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1 Introduction

This document provides detailed descriptions of the Neurospora models used in the main paper,

together with the mathematical background for the discussions of period control and rhythmicity

therein.

2 The Neurospora models used

Two models of the Neurospora circadian clock were used to illustrate how the parallel, temperature-

dependent FRQ feedback loops can give rise to temperature compensation and period control

through isoform switching. The first of the models - referred to here as model 1 - is an extension

of an existing model involving only the frq gene; it is included to demonstrate that the isoform

switching mechanism is not specific to a particular set of equations. The second is a more realistic

model incorporating the wc-1 gene in addition to frq. This is the model discussed in the main

paper, and will referred to in what follows as model 2. SBML versions of both models are available

from the Molecular Systems Biology website (www.nature.com/msb). These were tested using

the Systems Biology Workbench simulation tool (http://www.sys-bio.org/research/sbwIntro.htm).

Matlab versions of the models together with the parameter sets used for all simulations presented

in this work are available by request from oakman@staffmail.ed.ac.uk.

2.1 Model 1

Model 1 was obtained by modifying that of Leloup et al ([17]) to incorporate the two FRQ forms:

ṀF = (vs + θ (t))
Kn

I

Kn
I + (FN + F ′

N )
n − vm

MF

Km + MF
(1)

ḞC = ksMF − vdFC − k1FC + k2FN (2)

ḞN = k1FC − k2FN (3)

Ḟ ′
C = k′

sMF − v′dF
′
C − k′

1F
′
C + k′

2F
′
N (4)

Ḟ ′
N = k′

1F
′
C − k′

2F
′
N . (5)

Here, MF represents the concentration of frq mRNA, while FC and FN are the concentrations of

s-FRQ in the cytoplasm and nucleus respectively. The quantities F ′
C and F ′

N denote the equivalent
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quantities for l-FRQ. The effect of light is represented by the forcing term θ (t), which acts by

increasing the transcription rate of frq. θ (t) switches rapidly between 0 and a maximum value of 1

at lights-on, switching back to 0 at lights-off.

Equations (1)-(5) can be considered as a minimal model of the Neurospora clock, incorporating

only a simplified version of the core negative feedback loop in which FRQ directly represses frq

transcription. It should be noted from (1) that it is assumed the two FRQ forms are equally

effective as repressors of frq.

2.2 Model 2

The network diagram corresponding to model 2 is shown in figure 1 of the main paper. The model

equations are

ṀF = a1

(

PL
W

)n

(

1 +
PF +P ′

F

b1

)

((

PL
W

)n
+ bn

2

)

+ a2
(PW )

m

(

1 +
PF +P ′

F

b3

)

((PW )
m

+ bm
4 )

− d1
MF

MF + b5
(6)

ṖF = a3

∫ t

−∞

MF (s) gf1
(t − s) e−γ1(t−s)ds − d2PF (7)

Ṗ ′
F = a′

3

∫ t

−∞

MF (s) gf ′

1
(t − s) e−γ′

1
(t−s)ds − d′2P

′
F (8)

ṀW = a4 + a5

(

PL
W

)k

(

PL
W

)k
+ bk

6

− d3
MW

MW + b7
(9)

ṖW =

∫ t

−∞

MW (s) (a6 + a7 (PF (s) + P ′
F (s))) gf2

(t − s) e−γ2(t−s)ds

− d4
PW

PW + b8
− r1θ (t)PW + r2P

L
W (10)

ṖL
W = r1θ (t)PW − r2P

L
W − d5

PL
W

PL
W + b9

. (11)

Here, the variables MF and MW denote the concentrations of frq and wc-1 mRNA respectively.

PL
W is the concentration of light-activated WC-1, in which light has induced the binding of a flavin

chromophore (FAD) to the LOV-sensing domain of the protein. PW represents the concentration of

the non light-activated protein. The levels of the two FRQ forms are represented by the variables

PF (s-FRQ) and P ′
F (l-FRQ).

Equations (6)-(11) are a more comprehensive model of the Neurospora circuitry than (1)-(5).

The role of wc-1 in the negative feedback loop is incorporated, with the repressive action of FRQ on

frq-bound WC-1 modelled as a noncompetitive inhibition process (see equation (6)). The model also

includes the positive feedback loop in which FRQ enhances the production of WC-1 (see equation

(10)). As for model 1, the effect of light is represented by a term θ (t) that increases from 0 to a

maximum value of 1 at lights-on. This causes a rapid increase in the forward rate of the reaction

PW ⇀↽ PL
W , modelling the rise in the relative concentration of FAD-bound WC-1 observed with

increasing light levels [9]. The sudden switch to the light-activated WC-1 form results in enhanced

transcription of frq through the first term of equation (6); additionally, it raises the transcription

rate of wc-1 through the second term of (9), reflecting the loss of wc-1 light-responses in wc-1

mutant backgrounds [18].
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A relative novelty of the model is the way in which the protein pathways have been repre-

sented. Many mathematical models of circadian networks employ sequences of protein modifica-

tions (usually phosphorylation and nuclear transport) in order to produce the delays necessary for

self-sustained oscillations to be generated [15]. An alternative method has been used in the con-

struction of (6)-(11). In equations (7), (8) and (10), the distribution of times required for a FRQ

or WC-1 protein to be modified and transported to become a transcription factor (TF) is assumed

to be an Erlang function with scale parameter equal to fi and shape parameter equal to 2:

gfi
(t) = f2

i te−fit. (12)

This distribution has mean delay 2
fi

- representing the average delay between the translation of

a protein and its conversion into transcription factor - and variance 2
f2

i

- representing the mean

deviation from the average. The term e−γit that post-multiplies the Erlang term corresponds to

the loss of proteins during modification, with γi quantifying the rate of this loss [23]. An advantage

of this approach is that there is a reduction in the effective number of model parameters; also, no a

priori assumptions have to be made regarding the processes underlying the oscillation-generating

delays. The equations were solved by writing the integrodifferential equations (7), (8) and (10) as

equivalent chains of linear ordinary differential equations [23].1

Finally, it should be noted that as in model 1, s-FRQ and l-FRQ are assumed to be equally

effective in repressing frq transcription (see equation (6)). In addition, they are also assumed to be

equally effective in enhancing the rate of WC-1 production (see equation (10)).

3 Finding starting solutions of the models

In order to implement global temperature compensation and period tuning through isoform switch-

ing, solutions of the two models representative of the relevant experimental data on Neurospora

rhythms were first obtained. The free-running period of Neurospora is approximately 22h [1]. In

constant darkness, frq mRNA is at a minimum level early in the subjective night, peaking after

about 12h circadian time (CT). FRQ peaks 4-6h after its transcript, reaching minimum levels ap-

proximately 12h later. wc-1 mRNA is expressed constitutively, with its protein product oscillating

roughly in antiphase with FRQ [16], [25], [6], [9], [10]. In constant light, levels of both frq mRNA

and FRQ are elevated and arrhythmic, indicating that the circadian clock is not functioning [5],

[3]. Dark-to-light transfers induce rapid increases in both frq and wc-1 mRNA levels, while light-

to-dark transfers cause rapid decreases in the level of frq [5], [33]. These light-induced changes in

mRNA levels provide the molecular basis for the entrainment of the clock by light-dark (LD) cycles

[19].

3.1 Model 1

The first step in finding a suitable starting parameter set for model 1 was to set all primed parame-

ters (representing translation, degradation and transport of l-FRQ species) equal to their unprimed

counterparts (representing the equivalent processes for s-FRQ). This enabled (1)-(5) to be reduced

to a 3-dimensional model involving only the total amounts of cytoplasmic and nuclear proteins,

(FC + F ′
C) and (FN + F ′

N ) respectively. Next, 250000 randomly distributed points were generated

1Within this framework, the variables in the chains can be considered as intermediate protein species (e.g. cyto-

plasmic proteins in different phosphorylation states).
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in the resulting 9-dimensional parameter space. The points were chosen so that all parameters were

bounded between 0 and 10, with the exception of the Hill coefficient n, which was bounded between

4 and 8.2 For each point, the equations were integrated for 600h in simulated DD conditions to

remove transients. The equations were then integrated for a further 600h, and the times of repeated

intersections with a Poincaré section used to assess whether the solution was likely to be periodic.

Candidate periodic solutions identified in this manner were used as the seed of a boundary value

solver to check for true periodicity [32]. The parameter sets generating periodic solutions were

then rescaled so as to give a period of 22h. For each of these sets, the technique used to check for

periodicity in DD was repeated for simulated 12:12 LD cycles, leading to solutions with the correct

free-running period that could be entrained by light over a range of 24h photoperiods.

The solutions of the reduced model obtained in this way were then converted into solutions of

the full 5-d model by setting the values of each primed/unprimed parameter pair equal to that of

the corresponding parameter in the reduced model, with the exception of the FRQ translation rates

ks and k′
s, which were set to half the translation rate in the reduced model. This gave symmetric

solutions of (1)-(5) with FC = F ′
C and FN = F ′

N . Next, the symmetry of the solutions was broken

by randomly perturbing the l-FRQ loop parameters {k′
s, v

′
d, k

′
1, k

′
2}. Symmetry-broken parameter

sets with ks > k′
s generating oscillatory solutions where the level of s-FRQ was greater than that

of l-FRQ at the phase of maximal FRQ expression were rescaled to give 23h periods, and then

checked for entrainment to 12:12 LD cycles as described above. These parameter sets were used as

the starting points for isoform switching at the lower end of the temperature range.

3.2 Model 2

In order to find starting parameter sets for model 2, a parameter selection technique based on the

construction of a qualitative cost function was employed [21], [22]. As for model 1, all primed

parameters of (6)-(11) were first set equal to their unprimed counterparts. This enabled the system

to be reduced to a 5-dimensional model involving only the total amount of FRQ transcription factor,

PF + P ′
F . 1 million Sobol quasi-random points were then chosen in the resulting 30-dimensional

parameter space, as described in [21]. These points were chosen so that all parameters were bounded

between 0 and 10, excluding n, m, k, f1, f2, γ1 and γ2. The Hill coefficients n, m and k were bounded

between 1 and 4 to exclude solutions with unrealistically high levels of transcription factor/promoter

cooperativity. The scale parameters f1 and f2 of the Erlang distributions were bounded between
2
15 and 10

15 in order to bound the initial mean delays in the modification of translated FRQ/WC-1

into transcription factor between 3h and 15h. Finally, γ1 and γ2 were bounded between 0 and 0.2

in order to exclude solutions in which intermediate protein species had unrealistically low survival

rates.

Following [21] and [22], each Sobol point was assigned a cost function score C (ki), composed

of a sum of squared terms. The principal terms in C (ki) were chosen to ensure that: 1) the

solution oscillated with a period close to 22h in DD cycles; 2) the phases of the solution in DD

were close to those observed experimentally; and 3) the solution was entrained to 12:12 LD cy-

cles. The 50 solutions with the lowest cost function scores were then optimised using a variant of

the simulated annealing algorithm described in [13]. At each step of the algorithm, the kis were

2Although it is possible to obtain oscillatory solutions for equations (1)-(5) with Hill coefficients as small as 1

([12]), n was set greater than 4 in order to generate a greater number of parameter sets to use as starting points for

the optimisation procedure.
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randomly perturbed yielding a new cost value C′. The perturbation was accepted with probabil-

ity min
{

e(−(C′−C)/AT ), 1
}

, where AT is a parameter (the annealing temperature) that decreases

linearly with step number to 0. Perturbations decreasing C were therefore always accepted while

perturbations increasing C were less frequently accepted, with the probability of acceptance de-

creasing with time. This gave rise to a hill-climbing optimisation algorithm able to locate multiple

minima of C [13], [21]. During the annealing process, Hill coefficients were kept bounded between 1

and 4 while all other parameters were allowed to vary freely. For each of the 50 low cost solutions,

100000 annealing steps were used with the starting annealing temperature set equal to the greatest

initial cost value.

Following the method for model 1, the optimised solutions of the reduced 5-d model were

converted into solutions of the full model (6)-(11) by setting the values of each primed/unprimed

parameter pair equal to that of the corresponding parameter in the 5-d model, with the exception of

the FRQ translation rates a3 and a′
3 which were set to half the translation rate in the reduced model.

This yielded symmetric solutions of (6)-(11) with PF = P ′
F . As for model 1, asymmetric solutions

were obtained through random perturbations of the l-FRQ loop parameters, {a′
3, f

′
1, γ

′
1, d

′
2}. Those

parameter sets with a3 > a′
3 yielding periodic solutions with levels of s-FRQ greater than l-FRQ

at the phase of maximal FRQ expression were rescaled to give a period of 23h and checked for

entrainment to 12:12 LD cycles. These parameter sets were used as the starting points for isoform

switching at the lower end of the temperature range.

4 Isoform switching as a mechanism for global temperature

compensation and period control

4.1 Incorporating temperature in the models

Following the approach of Ruoff ([30], [29], [31]) the temperature dependence of a given parameter

kj of the Neurospora models was assumed to be described by the Arrhenius equation:

kj = Aje
−

Ej

RT . (13)

Here, Aj and Ej are respectively the collision factor and activation energy of the process associated

with kj , R is the universal gas constant (8.3145 x 10−3 kJ mol−1 K−1) and T is temperature.

Exceptions to this were Hill coefficients (n in model 1, n, m and k in model 2) and the s- and l-FRQ

translation rates rS and rL (rS = ks, rL = k′
s for model 1; rS = a3, rL = a′

3 for model 2). Hill

coefficients were assumed to be independent of temperature, while the temperature dependence of

rS and rL was modelled by the sigmoidal functions

rS (T ) = a1 tanh (b1 (T − TS1
)) + c1, (14)

rL (T ) = a2 tanh (b2 (T − TS2
)) + c2. (15)

The function ai tanh (bi (T − TSi
)) + ci varies smoothly between the values ci + ai and ci − ai as

T is varied, crossing ci at the switching temperature T = TSi
with a slope determined by the

value of bi. By choosing ai, bi and ci in (14) and (15) appropriately, translation profiles could be

obtained modelling the experimentally observed shift with increasing temperature of the preferred

translation initiation site on the frq ORF from AUG #3 (the initiation codon of s-FRQ) to AUG

#1 (the initiation codon of l-FRQ) [20], [4], [8].
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4.2 Local and global compensation

For a given clock model, the period p can be written as p = p (T ) = p (k1 (T ) , . . . , km (T )) where T

acts through the model parameters {k1, . . . , km}. Taylor expanding the period about a particular

temperature T0 gives the expression below:

p (T ) = p (T0) +
dp

dT
(T0) (T − T0) +

d2p

dT 2
(T0) (T − T0)

2
+ O

(

|T − T0|
3
)

. (16)

Applying the chain rule leads to the following equations for dp
dT and d2p

dT 2 involving the kjs:

dp

dT
=

m
∑

j=1

∂p

∂kj

dkj

dT
, (17)

d2p

dT 2
=

m
∑

j=1

∂p

∂kj

d2kj

dT 2
+

m
∑

i,j=1

∂2p

∂ki∂kj

dki

dT

dkj

dT
. (18)

Equation (16) shows that for T sufficiently close to T0,

p (T ) ≈ p (T0) +
dp

dT
(T0) (T − T0) .

Consequently, if dp
dT (T0) = 0, the period of the clock will be roughly invariant in an interval

containing T0; the system will therefore be locally compensated at this point. Labelling the kjs so

that km−1 = rS and km = rL, it follows from (13) that for the Neurospora models considered here,
dp
dT can be written as shown below:

dp

dT
=

1

RT 2

m−2
∑

j=1

∂p

∂kj
kjEj +

∂p

∂rS
r′S +

∂p

∂rL
r′L. (19)

This expression can also be written as

dp

dT
= p





1

RT 2

m−2
∑

j=1

Cp
j Ej + Cp

m−1

r′S
rS

+ Cp
m

r′L
rL



 , (20)

where Cp
j = ∂ log(p)

∂ log(kj)
is the control coefficient or elasticity associated with kj [30], [14] (cf. equation

(1) of the main paper). For both models, the kjs can be subdivided into 3 functional groups: the

parameters associated with the s-FRQ loop LS , those associated with the l-FRQ loop LL, and the

remaining parameters N . The condition dp
dT = 0 for local temperature compensation at T0 can

therefore be expressed in the form:

1

RT 2





∑

j∈LS\rS

∂p

∂kj
kjEj +

∑

j∈LL\rL

∂p

∂kj
kjEj +

∑

j∈N

∂p

∂kj
kjEj



 +
∂p

∂rS
r′S +

∂p

∂rL
r′L = 0. (21)

Global temperature compensation - that is obtaining a system with a relatively invariant period

over a significant range of temperatures T1 < T < T2, can then be interpreted as the process

of tuning the terms of the balance equation (21) so that it is approximately satisfied over the

whole range (T1, T2). One way this could be achieved is by finding a set of parameters that

simultaneously solve the balance equation at a number of intermediate temperatures in (T1, T2); for

a significant range this will require the independent adjustment of a large number of parameters.

In principal, compensation could also be attained over (T1, T2) through a single local compensation
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at an intermediate temperature [29], [30] (this mechanism will be referred to here as single-point

compensation). Setting dp
dT = 0 in (16) and substituting (13) into (18) implies the period of a

system compensated at T0 is locally of the form,

p (T ) ≈ p (T0) +
d2p

dT 2
(T0) (T − T0)

2 , (22)

where3

d2p

dT 2
=

1

RT 2

m−2
∑

j=1

(

1

RT 2

∂p

∂kj
kjE

2
j + 2

(

∂2p

∂kj∂rS
r′S +

∂2p

∂kj∂rL
r′L

)

kjEj

)

+
1

(RT 2)
2

m−2
∑

i,j=1

∂2p

∂ki∂kj
kikjEiEj +

∂p

∂rS
r′′S +

∂p

∂rL
r′′L +

∂2p

∂r2
S

(r′S)
2

+
∂2p

∂r2
L

(r′L)
2

+ 2

(

1

T

(

∂p

∂rS
r′S +

∂p

∂rL
r′L

)

+
∂2p

∂rS∂rL
r′Sr′L

)

. (23)

(22) suggests that if d2p
dT 2 (T0) is sufficiently small, p (T ) will be relatively invariant over (T1, T2),

yielding a globally compensated system. However, as can be seen in (23), unless the scaled first

and second derivatives of period with respect to parameter, ki
∂p
∂ki

and kikj
∂2p

∂ki∂kj
, are small at T0,

tuning of the system to obtain d2p
dT 2 close to 0 will again involve the adjustment of a large number

of independent parameters. In the general case, one would expect a number of these derivatives

to be of significant magnitude: indeed, for both models considered here, a large proportion of

the scaled period derivatives are of order 1 or more (see tables 1 and 6 and figure 1). It follows,

using typical values for the Ejs, that d2p
dT 2 (T0) can be of order 0.1 or more. Hence, for realistic

models, a significant quadratic variation of period should be observed in a system obtained through

single-point compensation.

4.3 Isoform switching

Isoform switching is an alternative approach to global compensation which requires the adjustment

of only 3 parameters (i.e. it is a codimension 3 process). Two of these parameters tune the system

to satisfy the balance equation (21) at T1 and T2, giving local compensation at the upper and lower

ends of the temperature range. The third parameter adjusts the difference ∆p = p(T2) − p(T1)

between the periods at the temperature extremes to be close to 0, yielding a globally compensated

system. The change in the relative abundance of the FRQ forms with temperature ([20], [8]) means

that these adjustments can effectively be made independently of each other; this is in contrast to

the compensation mechanisms discussed in section 4.2, in particular single-point compensation.

The derivation of globally compensated solutions of the Neurospora models through direct appli-

cation of isoform switching is described below. Section 8 demonstrates how such systems could arise

through stochastic parameter changes that mimic evolutionary processes. In all simulations shown

here, T1 and T2 were set equal to 18oC and 30oC respectively, in accordance with the physiological

range considered in [20].

3p (T0) and d2p

dT2
(T0) are referred to as a and b respectively in the main paper.
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4.4 Direct compensation of the models

Step 1. Balancing using the s-FRQ loop at T1

For both models, the starting point for the compensation at T1 was taken to be a parameter set

yielding a 23h period cycle with rS (T1) > rL (T1), such that the level of s-FRQ was greater than

that of l-FRQ at the phase of maximal FRQ expression. These solutions reflect the oscillation

periods and relative FRQ levels observed experimentally at the lower end of the physiological range

in the frq wild-type (WT) construct KAJ120 in the experiments of Liu et al. [20]; their derivation

was described in section 3. Since rS (T1) > rL (T1), the terms for the s-FRQ loop dominate those

for the l-FRQ loop in (21), allowing the condition for local compensation at T1 to be approximated

by:

1

RT 2
1





∑

j∈LS\rS

∂p

∂kj
kjEj +

∑

j∈N

∂p

∂kj
kjEj



 +
∂p

∂rS
r′S = 0.

Substituting (14) into the above and rearranging leads to the following balance equation:

∑

j∈LS\rS

∂p

∂kj
kjEj +

∑

j∈N

∂p

∂kj
kjEj = −RT 2

1 a1b1sech
2 (b1 (T1 − TS1

))
∂p

∂rS
. (24)

Specification of the crossover temperature TS1
, the crossover slope b1 and the value of the s-FRQ

translation rate rS at T2 determines the values of a1 and c1 (cf. (14)). For both models, TS1

was set close to the midpoint of (T1, T2), b1 was chosen to lie between 0 and 0.5 and rS (T2) was

set equal to αrS (T1) for some 0.8 ≤ α ≤ 1. The derivatives ∂p
∂kj

and ∂p
∂rS

can be calculated from

analytical expressions obtained using limit cycle perturbation theory, as described in [27]. Following

the computation of these derivatives, all terms in (24) are determined, with the exception of the

activation energies Ej . To balance using the s-FRQ loop, it is therefore only necessary to find a set

of Ejs solving the resulting linear equation. This can be done by extending (24) into a consistent

system of linear equations.

Step 2. Obtaining the correct period at T2

Following the calculation of the activation energies Ej needed to balance using the s-FRQ loop

at T1, the corresponding collision factors Aj were calculated from (13), enabling the values of the

parameters in the LS and N groups to be determined at the upper temperature T2. Setting the

LL parameters equal to their values at T1 and setting rL (T2) equal to rS (T1) yielded a putative

periodic solution of the model at T = T2. If this solution was indeed periodic, its period was steered

to the value 21h reported at the upper end of the physiological range in [20] by iteratively increasing

the value of rL (T2). This gave a solution with rL (T2) > rS (T2), reflecting the greater translation

of l-FRQ relative to that of s-FRQ at higher temperatures implied by experimental data [20], [8].

Step 3. Balancing using the l-FRQ loop at T2

Since - by construction - rL is greater than rS at T2, at this temperature the terms for the l-FRQ

loop dominate those for the s-FRQ loop in (21), allowing the condition for local compensation at

T2 to be approximated by:

1

RT 2
2





∑

j∈LL\rL

∂p

∂kj
kjEj +

∑

j∈N

∂p

∂kj
kjEj



 +
∂p

∂rL
r′L = 0.
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Substituting (15) into the above and rearranging leads to the following balance equation:

∑

j∈LL\rL

∂p

∂kj
kjEj = −

∑

j∈N

∂p

∂kj
kjEj − RT 2

2 a2b2sech
2 (b2 (T2 − TS2

))
∂p

∂rL
. (25)

Specifying the crossover temperature TS2
and the crossover slope b2 determines the values of a2

and c2 (cf. (15)). As in Step 1, TS2
was set close to the midpoint of (T1, T2), while b2 was chosen

to lie between 0 and 0.5. The derivatives ∂p
∂kj

and ∂p
∂rL

can again be calculated using the technique

of [27], meaning that all terms in (25) are determined with the exception of the activation energies

Ej on the left hand side. To balance using the l-FRQ loop, it is thus only required to find a set of

these Ejs solving the resulting linear equation.

Following the completion of step 3, the collision factors Aj corresponding to the Ejs solving (25)

can be calculated from (13); all temperature-dependent parameters are now determined across the

full range (T1, T2). This gives a system which is locally compensated at both ends of the temperature

range, that is with a relatively invariant period p in intervals around T1 and T2. Provided these

intervals extend towards the central part of the range, p will then be relatively invariant across all

of (T1, T2), giving a globally compensated clock.

4.5 Results

4.5.1 Wild-type simulations obtained using isoform switching

The upper panel of figure 2 shows the s- and l-FRQ translation-temperature profiles for a WT

solution of the first Neurospora model (1)-(5) obtained through the direct application of isoform

switching. Figure 2 of the main paper shows the corresponding profiles for a WT solution of the

second Neurospora model (6)-(11) generated using the same method. The resulting variations in

the levels of s-FRQ and l-FRQ with temperature are plotted in figure 3 below. For both models,

an increase in the total amount of FRQ with temperature is accompanied by an increase in the

l-FRQ:s-FRQ ratio, in agreement with experimental data [20], [8].

The period-temperature relationship for the WT solution of model 1 can be seen in figure 4

below, while that for model 2 is shown in figure 3 of the main paper. For both models, the variation

in period is similar to that observed experimentally in [20], decreasing monotonically through 23h

at the midpoint TC = 1
2 (T1 + T2) of the temperature range (T1, T2), with an overall decrease in

period of roughly 2h. Time series of the solutions at the midpoint temperature TC can be seen in

figures 5 and 6. The parameter values, activation energies and period derivatives at the ends of the

temperature range (T1, T2) are listed in tables 1 and 6, while the tanh function parameter values

used to model the s-FRQ and l-FRQ translation-temperature profiles are given in tables 4 and 9.

Finally, the parameters of the models for which the corresponding control coefficients are largest

- and which thus contribute most to the change of period with temperature through (20) - are

listed in tables 2 and 7. In addition to the FRQ translation rates {ks, k
′
s} / {a3, a

′
3}, the dominant

parameters can be identified as those determining the following:

1. The maximum transcription rate of frq mRNA (vs/a2).

2. The strength of repression of frq transcription by FRQ protein (KI/b3).

3. The maximum rate of frq degradation (vm/d1).
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4. The rate of conversion of FRQ protein into transcription factor in the s-FRQ and l-FRQ loops

({k1, k
′
1} / {f1, f

′
1}), and (for model 2) the degradation rate of the intermediate FRQ forms

(γ1, γ
′
1).

The effect on the period Q10 of perturbations to these parameters is shown in tables 3 and 8.

Perturbations to parameters with Arrhenius dependence on temperature were obtained by changing

the corresponding activation energy Ej so that the value of kj at the midpoint temperature TC was

equal to the appropriate fraction of its original value. Perturbations to the translation parameters

were obtained by uniformly scaling the translation profiles rS(T ) and rL(T ). It can be seen that

for both models, the largest effect on the Q10s are perturbations to the parameters determining

the rates of FRQ translation and FRQ transcription factor conversion. Moreover, the simulations

predict that perturbing these parameters in the s-FRQ loop will have a different effect to perturbing

them in the l-FRQ loop. Indeed, while decreasing these rates in both loops yields a larger period

compared to the WT - consistent with the negative control coefficients - reductions in the s-FRQ

TF conversion rate increase the Q10 while decreases in the l-FRQ rate result in a reduced Q10. In

particular, the simulations for model 2 predict that perturbations to the system resulting in reduced

l-FRQ translation rates, or a greater mean delay in the l-FRQ transcription-translation negative

feedback loop, can lead yield an increasing period profile (Q10 < 1).

4.5.2 Comparison with single-point compensation

Figure 5 of the main paper (left panel) compares the period-temperature profile of the WT solution

of model 2 obtained through isoform switching with one generated by locally compensating the cor-

responding symmetric starting parameter set (cf. section 3) at the midpoint TC of the temperature

range (T1, T2). After rescaling parameters to produce a cycle with period equal to the average of the

simulated wild-type over (T1, T2), the symmetric system was locally compensated at TC by finding

energies satisfying (21), using the same computational methods as those employed to balance the

asymmetric system at T1 and T2 in section 4.4.

It can be seen that although the locally compensated solution has a relatively invariant period

in an interval containing TC - with the quadratic behaviour predicted in section 4.2 - the system

becomes arrhythmic as T1 and T2 are approached. Outside the range of rhythmicity, the system

generates damped oscillations that eventually converge to an equilibrium value. At both ends of

the temperature range, the breakdown of the clock occurs through a supercritical Hopf bifurcation

in which the attractor of the system changes from a stable equilibrium point - representing an

arrhythmic system - to a stable limit cycle - representing an autonomous oscillator. This can be

seen in figure 7 below which shows the variation of the attractor with temperature. The loss of

rhythmicity near the ends of the range was observed to be typical of solutions produced through

local compensation at intermediate temperatures. Furthermore, the solutions retaining rhythmicity

across the range had quadratic period-temperature profiles and so were unable to generate the

monotonically decreasing (under-compensated) profiles reported in experiments [20], [8].

These results illustrate that the WT period-temperature and protein-temperature profiles ob-

served experimentally can be qualitatively reproduced using isoform switching. In particular, the

tuning of the difference ∆p between the periods at the temperature extremes enables the controlled

decrease in the WT experimental period profile to be easily simulated. In contrast, single-point
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compensation is unable to simulate such a profile, illustrating the limitations of the technique as a

viable mechanism for period control in realistic systems.

5 Simulating compensation mutants producing only one form

of FRQ

Four mutant Neurospora strains in which one FRQ form is produced in abundance relative to the

other were considered. Two of these were the splice site mutants I-6opt and I-6mut constructed by

Diernfellner and coworkers [8]. In I-6opt the splice sites of intron 6, which contains AUG #1, are

optimised towards consensus. This gives rise to a strain in which s-FRQ is efficiently synthesised at

all temperatures while l-FRQ is produced at low levels. In I-6mut, the splice sites are mutagenised

towards nonsplice sites, leading to a strain in which l-FRQ is synthesised across the temperature

range, and only trace amounts of s-FRQ are detectable [8]. I-6opt and I-6mut are referred to here

and in the main paper as strains A and B respectively.

The other two mutant strains modelled were the AUG deletion constructs YL34 and JC101 of

Liu and coworkers [20]. YL34 - obtained by deletion of AUG #1 - produces mainly s-FRQ while

JC101 - obtained by point mutation of AUG #3 - produces mainly l-FRQ [20]. Here, YL34 and

JC101 are referred to as strains C and D respectively.

5.1 Modelling of strains producing mainly s-FRQ

Strain A was modelled using s-FRQ and l-FRQ translation rate-temperature profiles rS (T ) and

rL (T ) in which rS increases with T and rL is small compared to rS across the temperature range.

To model strain C, profiles were chosen in which rL is at low levels, reflecting the deletion of AUG

#1, and rS decreases as T is increased, modelling the shift to AUG #1 due to thermosensitive

splicing [2].

5.2 Modelling of strains producing mainly l-FRQ

To model strain B, translation profiles were used in which rL increases with T and rS is small

compared to rL. Strain D was modelled with profiles in which rS was at low levels across the

temperature range, reflecting the deletion of AUG #3, and rL increases significantly with increasing

temperature, modelling the combined effects of the shift to AUG #1 due to thermosensitive splicing

and the increase in the size of the overall FRQ pool resulting from enhanced ribosome scanning

efficiency [2].

For all modelled strains, the magnitudes of rS and rL were bounded so that the net translation

rate rT = rS + rL was of similar order to the wild-type.

5.3 Results

Plots of the translation profiles rS (T ) and rL (T ) employed to model strains A-D for model 1 can be

seen in figure 2. Figure 2 of the main paper shows the profiles used for model 2. The corresponding

tanh function parameters determining the profiles through equations (14) and (15) are given in

tables 4 and 9. Figure 4 shows the period-temperature relationships simulated using these profiles

for model 1. The corresponding plots for model 2 are presented in figure 3 of the main paper.
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Simulations of strains C and D

For both models, the simulated l-FRQ deletion construct YL34 (strain C) is compensated at low

temperatures with a significantly increased period compared to the wild-type, becoming arrhyth-

mic at the upper end of the temperature range. The simulated s-FRQ deletion construct JC101

(strain D) is compensated at high temperatures with a smaller period than that of the wild-type,

becoming arrhythmic at the lower end of the temperature range. These simulations agree with the

experimental results of Liu et al [20].

Simulations of strains A and B

For the simulated mutagenised splice-site mutant I-6mut (strain B), modification of translation only

gave a monotonic decrease in period, in agreement with experimental data [8], [7]. A decreasing

period profile was also observed for the optimised splice-site mutant I-6opt of Diernfellner et al

(strain A), inconsistent with the increase in period observed experimentally [8], [7]. The decreasing

profiles obtained for A and B are a consequence of the fact that, by construction, the wild-type

solutions are roughly close to being symmetric in the FRQ loops. Consequently, the models can be

approximated by reduced models involving only the net FRQ translation rate rF = rS + rL (recall

the construction of the starting parameter sets for isoform switching in section 3). Rewriting

the wild-type parameters in the reduced models as k = (k1, . . . , km′−1, rF ) implies the following

expression for dp
dT (cf. equation (19)):

dp

dT
(k) =

1

RT 2

m′−1
∑

j=1

∂p

∂kj
(k) kjEj +

∂p

∂rF
(k) r′F . (26)

The parameters for the simulations of strains A and B can be written as k̄ = (k1, . . . , km′−1, r̄F )

where r̄F (T ) = rF (T ) + δrF (T ) is the change in net FRQ translation resulting from replacing

rS (T ) with r̄S (T ) = rS (T ) + δrS (T ) and rL (T ) with r̄L (T ) = rL (T ) + δrL (T ). Substituting k̄

into (26) and using Taylor expansions leads to the approximation below:

dp

dT

(

k̄
)

≈
dp

dT
(k) +





1

RT 2

m′−1
∑

j=1

∂2p

∂rF ∂kj
(k) kjEj +

∂2p

∂r2
F

(k) r′F



 δrF

+

(

∂p

∂rF
(k) +

∂2p

∂r2
F

(k) δrF

)

δr′F . (27)

In the simulations of all mutant strains, the FRQ translation profiles were bounded so that the

net translation profile r̄F was comparable to the wild-type; both δrF and δr′F are therefore small

compared to rF . It follows from (27) that dp
dT

(

k̄
)

will be of the same sign as dp
dT (k) across (T1, T2),

resulting in simulations of strains A and B in which period decreases with temperature, as in the

wild-type.

If it is assumed, however, that there is a significant difference between the parameters in the

s-FRQ and l-FRQ loops, simulations of strain A can be obtained for which period increases above

the wild-type value with temperature, in agreement with the experiments reported in [8] and [7].

This can be seen by considering the expressions for dp
dT in the wild-type and mutant at the upper

end of the temperature range. Writing the WT parameters as k = (k1, . . . , km−2, rS , rL) and using

the fact the l-FRQ loop dominates the s-FRQ loop at higher temperatures for the WT gives the
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following approximation:

dp

dT
(k) ≈

1

RT 2

∑

j∈N

∂p

∂kj
(k) kjEj +

1

RT 2

∑

j∈LL\rL

∂p

∂kj
(k) kjEj +

∂p

∂rL
(k) r′L. (28)

Expressing the strain A parameters as k̄ = (k1, . . . , ks−2, r̄S , r̄L), where r̄S and r̄L are defined as

in the symmetric case, and using the domination of the s-FRQ loop over the l-FRQ loop in the

mutant at higher temperatures yields:

dp

dT

(

k̄
)

≈
1

RT 2

∑

j∈N

∂p

∂kj

(

k̄
)

kjEj +
1

RT 2

∑

j∈LS\rS

∂p

∂kj

(

k̄
)

kjEj +
∂p

∂rS

(

k̄
)

r′S .

Taylor expanding the derivatives in the expression above and using (28) leads to the following:

dp

dT

(

k̄
)

≈
dp

dT
(k) +

1

RT 2





∑

j∈LS\rS

∂p

∂kj
(k) kjEj −

∑

j∈LL\rL

∂p

∂kj
(k) kjEj



 +
∂p

∂rS
(k) r′S −

∂p

∂rL
(k) r′L

+





1

RT 2

∑

j∈N∪(LS\rS)

∂2p

∂rL∂kj
(k) kjEj +

∂2p

∂rL∂rS
(k) r′S



 δrL +

(

∂p

∂rS
(k) +

∂2p

∂rL∂rS
(k) δrL

)

δr′S .

The lower order terms in this approximation to dp
dT

(

k̄
)

show that it is possible to make dp
dT

(

k̄
)

positive - even though dp
dT (k) is negative - by tuning the difference between the s-FRQ and l-FRQ

loops appropriately. In the resulting simulation of strain A, period will increase with temperature

at the upper end of the range. Consequently, if the FRQ translation profiles are such that p (T1) <

p (T2) and dp
dT

(

k̄
)

does not vary too much over (T1, T2), period will increase with temperature across

all of (T1, T2).

Parameter values, activation energies and period derivatives at T1 and T2 for FRQ loop param-

eters that give increasing period profiles for strain A in the models are listed in tables 5 and 10.

The tanh function parameters determining the corresponding FRQ translation profiles can be seen

in tables 4 and 9.

6 Quantifying the relationship between FRQ level and rhyth-

micity

A number of experiments have suggested a link between FRQ protein levels and robust free-running

rhythmicity of the Neurospora clock. In particular, these experiments have lead to the hypothesis

that a threshold level of FRQ is required for the clock to retain rhythmicity, and that this threshold

level increases with temperature [20], [8].

The relationship between FRQ level and functionality was investigated by quantifying how the

level of net FRQ translation rate rF = rS + rL at which the basic, near-symmetric Neurospora

models switch between rhythmic and arrhythmic solutions varies with temperature. This was done

by defining one-parameter families of models interpolating between the simulations of the deletion

constructs of Liu et al. and the splice-site mutants of Diernfellner et al. At the lower end of

the temperature range, families of models interpolating between strains D (arrhythmic) and B

(rhythmic) were obtained by writing the s-FRQ and l-FRQ translation rates rS and rL in the forms

below:

rS (T ) = (1 − λ) rD
S (T ) + λrB

S (T ) (29)

rL (T ) = (1 − λ) rD
L (T ) + λrB

L (T ) . (30)
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Here,
{

rD
S , rD

L

}

and
{

rB
S , rB

L

}

represent the translation rates of strains D and B respectively, with λ

an interpolation parameter. As λ varies between 0 and 1 for a given T , the model defined by (29)-

(30) varies between the corresponding simulations of strains D and B. rF (T ) therefore changes

from a value for which the system is arrhythmic at T to a value for which it is rhythmic; the

intermediate value at which the transition from an arrhythmic to a rhythmic state occurs, rL
F (T ),

represents the threshold net FRQ translation rate required for the system to oscillate. Dynamically,

the transition takes place through a supercritical Hopf bifurcation, the same mechanism by which

the locally compensated solution discussed in section 4.5.2 loses rhythmicity at the ends of the

range. By using standard linear stability analysis to calculate the values of λ at which the Hopf

bifurcation occurs, rL
F (T ) could be determined over the lower temperature range.

At the upper end of the temperature range, families of models interpolating between strains C

(arrhythmic) and A (rhythmic) were obtained by writing rS and rL as

rS (T ) = (1 − λ) rC
S (T ) + λrA

S (T ) (31)

rL (T ) = (1 − λ) rC
L (T ) + λrA

L (T ) , (32)

where
{

rC
S , rC

L

}

and
{

rA
S , rA

L

}

represent the translation rates of strains C and A. At a given T ,

varying λ between 0 and 1 switches the model defined by (31)-(32) between the corresponding

simulations of strains C and A. This enabled rL
F (T ) to be determined across the high temperature

range by calculating the corresponding Hopf bifurcation values of λ. rL
F (T ) was determined at

intermediate temperatures (where both strains C and D are rhythmic) by considering negative

values of λ.

6.1 Verification of an increasing lower threshold for rhythmicity

Figure 4 of the main paper shows the variation of rL
F with T for the second Neurospora model,

computed using the method described above. These are the two solid curves close to the bottom

of the picture (the leftmost curve represents the computation of rL
F (T ) using (29)-(30) and the

other curve the computation of rL
F (T ) using (31)-(32)). It can be seen from the figure that rL

F is

an increasing function of T ; that is the threshold level of FRQ translation required for a functional

clock increases with temperature, as predicted experimentally [20]. The figures also shows that for

the wild-type and strains A and B, the net translation rate rF remains above rL
F across (T1, T2). By

contrast, rF decreases below rL
F near T2 in strain C and decreases below rL

F near T1 in strain D. Thus,

the loss of rhythmicity of the simulated AUG deletion constructs at the extremes of the temperature

range is a result of sub-threshold levels of FRQ, in accordance again with experimental predictions

[20], [8]. The insets to the figure illustrate the loss of rhythmicity through Hopf bifurcations (cf.

figure 7 below). Outside the rhythmic ranges, strains C and D generate oscillations that damp to

a constitutive level, in agreement with experiments (cf. figure 2 of [20]).

6.2 Prediction of an upper threshold for rhythmicity

In addition to quantifying the existence of an increasing minimum translation threshold for sustained

oscillations, the models predict the existence of a temperature-dependent upper limit at which

rhythmicity is lost as a consequence of excessive FRQ translation. This effect can be inferred from

the form of the frq transcription equations (1) and (6) in the models. In both equations, high

levels of FRQ can inhibit transcription sufficiently for the degradation term to dominate, causing
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frq mRNA, MF , to converge to a constitutive value, thereby stopping the clock. It follows that for

a given temperature T , there is a net translation level rU
F (T ) above which the system is arrhythmic.

The variation of this upper translation limit with temperature was determined by calculating

the values of λ at which rhythmicity was lost as λ was increased from 1 in the models defined by

(29)-(30) and (31)-(32). As in the case of subthreshold FRQ translation, the breakdown of the clock

occurs through a Hopf bifurcation. The two solid curves at the top of figure 4 in the main paper

represent the values of rU
F (T ) calculated in this manner for model 2, with the leftmost and rightmost

curves representing the values computed using (29)-(30) and (31)-(32) respectively. It is interesting

to note that the net translation-temperature profiles of the simulated rhythmic Neurospora species

lie reasonably close to the upper translation limits. This suggests that obtaining a functional clock

is not simply a matter of perturbing the system so as to increase overall FRQ production; it requires

appropriate tuning of the s- and l-FRQ translation profiles.

7 Variation of entrainment phase with temperature

Experiments have shown that, like many circadian species, Neurospora exhibits systematic varia-

tions in the phase of entrainment with photoperiod length [33], [24]. Such behaviour is consistent

with the mathematical theory of coupled oscillators [11], [26]. This states that for a given forcing

amplitude θM , as the difference p − L between the period p of the free-running oscillator and the

period L of the light-dark (LD) cycle increases through 0, the system switches from a quasiperiodic

state to one where it is synchronised with the LD cycle before becoming quasiperiodic again. The

region in (p − L, θM ) space where the clock is synchronised is the Arnold tongue of the system. As

p (or equivalently photoperiod length) is varied within the tongue for a given forcing strength, the

phase of entrainment φ varies between 0 and 2π [26].

From the point of view of coupled oscillator theory, global compensation can be viewed in

broadest terms as a process which ensures that at each temperature T within the physiological

range, the period p (T ) of the clock is sufficiently close to 24h for the system to lie within the Arnold

tongue [28]. It has been recently suggested that in Neurospora, p (T ) may also be specifically tuned

so as to decrease with increasing T , thereby actively contributing to the buffering of entrainment

phase against variations in temperature [8], [7]. Figure 8 shows period-temperature and phase-

temperature profiles for simulations of the WT and strains A and B generated using model 2.

These appear to support the buffering hypothesis: while phase remains relatively independent of

temperature in the WT, there are significant changes in phase for the mutant strains.

In terms of mechanisms for period tuning, isoform switching enables a decreasing (or increasing)

period profile to be easily obtained through adjustment of the difference in periods at the ends of

the range, ∆p = p (T2)−p (T1) (cf. section 4.3). By contrast, since single-point compensation leads

to a quadratic variation of period, it does not allow such adjustment of p (T ).

8 Robustness of the isoform switching mechanism

8.1 Switching through simulated annealing

The results reported above have shown that globally compensated systems representative of those

reported experimentally can be obtained by directly applying isoform switching in the manner
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described in section 4.4. In order to demonstrate the robustness of the mechanism - and indi-

cate how it could arise through biological evolution - compensated systems were obtained from

non-compensated ones using simulated annealing. In addition, the greater flexibility conferred by

isoform switching was demonstrated by contrasting the evolved period profiles generated by models

incorporating both s- and l-FRQ pathways (double-loop models) with models containing only one

form of FRQ (single-loop models).

The annealing algorithm used was adapted from the optimisation technique described in sec-

tion 3. For the single-loop models, the quantities varied were the activation energies Ek; for the

double-loop models, the parameters {ai, bi, TSi
, ci} determining the s- and l-FRQ translation pro-

files rS (T ) and rL (T ) were also varied in addition to the Eks. The corresponding cost functions

C(Ek)/C(Ek, ai, bi, TSi
, ci) measured how close the system was at each annealing step to one with

a constant period of 22.5h across the temperature range. 10000 annealing steps were used in each

simulation with the starting annealing temperature set equal to the initial cost value.

8.2 Results

Figure 9 shows a representative simulation of global compensation generated through annealed

isoform switching for model 1. The starting system in this case was obtained through random

perturbations of the activation energies and FRQ translation profiles of the directly balanced so-

lution derived in section 4.4. As can be seen in panel A of the figure, the starting system is

non-compensated, losing functionality at lower temperatures. By contrast, the annealed system

is functional over the whole range, with a near constant period-temperature relationship close to

the target profile of the cost function. The activation energies and FRQ translation profiles of the

annealed solution are significantly different from those of the directly balanced system, indicating

that the annealing algorithm has converged to a compensated system distinct from the original one

(see panels B and C of figure 9).

Figure 5 of the main paper compares typical annealed solutions generated from single- and

double-loop systems for model 2. The starting point in both simulations was the symmetric system

obtained by local compensation at the midpoint temperature TC described in section 4.5.2; this

system is compensated at intermediate temperatures but is non-functional at the ends of the range.

The profiles shown are those obtained by annealing both single- and double-loop systems equivalent

to the starting system.4 The figure shows that for the double-loop model, annealing again recovers

functionality, while also yielding a system with a period profile very close to the target zero-

slope compensation of the cost function. By contrast the single-loop model does not fully recover

functionality, becoming arrhythmic at the higher end of the temperature range, and is unable to

generate a zero-slope profile.

These results demonstrate both the robustness and flexibility of the switching mechanism; ran-

domised parameter changes readily tuned the noncompensated systems onto the codimension 3

surface of compensated ones. Furthermore, the annealing procedure tuned the double-loop systems

so as to give specified period-temperature profiles, implying that such tuning could be obtained

through evolutionary processes. The inability of the single-loop systems to match this degree of

4The equivalent single-loop system was generated by setting all parameters in the FRQ pathway equal to their

corresponding values in the s-/l-FRQ loops, with the exception of FRQ translation which was set to the sum of the

s- and l-FRQ rates. The equivalent double-loop system was derived by finding s- and l-FRQ translation profiles

yielding a net translation profile equal to that of the symmetric one, while keeping the remaining parameters in the

loops equal.
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control suggests that the ability to tune the period profile through the variation of only 3 parameters

conferred by isoform switching increases the evolutionary flexibility of the network.

9 Simulating compensation mutants resulting from changes

in FRQ stability

Experiments and theoretical analysis have identified a link between the loss rate r of bulk FRQ

protein and temperature compensation, with significant differences observed in r between wild-type

strains and a number of mutant strains in which compensation is affected [30]. In simple models,

such as the Goodwin oscillator used in [30], r is simply the degradation rate of FRQ transcription

factor. In more complex models, such as those considered here, r will depend on parameters

determining the transport, modification and degradation of all species involved in the conversion of

FRQ into a transcription factor. Expressions are given below for the rates r and r′ of s- and l-FRQ

loss in the models. These are seen to depend on parameters with significant period derivatives,

thereby confirming the dependence of the period-temperature profile on FRQ loss rate proposed in

[30]. Furthermore, consideration of the control coefficients of these parameters in simulations of the

FRQ stability mutants frq1, frq7 and frqS1531 identifies the critical parameters that may be affected

in these strains.

9.1 The form of the overall FRQ loss rate in models 1 and 2

Following [30], r and r′ can be calculated by considering the exponential decay of the FRQ forms

from their LL equilibrium levels following a transfer to DD. It is fairly straightforward to show that

for model 1:

r =
vdk2

k1 + k2

r′ =
v′dk

′
2

k′
1 + k′

2

,

and for model 2:

r =
d2

(

f1 + γ1

(

2 + γ1

f1

))

f1 + d2

(

2 + γ1

f1

) (33)

r′ =
d′2

(

f ′
1 + γ′

1

(

2 +
γ′

1

f ′

1

))

f ′
1 + d′2

(

2 +
γ′

1

f ′

1

) . (34)

For both models, the loss rates involve one or more of the parameters with significant period

derivatives identified earlier in section 4.5.1 (see tables 2 and 7). In particular, since f1 and f ′
1 are

small, the FRQ loss rates for model 2 will depend significantly on the mean delay times τ = 2
f1

and

τ ′ = 2
f ′

1

for just-translated s- and l-FRQ to become transcription factors.

9.2 Modelling the mutants by varying the loss rate

Figure 6 of the main paper plots simulations of the frq1, frq7 and frqS1531 period-temperature

profiles p(T ) obtained by modifying the parameters contributing to the net FRQ loss rates r and

r′ for model 2. All the profiles are in qualitative agreement with experimental data [30].
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Table 11 shows the FRQ pathway parameters used to generate the simulations, together with

the corresponding values of r and r′ computed using (33) and (34). For the simulated short-period

frq1 mutant, r and r′ are seen to be greater than in the wild-type, indicating a decrease in the

stability of the FRQ forms. By contrast, r and r′ are smaller than the WT for the long-period

frq7 and frqS1531 strains, consistent with an increased stability of FRQ. Moreover, the loss rates are

smaller for the simulated frqS1531 mutant than for the frq7 mutant. These results are in qualitative

agreement with experimental estimates of net FRQ loss for the strains [30]. Furthermore, the

magnitudes of the control coefficients Cp
j for the parameters determining r and r′ imply that the

critical parameters affected in the strains are f1 and f ′
1, controlling the mean times for s- and l-

FRQ to become active transcription factors (i.e. the overall delays in the FRQ feedback loops); the

parameters affecting the degradation of FRQ {d2,d
′
2,γ1,γ

′
1} have significantly smaller Cp

j values. f1

and f ′
1 are reduced in frq7 and frqS1531, leading to a lengthening of period, while in frq1, f1 and f ′

1 are

greater than their WT values, resulting in a shorter period phenotype. For the simulated frqS1531

mutant, the reduction in f1 and f ′
1 can be interpreted as decreases in the FRQ phosphorylation

rates. This is consistent with the fact that the mutant was obtained experimentally by replacing

the phosphorylation site serine 513 on the FRQ ORF by isoleucine [30].
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Figure 1: Magnitudes of the scaled second period derivatives Dij
2 = kikj

∂2p
∂ki∂kj

for the two Neu-

rospora models, ranked in order of size. The dotted lines indicate a derivative equal to 1. For both

models, the derivatives were evaluated at the midpoint TC = 24oC of the temperature range for

parameter sets generating simulations of wild-type strains.
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Figure 2: Variation of FRQ translation rates with temperature for the Neurospora strains simulated

using model 1. Translation of s-FRQ and l-FRQ are denoted by open and closed symbols respec-

tively. Upper panel. Wild-type. Middle panel. Strains producing mainly s-FRQ. Inverted

triangles: strain A. Triangles: strain A with divergent FRQ pathways. Squares: strain C. Lower

panel. Mutant strains producing mainly l-FRQ. Diamonds: strain B. Triangles: strain B with

asymmetric FRQ pathways. Squares: strain D.
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Figure 3: Variation with temperature of the levels of the FRQ isoforms for wild-type solutions

simulated using the Neurospora models. Squares: total amount of FRQ. Filled circles: l-FRQ.

Open circles: s-FRQ.
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Figure 4: Period-temperature profiles simulated using model 1. Circles denote the simulation of the

wild-type. Upper panel. Strains obtained through optimisation or suppression of thermosensitive

splicing [8]. Inverted triangles: strain A. Triangles: strain A with asymmetric FRQ pathways.

Diamonds: strain B. Squares: strain B with divergent FRQ pathways. Lower panel. Strains

obtained through modification of the FRQ AUGs [20]. Triangles: strain C. Squares: strain D.
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Figure 5: Time courses of frq mRNA (circles) and FRQ (triangles) simulated by model 1 at the

midpoint TC = 24oC of the temperature range.
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Figure 6: Time courses of frq mRNA (circles), FRQ (triangles), wc-1 mRNA (squares) and WC-1

(inverted triangles) simulated by model 2 at the midpoint temperature TC = 24oC.
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attractors and dotted lines denoting unstable attractors. Solid circles indicate supercritical Hopf
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Figure 8: Period and entrainment phase profiles computed using model 2 (left and right panels

respectively). Circles: wild-type. Triangles: strain A. Squares: strain B. Following [33], entrainment

phase φ was taken to be the time at which FRQ reached its half-maximal value, computed relative

to midnight. Photoperiod length was 12h.
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Figure 9: Global compensation of model 1 through isoform switching by simulated annealing.

Panel A. Open circles: compensated solution generated through direct application of the switch-

ing method. Closed circles: noncompensated solution resulting from random perturbations of

the FRQ translation profiles and the activation energies Ek affecting period; the system becomes

arrhythmic as temperature is decreased. Squares: compensated system obtained by driving the

non-compensated solution to a target period of 22.5h through simulated annealing. Panel B. Rel-

ative differences between the energies of the directly balanced system, Ek, and the annealed one,

E′
k. Panel C. FRQ translation profiles of the directly balanced solution (circles) and the annealed

solution (squares). Open and closed symbols denote translation of s- and l-FRQ respectively.
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Tables

Table 1: Parameter values kj , activation energies Ej , scaled period derivatives kj
∂p
∂kj

and control

coefficients Cp
j at the ends of the temperature range (T1, T2) for the wild-type solution simulated

with model 1. The values of dp
dT shown were computed using equation (20).

kj
Ej ,

kJ mol−1
kj (T1) kj (T2)

(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

Parameters outside the FRQ loops (N)

vs

(

h−1
)

20.3717 1.0322 1.4408 -15.5044 -8.6265 -0.6406 -0.3971

KI (nM) 33.3567 3.8189 6.5928 11.1738 9.3793 0.4616 0.4318

n 0 6.3958 6.3958 -6.1715 -6.0788 -0.2550 -0.2798

vm

(

h−1
)

12.9135 0.7949 0.9820 5.8399 0.3570 0.2413 0.0164

Km (nM) 15.5174 0.0743 0.0958 -1.5092 -1.1096 -0.0624 -0.0511

s-FRQ loop parameters (LS)

ks

(

h−1
)

0 0.3253 0.3024 -5.3135 -4.2571 -0.2195 -0.1960

vd

(

h−1
)

13.3176 0.1442 0.1793 0.9221 0.2445 0.0381 0.0113

k1

(

h−1
)

43.1253 0.1553 0.3146 -4.5296 -3.1405 -0.1871 -0.1446

k2

(

h−1
)

21.3525 0.2774 0.3934 1.5945 1.0044 0.0659 0.0462

l-FRQ loop parameters. (LL)

k′
s

(

h−1
)

0 0.2602 0.3294 -5.8602 -5.1221 -0.2421 -0.2358

v′d
(

h−1
)

4.3792 0.1347 0.1447 1.3200 0.7275 0.0545 0.0335

k′
1

(

h−1
)

21.1308 0.2283 0.3226 -4.7434 -4.1251 -0.1960 -0.1899

k′
2

(

h−1
)

2.9957 0.2881 0.3026 2.0705 1.2155 0.0855 0.0560
dp
dT =

− 0.1769

dp
dT =

− 0.0818

Table 2: Reduced version of table 1 showing the temperature-dependent parameters for which

|Cp
j (T1)| > 0.1.

kj
Ej ,

kJ mol−1
kj (T1) kj (T2)

(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

Parameters outside the FRQ loops (N)

vs

(

h−1
)

20.3717 1.0322 1.4408 -15.5044 -8.6265 -0.6406 -0.3971

KI (nM) 33.3567 3.8189 6.5928 11.1738 9.3793 0.4616 0.4318

vm

(

h−1
)

12.9135 0.7949 0.9820 5.8399 0.3570 0.2413 0.0164

s-FRQ loop parameters (LS)

ks

(

h−1
)

0 0.3253 0.3024 -5.3135 -4.2571 -0.2195 -0.1960

k1

(

h−1
)

43.1253 0.1553 0.3146 -4.5296 -3.1405 -0.1871 -0.1446

l-FRQ loop parameters. (LL)

k′
s

(

h−1
)

0 0.2602 0.3294 -5.8602 -5.1221 -0.2421 -0.2358

k′
1

(

h−1
)

21.1308 0.2283 0.3226 -4.7434 -4.1251 -0.1960 -0.1899
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Table 3: Effect on the period Q10 of perturbing parameters with high control coefficients for the

WT solution of model 1 about the midpoint temperature TC . Values shown in brackets are the

period changes at TC . AR denotes a parameter change resulting in an arrhythmic system.

kj(TC) 0.05kj 0.25kj 0.5kj 0.9kj 0.95kj kj 1.05kj

Parameters outside the FRQ loops (N)

vs AR AR AR AR 1.12 (+0.7) 1.11 1.10 (-0.6)

KI AR AR 1.09 (-6.1) 1.11 (-1.1) 1.11 (-0.5) 1.11 1.11 (+0.5)

vm AR AR 1.07 (+3.4) 1.09 (-0.1) 1.10 (-0.1) 1.11 1.12 (+0.2)

s-FRQ loop parameters (LS)

ks AR 1.22 (+3.2) 1.17 (+2.0) 1.12 (+0.4) 1.11 (+0.2) 1.11 1.10 (-0.2)

k1 AR 1.21 (+3.0) 1.17 (+1.8) 1.12 (+0.3) 1.11 (+0.2) 1.11 1.10 (-0.1)

l-FRQ loop parameters (LL)

k′
s AR AR 1.06 (+4.3) 1.10 (+0.7) 1.10 (+0.4) 1.11 1.11 (-0.3)

k′
1 AR AR 1.06 (+3.8) 1.10 (+0.6) 1.11 (+0.3) 1.11 1.11 (-0.3)

Table 4: Parameters determining the translation-temperature profiles of the FRQ forms for model

1.

a1 c1 TS1
b1 a2 c2 TS2

b2

Wild-type

-0.0127 0.3138 24.0000 0.2500 0.0348 0.2948 24.0000 0.5000

Strain A

0.0138 0.6875 24.0000 0.2500 0 0.1000 - -

Strain B

0 0.0500 - - 0.1085 0.4939 21.0000 0.2500

Strain C

-0.0398 0.4402 26.5000 0.9000 0.0200 0.1300 26.0000 0.6500

Strain D

0 0.0100 - - 0.2138 0.4138 21.1000 2.5000

Wild-type: divergent FRQ loops

-0.0070 0.2876 24.0000 0.2000 0.1698 0.3930 24.0000 0.1750

Strain A: divergent FRQ loops

0.0931 0.6250 24.0000 0.1000 0.0698 0.1375 24.0000 0.1000

Strain B: divergent FRQ loops

-0.0138 0.0625 24.0000 0.2500 0.1303 0.6200 24.0000 0.1000
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Table 5: FRQ loop parameters for the WT system with divergent FRQ loops yielding an increasing

strain A period profile for model 1.

kj
Ej ,

kJ mol−1 kj (T1) kj (T2)
(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

s-FRQ loop parameters (LS)

ks

(

h−1
)

0 0.2934 0.2817 -5.4485 -2.4428 -0.2251 -0.1124

vd

(

h−1
)

3.5176 0.1442 0.1527 1.2634 0.3025 0.0522 0.0139

k1

(

h−1
)

1.2612 0.1582 0.1615 -4.6418 -2.0536 -0.1918 -0.0945

k2

(

h−1
)

39.1957 0.2071 0.3934 1.5844 0.8826 0.0655 0.0406

l-FRQ loop parameters (LL)

k′
s

(

h−1
)

0 0.2602 0.5257 -5.9289 -7.4766 -0.2450 -0.3441

v′d
(

h−1
)

4.3792 0.1347 0.1447 1.3599 1.5729 0.0562 0.0724

k′
1

(

h−1
)

8.5615 0.2283 0.2626 -4.6302 -5.9650 -0.1913 -0.2746

k′
2

(

h−1
)

2.9957 0.2881 0.3026 2.2327 2.4816 0.0922 0.1142

Table 6: Parameter values kj , activation energies Ej , scaled period derivatives kj
∂p
∂kj

and control

coefficients Cp
j at the ends of the temperature range (T1, T2) for the wild-type solution simulated

with model 2. dp
dT was calculated using equation (20).

kj
Ej ,

kJ mol−1
kj (T1) kj (T2)

(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

Parameters outside the FRQ loops (N)

a1

(

h−1
)

117.4780 9.3639 64.0666 0 0 0 0

a2

(

h−1
)

30.7765 2.7826 4.6052 9.0568 7.5701 0.3793 0.3489

a4

(

h−1
)

50.2083 0.3040 0.6915 1.7931 0.2530 0.0751 0.0117

a5

(

h−1
)

54.9713 0.0184 0.0453 0 0 0 0

a6

(

h−1
)

16.4375 0.1804 0.2361 0.0255 0.0069 0.0011 0.0003

a7

(

h−1
)

47.8978 2.0302 4.4469 0.0309 0.0251 0.0013 0.0012

b1

(

nM−1
)

3.0921 0.0020 0.0021 0 0 0 0

b2 (nM) 19.7912 1.8096 2.5019 0 0 0 0

b3

(

nM−1
)

7.2490 0.0757 0.0852 7.2615 6.6301 0.3042 0.3055

b4 (nM) 11.2656 0.4174 0.5020 -0.0400 -0.0208 -0.0017 -0.0010

b5 (nM) 33.7686 0.0985 0.1712 -0.2600 -0.0811 -0.0109 -0.0037

b6 (nM) 5.1777 2.8418 3.0932 0 0 0 0

b7 (nM) 49.5354 0.0738 0.1661 0.0565 0.0320 0.0024 0.0015

b8 (nM) 16.7162 70.5378 92.7385 0.0401 0.0209 0.0017 0.0010

b9 (nM) 5.2257 89.0643 97.0183 0 0 0 0

d1

(

h−1
)

12.7443 1.2906 1.5860 -16.0275 -14.0939 -0.6713 -0.6495

d3

(

h−1
)

56.5082 0.3138 0.7915 -1.7931 -0.2530 -0.0751 -0.0117
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Table 6 continued.

kj
Ej ,

kJ mol−1 kj (T1) kj (T2)
(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

Parameters outside the FRQ loops (N)

d4

(

h−1
)

9.5152 3.1093 3.6333 -0.0564 -0.0321 -0.0024 -0.0015

d5

(

h−1
)

4.3290 0.3963 0.4254 0 0 0 0

f2

(

h−1
)

20.9735 0.1257 0.1772 -0.0004 -0.0006 -1.5912e-5 -2.6024e-5

γ2

(

h−1
)

31.3752 0.0002 0.0004 -0.0002 -0.0001 -7.9997e-6 -5.9409e-6

r1

(

h−1
)

109.8902 1.0849 6.5556 0 0 0 0

r2

(

h−1
)

3.0244 34.5172 36.2691 0 0 0 0

n 0 1.0242 1.0242 0 0 0 0

m 0 1.3498 1.3498 0.1696 0.0955 0.0071 0.0044

k 0 2.1823 2.1823 0 0 0 0

s-FRQ loop parameters (LS)

a3

(

h−1
)

0 0.3175 0.2624 -3.8276 -3.2001 -0.1603 -0.1475

d2

(

h−1
)

16.7070 0.1848 0.2430 0.0287 0.2730 0.0012 0.0126

f1

(

h−1
)

24.8967 0.0815 0.1225 -7.2212 -5.7781 -0.3025 -0.2663

γ1

(

h−1
)

8.8560 0.3561 0.4116 1.8964 2.0903 0.0794 0.0963

l-FRQ loop parameters (LL)

a′
3

(

h−1
)

0 0.2479 0.3626 -3.4030 -3.4048 -0.1425 -0.1569

d′2
(

h−1
)

2.2653 0.1785 0.1852 0.0698 -0.1162 0.0029 -0.0054

f ′
1

(

h−1
)

9.8836 0.0883 0.1038 -6.3518 -6.4308 -0.2661 -0.2964

γ′
1

(

h−1
)

1.8012 0.3703 0.3814 1.9053 1.3922 0.0798 0.0642
dp
dT =

− 0.1440

dp
dT =

− 0.0937

Table 7: Reduced version of table 6 showing the temperature-dependent parameters for which

|Cp
j (T1)| > 0.0775.

kj
Ej ,

kJ mol−1 kj (T1) kj (T2)
(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

Parameters outside the FRQ loops (N)

a2

(

h−1
)

30.7765 2.7826 4.6052 9.0568 7.5701 0.3793 0.3489

b3

(

nM−1
)

7.2490 0.0757 0.0852 7.2615 6.6301 0.3042 0.3055

d1

(

h−1
)

12.7443 1.2906 1.5860 -16.0275 -14.0939 -0.6713 -0.6495

s-FRQ loop parameters (LS)

a3

(

h−1
)

0 0.3175 0.2624 -3.8276 -3.2001 -0.1603 -0.1475

f1

(

h−1
)

24.8967 0.0815 0.1225 -7.2212 -5.7781 -0.3025 -0.2663

γ1

(

h−1
)

8.8560 0.3561 0.4116 1.8964 2.0903 0.0794 0.0963

l-FRQ loop parameters (LL)

a′
3

(

h−1
)

0 0.2479 0.3626 -3.4030 -3.4048 -0.1425 -0.1569

f ′
1

(

h−1
)

9.8836 0.0883 0.1038 -6.3518 -6.4308 -0.2661 -0.2964

γ′
1

(

h−1
)

1.8012 0.3703 0.3814 1.9053 1.3922 0.0798 0.0642
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Table 8: Effect on the period Q10 of perturbing parameters with high control coefficients for the WT

solution of model 2 about the midpoint temperature TC . Values shown in brackets are the period

changes at TC . AR denotes a perturbation resulting in an arrhythmic system. (Note: the mean

delay times for s- and l-FRQ transcription factor conversion are τ = 2
f1

and τ ′ = 2
f ′

1

respectively).

kj(TC) 0.05kj 0.25kj 0.5kj 0.9kj 0.95kj kj 1.05kj

Parameters outside the FRQ loops (N)

a2 AR AR AR 1.09 (-0.9) 1.09 (-0.4) 1.09 1.09 (+0.4)

b3 AR AR AR 1.09 (-0.7) 1.09 (-0.4) 1.09 1.09 (+0.3)

d1 AR AR AR 1.09 (+1.6) 1.09 (+0.8) 1.09 1.09 (-0.7)

s-FRQ loop parameters (LS)

a3 1.17 (+4.7) 1.15 (+3.4) 1.12 (+2.0) 1.10 (+0.3) 1.09 (+0.2) 1.09 1.09 (-0.2)

f1 1.21 (+5.0) 1.18 (+4.6) 1.15 (+3.3) 1.10 (+0.6) 1.10 (+0.3) 1.09 1.09 (-0.3)

γ1 AR AR AR 1.10 (-0.1) 1.09 (-0.1) 1.09 1.09 (+0.1)

l-FRQ loop parameters (LL)

a′
3 0.95 (+5.4) 1.02 (+3.8) 1.06 (+2.2) 1.09 (+0.4) 1.09 (+0.2) 1.09 1.09 (-0.2)

f ′
1 AR AR 1.04 (+3.6) 1.08 (+0.7) 1.09 (+0.3) 1.09 1.10 (-0.3)

γ′
1 AR AR AR 1.09 (-0.2) 1.09 (-0.1) 1.09 1.09 (-0.1)

Table 9: Parameters determining the FRQ translation-temperature profiles for model 2.

a1 c1 TS1
b1 a2 c2 TS2

b2

Wild-type

-0.0304 0.2900 24.0000 0.2500 0.0576 0.3053 24.0000 0.5000

Strain A

0.0070 0.6650 24.0000 0.5000 0 0.0560 - -

Strain B

0 0.0140 - - 0.1909 0.5553 21.0000 0.2500

Strain C

-0.0384 0.4132 24.0000 0.2500 0 0.0140 - -

Strain D

0 0.0014 - - 0.3195 0.4035 21.1500 2.5000

Wild-type: divergent FRQ loops

0.0128 0.2964 24.0000 0.2500 0.1607 0.3588 25.0000 0.1750

Strain A: divergent FRQ loops

0.0077 0.5670 24.0000 0.2500 0 0.0350 0 0

Strain B: divergent FRQ loops

0.0077 0.0350 24.0000 0.2500 0.1299 0.6843 24.0000 0.1000
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Table 10: FRQ loop parameters for the WT system with divergent loops yielding an increasing

strain A period profile for model 2.

kj
Ej ,

kJ mol−1 kj (T1) kj (T2)
(

kj
∂p
∂kj

)

(T1)
(

kj
∂p
∂kj

)

(T2) Cp
j (T1) Cp

j (T2)

s-FRQ loop parameters (LS)

a3

(

h−1
)

0 0.2848 0.3080 -3.8825 -2.7132 -0.1626 -0.1250

d2

(

h−1
)

16.7070 0.1848 0.2430 -0.0032 0.1521 -0.0001 0.0070

f1

(

h−1
)

11.3784 0.0845 0.1018 -7.4827 -5.0176 -0.3134 -0.2312

γ1

(

h−1
)

21.9415 0.2881 0.4126 0.9622 1.6569 0.0403 0.0764

l-FRQ loop parameters (LL)

a′
3

(

h−1
)

0 0.2237 0.47195 -3.1640 -3.9723 -0.1325 -0.1831

d′2
(

h−1
)

2.2653 0.1785 0.1852 0.2080 -0.0516 0.0087 -0.0024

f ′
1

(

h−1
)

6.1204 0.0911 0.1007 -5.8637 -7.4108 -0.2456 -0.3415

γ′
1

(

h−1
)

9.6287 0.3702 0.4334 1.8870 2.2978 0.0790 0.1059

Table 11: Parameter values kj and control coefficients Cp
j of the FRQ loop pathways for model 2

yielding the simulations of the frq1, frq7 and frqS1531 period-temperature profiles shown in figure

6 of the main paper. r and r′ denote the net loss of s-FRQ and l-FRQ respectively, as calculated

from equations (33) and (34).

Wild-type frq1

kj kj (T1) kj (T2) Cp
j (T1) Cp

j (T2) kj (T1) kj (T2) Cp
j (T1) Cp

j (T2)

r 0.3450 0.3971 - - 0.3885 0.4119 - -

d2 0.1848 0.2430 0.0012 0.0126 0.2552 0.2943 0.0062 0.0015

f1 0.0815 0.1225 -0.3025 -0.2663 0.1317 0.1624 -0.2945 -0.2287

γ1 0.3561 0.4116 0.0794 0.0963 0.4021 0.4259 0.0724 0.0527

r′ 0.3561 0.3637 - - 0.3697 0.3826 - -

d′2 0.1785 0.1852 0.0029 -0.0054 0.2645 0.3661 0.0053 0.0150

f ′
1 0.0883 0.1038 -0.2661 -0.2964 0.1384 0.1594 -0.2574 -0.3159

γ′
1 0.3703 0.3814 0.0798 0.0642 0.3813 0.3842 0.0575 0.0650

frq7 frqS1531

kj kj (T1) kj (T2) Cp
j (T1) Cp

j (T2) kj (T1) kj (T2) Cp
j (T1) Cp

j (T2)

r 0.1844 0.2039 - - 0.1094 0.1656 - -

d2 0.1507 0.1716 0.0280 0.0380 0.1332 0.1598 0.0379 0.0470

f1 0.0463 0.0836 -0.3644 -0.3219 0.0255 0.0599 -0.3136 -0.3308

γ1 0.1861 0.2074 0.0453 0.0535 0.1087 0.1661 0.0606 0.0633

r 0.1476 0.1788 - - 0.1299 0.1346 - -

d′2 0.1675 0.2124 0.0224 0.0280 0.1551 0.1932 0.0118 0.0535

f ′
1 0.0413 0.0643 -0.2349 -0.2749 0.0289 0.0488 -0.3052 -0.3169

γ′
1 0.1467 0.1767 0.0305 0.0393 0.1292 0.1314 0.0195 0.0814
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