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This supplementary material details the development of themodel and the derivation of the repro-
duction numbers associated with the wild-type and resistant strains. Model assumptions are described
and estimates of parameters from published literature are given in Table 1. A sensitivity analysis was

performed to ensure the robustness of the model’s predictions over a range of key parameters, and the
results are presented.1 Further details of the model equations with regard to the within-host aspects of

drug-resistance and integration with the between-host spread of disease can be found in (Alexanderet

al., 2007).

1 The Model Structure

We assume that the population is entirely susceptible to theemerging pandemic strain with no pre-
existing immunity. LetS denote the class of susceptible individuals who may become infected with

either wild-type or resistant strains. Denoting the classes of individuals exposed to wild-type viruses by
E, resistant strains with low fitness byEr , and resistant strains with high fitness byErH , we have

S′(t) = −βQ(t)S(t),

E′(t) = βQw(t)S(t)−µE E(t),

E′
r
(t) = βQr (t)S(t)−µE Er (t),

E′
rH

(t) = βQrH (t)S(t)−µE ErH (t),

(1)

whereβ is the baseline transmission rate of the wild-type strain, 1/µE represents the mean latent period
(assumed to be the same for wild-type and resistant infections), andβQ(t) = β(Qw + Qr + QrH ) is the

force of infection, yet to be formulated. Letp represent the probability of developing clinical disease
after the latent period. Then, for corresponding classes ofindividuals with asymptomatic infections (i.e.

those who are infectious without showing clinical symptoms, and therefore are not treated), we obtain

A′(t) = (1− p)µE E(t)−µAA(t),

A′
r
(t) = (1− p)µE Er (t)−µAAr (t),

A′
rH

(t) = (1− p)µE ErH (t)−µAArH (t),

(2)

1Simulations and sensitivity analyses of the model were performed using a solver for delay integro-differential equations
(Paul, 1997).
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Table 1: Description of the model parameters with their estimated values from the published literature

(Fergusonet al., 2005, 2006, 2003; Halloranet al., 2006; Jeffersonet al., 2006; Longiniet al., 2004,
2005; Regoes & Bonhoeffer, 2006).

Parameter Description Value

1/µE mean latent period 1.25 days
1/µU mean infectious period of untreated symptomatic infection(secondary stage) 2.85 days
1/µT mean infectious period of treated symptomatic infection (secondary stage) 2.85 days
1/µA mean infectious period of asymptomatic infection 4.1 days
τ mean infectious period of pre-symptomatic infection 0.25 day
n duration of the window of opportunity for initiating antiviral treatment 2 days
δP relative infectiousness of pre-symptomatic infection 0.286
δA relative infectiousness of asymptomatic infection 0.142
δU relative infectiousness of untreated symptomatic infection (secondary stage) 0.143
δT relative infectiousness of treated symptomatic infection 0.4
dU death rate of untreated symptomatic infection with wild-type strain 0.002 day−1

dT death rate of treated symptomatic infection with wild-typestrain 0.0002 day−1

dU,r death rate of symptomatic infection with low fitness resistant strain 0.0004 day−1

dU,rH death rate of symptomatic infection with high fitness resistant strain 0.0016 day−1

p probability of developing clinical disease 0.67
V fraction of treated individuals which develops resistancewith low fitness variable

where 1/µA is the infectiousness period. To derive the equations for the symptomatic infection, we
assume a window of opportunity of two days for start of treatment following the onset of clinical symp-
toms. Using rates of treatment and emergence of drug-resistance described in Alexanderet al. (2007),

the corresponding equations for untreated and treated symptomatic infections are given by

I ′
U
(t) =pµE E(t −n)q− (µU +dU )IU (t),

I ′
U,r

(t) =pµE Er (t −n)q− (µU +dU,r + γU )IU,r (t),

I ′
U,rH

(t) =pµE ErH (t −n)q+ γU IU,r − (µU +dU,rH )IU,rH (t),

I ′
T
(t) =pµE E(t −n)(1−q)− pµE E(t −n)V − (µT +dT + αT )IT (t),

I ′
T,r

(t) =pµE Er (t −n)(1−q)+ pµE E(t −n)V + αT IT − (µU +dU,r + γT )IT,r (t),

I ′
T,rH

(t) =pµE ErH (t −n)(1−q)+ γT IT,r − (µU +dU,rH )IT,rH (t),

(3)

wheren is the size of the window of opportunity for the start of treatment; 1−q represents the population-
level of treatment,µU and µT are the recovery rates of untreated and treated symptomaticinfections

(during secondary stage), respectively;dU , dU,r , anddU,rH are the corresponding disease-induced mor-
tality rates for untreated symptomatic infections;V represents the fraction of treated individuals which

develops drug-resistance with low fitness during the windowof opportunity;αT is the rate for develop-
ing drug-resistance during the secondary stage of symptomatic infection; andγU andγT are the rates of
conversion between resistant mutants of untreated and treated symptomatic infections, respectively.

To formulate the force of infection, letiU (t,a) and iT (t,a) be the densities of untreated and treated
wild-type infections after a timea has elapsed since an exposed individual becomes infectious. Consider-
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ing the infectious compartments of the wild-type strain, and detailed description presented in Alexander
et al. (2007, 2008), we have

Qw(t) = δAA(t) (asymptomatic infection)

+ δP

∫ τ

0
iU (t,a)da (pre-symptomatic infection)

+
∫ n

τ
iU (t,a) (primary stage of symptomatic infection without treatment)

+ δT

∫ n

τ
iT (t,a)da (primary stage of symptomatic infection with treatment)

+ δU IU (t) (secondary stage of symptomatic infection without treatment)

+ δT δU IT (t) (secondary stage of symptomatic infection with treatment)

whereτ is the period of pre-symptomatic infection;δA, δP, andδU represent the relative infectiousness

of the wild-type strain for asymptomatic, pre-symptomatic, and the secondary stage of symptomatic
infection without treatment, respectively; andδT is the relative infectiousness of a treated clinical case
with the wild-type strain. The treatment is assumed to have no effect on individuals infected with resistant

strains. With the corresponding notation for resistant strains, we have

Qr (t) = δr δAAr (t) (asymptomatic infection)

+ δr δP

∫ τ

0
iU,r (t,a)da (pre-symptomatic infection)

+ δr

∫ n

τ
iU,r (t,a)da (primary stage of symptomatic infection without treatment)

+ δr

∫ n

τ
iT,r (t,a)da (primary stage of symptomatic infection with treatment)

+ δr δU IU,r(t) (secondary stage of symptomatic infection without treatment)

+ δr δU IT,r (t) (secondary stage of symptomatic infection with treatment)
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and

QrH (t) = δrH δAArH (t) (asymptomatic infection)

+ δrH

∫ τ

0
δPiU,rH (t,a)da (pre-symptomatic infection)

+ δrH

∫ n

τ
iU,rH (t,a)da (primary stage of symptomatic infection without treatment)

+ δrH

∫ n

τ
iT,rH (t,a)da (primary stage of symptomatic infection with treatment)

+ δrH δU IU,rH (t) (secondary stage of symptomatic infection without treatment)

+ δrH δU IT,rH (t) (secondary stage of symptomatic infection with treatment)

whereδr andδ
r H represent the relative infectiousness of resistant strains with low and high transmission

fitness, respectively. It is assumed that treatment of wild-type infection reduces transmissibility of the

virus by 60% (through reduction factorδT ), but has no effect in transmission of resistant strains. Sum-
marizing, the above represents the model as a system of delaydifferential equations, where estimates of
its parameter values from the published literature are given in Table 1 (see also Table 1 in the main text).

2 Analysis of Reproduction Numbers

In our analysis, we fixed the initial sizeS0 of the susceptible population to compute the control repro-
duction numberRw

c when an individual infected with the wild-type strain is introduced into theE-class.
We assumed thatE(0) = 1, and letE(t) = 0 for t ∈ [−n,0), andA(0) = IU (0) = IT (0) = 0. Considering

the duration and transmission rates associated with asymptomatic, untreated and treated symptomatic
infections (see Figure 1 in the main text), the total number of secondary cases generated in theA, IU and

IT classes is given by

βS0

( (1− p)δA

µA

+
pqδU

µU +dU

+
p(1−q−V)δU δT

µT +dT + αT

)

.

We also calculated the number of new cases generated during the primary stage of symptomatic infection

(window of opportunity for effective treatment), which involves the history of theE-class. Noting that
q = 1 during pre-symptomatic infection (without treatment), this number is given by

∫ ∞

0
βS0

[

∫ τ

0
δPiU (t,a)da+

∫ n

τ
iU (t,a)+ δT iT (t,a))da

]

dt

=βS0p
(

δPτ+
∫ n

τ
q(a)da+ δT

∫ n

τ
(1−V(a)−q(a))da

)

,

and therefore the control reproduction number of the wild-type strain can be expressed as
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Rw
c = βS0

((1− p)δA

µA

+
pqδU

µU +dU

+
p(1−q−V)δU δT

µT +dT + αT

+ pδPτ

+ p(1−δT)
∫ n

τ
q(a)da+ pδT

∫ n

τ
(1−V(a))da

)

.

In the absence of antiviral treatment (q≡ 1 andV ≡ 0), Rw
c reduces to the basic reproduction number

Rw
0 = βS0

((1− p)δA

µA

+
pδU

µU +dU

+ pδPτ+ p(n− τ)
)

.

Since treatment has no effect on individuals infected with resistant strains, similar calculations to the

above lead to the reproduction numbers of resistant strainswith low fitness (Rr
0) and high fitness (RrH

0 ) as

Rr
0 = δr βS0

((1− p)δA

µA

+
pqδU

µU +dU,r + γU

+
p(1−q)δU

µU +dU,r + γT

+ pδPτ+ p(n− τ)
)

,

and

RrH
0 = δrH βS0

( (1− p)δA

µA

+
pδU

µU +dU,rH

+ pδPτ+ p(n− τ)
)

.

The next generation matrix has the form

J =







Rw
c ∗ ∗

0 Rr
0 ∗

0 0 RrH
0






,

and therefore the criterion for the control of disease, defined in terms of the spectrum of this matrix

(Diekmann & Heesterbeek, 2000), is given byRc = max{Rw
c ,Rr

0,R
rH
0 }.

3 Sensitivity Analysis

To investigate the effect of parameter changes on the results shown by simulations using baseline values,

we performed a sensitivity analysis by considering a sampling approach that allows for the simultaneous
variations of the basic reproduction number, the rates of denovo resistant mutations, and the rates of
conversion between resistant strains. Using the Latin Hypercube Sampling (LHS) technique (McKayet

al., 1979), we generated samples of size n=100 in which each parameter is treated as a random variable
and assigned a probability function. In this technique, theparameters are uniformly distributed and

sampled within their respective ranges. The reproduction numberR0 was uniformly sampled from the
range[1.4,2], which includes the estimated ranges of reproduction numbers for the 1918, 1957, and
1968 pandemics (Ganiet al., 2005; Viboudet al., 2006). The rates of de novo resistant mutations

(ρmax, αT ) were sampled from the range[0.018,0.072] (Regoes & Bonhoeffer, 2006; Débarreet al.,
2007), corresponding to 5.8%− 17% incidence of resistance, which lies within the estimated range of

neuraminidase resistance reported in clinical studies (Kiso et al., 2004; Wardet al., 2005; Yenet al.,
2005). The corresponding ranges for the conversion rates ofresistant strains (γU , γT ) was computed using
the constraint that the fraction of treated individuals hosting resistance, which undergoes compensatory

mutations and subsequently generates resistant strains with high fitness, lies between 1/5000 and 1/500
(Lipsitchet al., 2007). The baseline value of 1/2000 was used for simulations. Furthermore, we assumed
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that compensatory mutations are less likely to occur in the absence of treatment, and consideredγU to be
10−fold smaller thanγT (Handelet al., 2006). The values of other parameters are given in Table 1.

For the sensitivity analyses, we introduced the parameterTa to represent the “minimum final size”

of the pandemic within an adaptive treatment strategy, whenthe initial treatment level is increased to
90% at a timet∗. For each set of parameter values in the sample, we then computed the ratioTa/Tc as

a function ofδrH (the relative transmission of the resistant strain with high fitness), whereTc is the final
size of the pandemic when treatment is maintained constant at the corresponding optimal level (below
90%) at all times during the outbreak. The results of sensitivity analyses are illustrated in Figures 1a,

1b, 1c, when initial treatment levels in the adaptive treatment strategy are assumed to be 0%, 25%, and
50%, respectively. These figures indicate that for low values of δrH (below∼ 0.8), the risk of a resistant

epidemic developing is small, and both treatment strategies are comparable in their effectiveness. How-
ever, asδrH increases (above∼ 0.8), self-sustaining epidemics of resistant viruses can be established,
and the benefit of an adaptive treatment strategy becomes more pronounced. Using the above sample,

we also projected the corresponding ranges of timet∗ as a critical parameter in this strategy. The results,
depicted in Figures 2a, 2b, 2c, suggest that aggressive treatment should be further delayed (following the

onset of the outbreak) for higher initial treatment levels,should resistant strains with high transmission
fitness (above∼ 0.8) emerge. Such high treatment levels decelerate the spreadof the wild-type virus in
the population, and therefore extend the time required for asufficient drop in the number of susceptible

individuals to prevent resistant outbreaks.
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Figure 1: Sensitivity analyses showing box plots for the variations in the ratioTa/Tc as a function of

δrH , with other parameters sampled from their respective ranges, as described in the text. The solid
curve passes through the median values of the ratioTa/Tc, and each box contains 50% of data points
between the first and third quartiles of the sampling distribution. The remaining 50% of data points are

represented by whiskers. Initial treatment levels in the adaptive antiviral strategy before transition time
t∗ are: (a) 0%; (b) 25%; and (c) 50%.
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Figure 2: Sensitivity analyses showing box plots for the variations in the optimal transition timet∗

corresponding to the minimum total number of infections, asa function ofδrH , with other parameters
sampled from their respective ranges, as described in the text. The solid curve passes through the median

values of data points fort∗, and each box contains 50% of data points between the first andthird quartiles
of the sampling distribution. The remaining 50% of data points are represented by whiskers. Initial
treatment levels in adaptive antiviral strategy before transition timet∗ are: (a) 0%; (b) 25%; and (c) 50%.
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Figure 3: (a) Total number of clinical infections caused by all strains; and (b) Total number of wild-type
clinical infections, as a function of treatment level, withRw

0 = 1.6. Dotted, solid, and dashed curves
correspond respectively to 0.5, 1, and 1.5 days delay in initiating treatment after the onset of clinical

disease.

4 The Effect of Delay in Start of Treatment

Not only the population level of drug use, but also early onset of treatment of indexed cases within the
window of opportunity can significantly influence the outcome of an antiviral strategy. To demonstrate

this, we compared the final size of clinical infections in three scenarios with different delays in the start
of treatment following the onset of clinical disease. Figure 3a (dotted curve) shows that early treatment
with 0.5-day delay results in smaller number of clinical infections (and therefore the minimum epidemic

size is feasible with a lower level of drug use) than when treatment is initiated with 1-day delay (solid
curve). This is mostly due to a greater reduction in transmission of the wild-type infection (Figure 3b).

A more rapid decline in the final size of wild-type infectionsoccurs when compensated mutants become
the driving force for disease progression with increasing level of treatment. However, a more dramatic
increase in the number of resistant infections is observed for higher levels of drug use with less delay

in start of treatment (Figure 3a, dotted curve). Initiatingtreatment with a longer delay of 1.5 days has
little impact on suppressing wild-type infection, even with high levels of treatment (Figure 3b, dashed

curve). However, in this case, resistance emergence is limited due to the wide spread of the wild-type
virus, thereby rapidly depleting the pool of susceptible hosts.
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