Supplementary Online Material

This figure supplements the discussion of Figure 3 of the article. For further details, see legend of Figure 3 and the related parts of the main body of the manuscript.

A monoexponential decay (time constant of 24 ms), which describes the O_2 -signal well for t > 15 ms, was subtracted from the O_2 -release signal detected after the third flash. The semilogarithmic plot shows that the O_2 -rise is bi-exponential in the PSII(Cah3-) mutant unless both bicarbonate and Cah3 are provided.

Supplementary Online Material

This figure supplements the discussion of Figure 3 of the article. For further details, see legend of Figure 3 and the related parts of the main body of the manuscript.

The O_2 rise was simulated by a single exponential term such that a good match of the initial rise (t < 5 ms) and the decay phase (t > 15 ms) was obtained. The need for a second rise component is clearly visible. A mono-exponential rise is sufficient only, if bicarbonate and the carbonic anhydrase are simultaneously added to the medium.

The following function was used for simulating the O₂ transients:

 $R_{ox}(t) = A1 \exp\{-(t-\Delta T)/T1\} + A2 \exp\{-(t-\Delta T)/T2\} + A3 \exp\{-(t-\Delta T)/T3\} \text{ for } t > \Delta T$ An exact modeling of the complex origin of the initial time lag was not approached. Instead we approximated the delayed rise by a shift of the time scale by ΔT (for $t > \Delta T$).

Simulation Parameter		mutant	m+BC	m+BC+CA
	∆T [ms]	0.67	0.60	0.55
	A1	-0.971	-0.971	-0.972
	T1 [ms]	2.60	2.05	1.59
	A2	0	0	0
	T2 [ms]			
	A3	0.971	0.971	0.972
	T3 [ms]	23.95	23.95	23.9
	fit error	57.17	22.40	3.32

Supplementary Online Material

This figure supplements the discussion of Figure 3 of the article. For further details, see legend of Figure 3 and the related parts of the main body of the manuscript.

The O_2 rise was simulated by a biexponentially. For addition of both, bicarbonate and the carbonic anhydrase, a monoexponetial simulation was used.

The following function was used for simulating the O₂ transients:

 $R_{ox}(t) = A1 \exp\{-(t-\Delta T)/T1\} + A2 \exp\{-(t-\Delta T)/T2\} + A3 \exp\{-(t-\Delta T)/T3\} \text{ for } t > \Delta T$ An exact modeling of the complex origin of the initial time lag was not approached. Instead we approximated the delayed rise by a shift of the time scale by ΔT (for $t > \Delta T$).

Simulation Parameter		mutant	m+BC	m+BC+CA
	∆T [ms]	0.67	0.6	0.55
	A1	-0.65	-0.81	-0.97
	T1 [ms]	1.8	1.8	1.6
	A2	-0.36	-0.15	
	T2 [ms]	6.0	4.0	
	A3	1.00	0.96	0.97
	T3 [ms]	23.95	23.95	23.95
	error	1.97	1.79	3.33