprecise and the isolation of primary isolates
from each patient to assay autologous antibody responses is slow,
expensive and often difficult to achieve.

The development of an assay for neutralizing antibody, which is
precise, applicable to virus from the plasma of patients, and amenable
to high throughput, has permitted us to characterize the neutralizing
antibody response of patients with HIV infection (49). A recombinant
virus assay initially developed to measure antiretroviral drug resis-
tance during a single round of virus replication was adapted to mea-
sure virus entry and its inhibition by neutralizing antibody (50).
Briefly, full length envelope is amplified from plasma HIV RNA and
co-transfected in an expression vector with an HIV-genomic vector
deleted in envelope and expressing an indicator firefly luciferase gene.
The pseudovirions expressing patient HIV envelope that are produced
are used in an assay for neutralizing antibody using serial dilutions of
patient plasma. The inhibition of infectivity is measured by reduction
of luciferase activity.

We first investigated 14 study subjects who presented to the San
Diego Acute and Early Infection Disease Research Program 30-65
days after their estimated date of HIV infection and who elected to
defer or delay antiretroviral therapy. Plasma samples (3-13 per pa-
tient) were obtained at presentation to the clinic and at regular inter-
vals for 6-39 months of follow-up. Autologous envelope-antibody pairs
were assessed to characterize the development and evolution of autol-
ogous neutralizing antibody. Figure 6 demonstrates the ability of this
assay to detect the emergence of autologous neutralization activity
directed against the virus present at presentation of primary HIV
infection (month 0) and in serial plasma samples (0, 6, and 12 months).

The neutralization activities of sequential plasma samples against
sequential virus envelope proteins from the same patient (autologous
responses) or against two reference viruses (heterologous responses),
are displayed in Figure 7. This patient exemplified 12 of 14 patients
who developed appreciable neutralizing antibody responses shortly
after HIV infection. Of note each sequential virus tested escaped the
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Fic. 6. Neutralization of autologous HIV. The neutralizing activity of plasmas ob-
tained from an untreated patient 0, 6 and 12 months after presentation with primary
infection is assayed against virus from months 0 and 12. The titer is defined as the
reciprocal of the dilution of plasma that produces 50% inhibition of virus replication
(dashed lines). The error at each dilution reflects the standard error of duplicate wells
(from reference 49).

concurrent neutralizing antibody response in that patient. The neu-
tralizing antibody responses to early viruses were continually boosted
as an example of Original Antigenic Sin (51,52).

There was no relationship between the neutralizing antibody re-
sponse and the disease course. The magnitude of the neutralizing
antibody response correlated neither with steady state plasma HIV
RNA level nor with CD4 cell count in the year after infection. Thus the
neutralizing antibody response does not significantly restrict HIV rep-
lication. Rather it is an immunologic response to a constantly escaping
antigen. In fact these rates exceed those observed with the emergence
of HIV drug resistance mutations. Immunoglobin has a half life of
three to four weeks while HIV virions in the plasma have a half life of
hours (7). Studies in progress suggest that the rate of evolution in the
envelope gene of HIV is determined by the magnitude of each patient’s
neutralizing antibody response. These observations further support
the argument that the magnitude of the neutralizing antibody re-
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Fic. 7. Neutralizing HIV antibody titers of sequential plasma specimens against
autologous virus. Serial plasmas were obtained from an untreated patient presenting
with primary HIV infection. The titer of each plasma against its concurrent virus
specimen is shaded. Control viruses include an amphotropic murine leukemia virus
(AMPHO), a neutralization-sensitive X4 —tropic virus (NL4-3), and a relatively neutral-
ization-resistant R5 - tropic virus (JR-CSF) (from reference 49).

sponse does not effectively impact disease course, but rather drives the
rate of escape and evolution of the virus.

Using a second group of subjects with recent HIV infection, we
investigated the impact of the administration of potent antiretroviral
therapy on the neutralizing antibody response. To conduct these stud-
ies, a genomic HIV vector was constructed using a pol gene derived
from a patient virus that was highly resistant to protease and reverse
transcriptase inhibitors. This vector, in conjunction with patient virus
envelope expression vectors, was used to measure neutralizing anti-
body accurately despite the presence of inhibitory drugs in plasma of
treated patients that confound standard neutralization assays. Autol-
ogous antibody neutralization activities were measured in longitudinal
plasma samples collected from five patients who were administered
antiretroviral drugs shortly after presentation and who had sustained
suppression of plasma HIV RNA below 50 copies/ml. In all five sub-
jects, antibody titers plateaued at relatively low titers (<1:500) and
their spectrum of activity evolved very little.

Of particular concern was the failure of patients to generate appre-
ciable heterologous neutralizing antibody responses in the first year of
infection despite generating high titers to their autologous virus.
Cross-neutralization assays were performed with isolates shortly after
infection from 13 patients. Compared with autologous viruses, neutral-
ization of heterologous viruses was absent or at best negligible during
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the first year of HIV infection. This observation is a particular concern
regarding the ability of a candidate vaccine to generate broadly reac-
tive neutralizing antibody.

DISCUSSION

Because of its high rates of replication and mutation, HIV generates
a remarkably wide array of genetic variants every day in each patient.
Recombination readily occurs as well in vitro and in vivo which further
drives the generation of variants (53). The imposition of selective
pressures accelerates the evolution of HIV at rates never imagined by
Darwin. The extensive use of antiretroviral therapy provides one of the
most dramatic examples of the impact of human intervention on evo-
lution in an ecological system (54). Evolution in different anatomic
compartments like the central nervous system and genital tract im-
pacts pathogenesis, drug resistance and transmission. Neutralizing
antibody drives remarkable variability in the surface glycoprotein of
HIV and imposes a major challenge to the development of an effective
vaccine.

These observations provide a retrospective appreciation of Darwin’s
brilliant insights and a prospective need to address the challenges of
designing effective treatments and vaccines. The lessons taught by
HIV may help to address other microbial challenges like hepatitis C
virus and emerging infections.
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DISCUSSION

DuPont, Houston: Doug, it was a thorough and helpful presentation, with depressing
results. I wonder if you would speculate down 10, 20, 30 years from now where you think
we'll be with AIDS control. Will we be successful with either drug therapy or immuno-
therapy in this disease? AIDS looks more like cancer than an infectious disease to me the
way it will be conquered.

Richman, LaJolla: I didn’t have a chance, obviously, to describe all the aspects of
treatment and pathogenesis of HIV disease. I think the accomplishments of chemother-
apy have been one of the most dramatic accomplishments in American medicine. In just
twenty years since the discovery of the virus the introduction of antiretroviral therapy in
the developed world has resulted in a dramatic impact on morbidity and mortality.
Medicine wards fifteen years ago were like a war zone, and now the only patients that
are being admitted are either those with emotional or substance abuse problems who
can’t take their medicines, or frighteningly, a third of patients in this country who are
infected and didn’t know it until they first presented with their infection with AIDS
related complications. We do need better ways to recognize our hundreds of thousands of
infected, asymptomatic citizens who are unaware of or denying their condition. Access to
therapy and the proper use of therapy can prevent disease and turn it into a manageable,
chronic disease like hypertension or diabetes. The hope is that these drugs can be
distributed and made available in the developing world, where 97% of the infected
patients now exist. I think we can significantly impact infected patients; moreover, if we
can suppress virus replication, patients will no longer be likely to be transmitters. To
have a major impact on the epidemic globally; however, the development of a vaccine is
ultimately the only hope. This is going to be a long, long, hard struggle. Despite
promising research, vaccine is not going to impact the epidemic I would think for at least
a decade.



