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1 Classifying receiver domains

Similar to previous work, i.e. (Grebe and Stock, 1999; Koretke et al , 2000),
we found that cognate response regulators that interact with different types of
kinases show distinct amino acid compositions in their receiver domains and
that these differences can be used to predict, for each receiver domain, what
kind of kinase it will interact with.

We divided the multiple alignment of all cognate receiver domains into 8
sub-alignments corresponding to sets of regulators that interact with kinases of
each particular kinase class. For each of the 8 alignments we then constructed
a position specific weight matrix

wc
iα =

nc
iα + λ∑

α(nc
iα + λ)

. (1)

Here nc
iα is the total number receivers of class c that have an amino acid α

in column i of the alignment (gaps are treated as a 21st amino acid) and λ
is the pseudo-count resulting from the Dirichlet prior (we used the Jeffreys’
prior λ = 1/2). wc

iα is thus the estimated probability of seeing amino acid α in
position i of a receiver of class c.

Given a receiver with sequence S we can now determine the posterior prob-
ability P (c|S) that it belongs to class c. We have

P (c|S) =
P (S|c)P (c)∑
c′ P (S|c′)P (c′)

with P (S|c) =
∏

i

wc
Sii, (2)

where Si is the amino acid in the ith position of receiver sequence S and the
product runs over all positions in the receiver. We assumed a uniform prior
P (c) = 1/8.
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We tested to what extent this simple model is capable of correctly classi-
fying receiver sequences. For each cognate receiver we calculated the posterior
probability P (c|S) of the class c given the receiver sequence S, using the WMs
wc

iα constructed from all receiver sequences. We then assigned the receiver to
the class c that maximizes P (c|S). The results in Fig. 1 show that for the

Figure 1: Predicted classification of receivers. Each bar represents the set of
all receivers that are member of a cognate pair with kinases of a particular
type (indicated below the bar). In each bar the colors indicate what fraction
of the cognate receivers of this type is classified with each type of kinase. The
legend on the right shows the correspondence between color and kinase type.
SH and LH stand for short and long hybrid, respectively, and Chem stands for
chemotaxis.

three most abundant types of kinases (HisKA, H3, and HisKin), and for the
Hwe kinases as well, the classifier predicts almost perfectly which kinase type
the respective receivers interact with. For the other classes the classification is
still correct in the majority of the cases.

The types of mis-classifications match what is to be expected based on the
domain architectures. Both long and short hybrids contain an HisKA domain
and their receivers are sometimes mistaken for a receiver that interacts with a
single HisKA domain kinase. Both long hybrid kinases and Hpt kinases contain
an Hpt domain and the most common misclassification is between receivers that
interact with a kinase with a single Hpt domain and receivers that interact with
long hybrids. Because of this, and because the number of cognate pairs of the
Hpt class is very small, we have treated the Hpt and long hybrid classes as one
class in our analysis (leaving 7 classes in total). Although they also contain an
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Hpt domain, cognate receivers of chemotaxis kinases are very rarely mistaken
with receivers of Hpt and long hybrid kinases, probably due to the fact that
cognate regulators of chemotaxis kinases are mainly CheB and CheY regulators
which have very specific functions in chemotaxis and correspondingly specific
amino acid composition. Overall, the WM model predicts the correct type of
kinase for 96% of the cognate receiver domains.

2 Bayesian network model details

We first derive why consistency requires that the pseudo-count λ of the Dirichlet
prior for the marginal probabilities wα is related to the pseudo-count λ′ of the
joint probabilities wαβ through

λ = 21λ′ (3)

In the Methods section of the main paper we calculated expressions for P (Di)
and P (Dij) in terms of λ, λ′, the joint counts nij

αβ and the marginal counts ni
α

and nj
β . The conditional probability is then given by P (Di|Dj) = P (Dij)/P (Dj).

However, we could have also calculated the conditional probability by introduc-
ing the conditional probabilities wα|β which give the probability that α occurs at
position i given that β occurred at position j. In terms of this parametrization
we obtain

P (Di|w,Dj) =
∏
α,β

(wα|β)nij
αβ . (4)

Using again a Dirichlet prior with pseudo-count λ′, the integral over possible
conditional probabilities wα|β then gives

P (Di|Dj) =
∏
β

[∫
P (Di|w,Dj)P (w)dwα|β

]
=
∏
β

[
Γ(21λ′)

Γ(nj
β + 21λ′)

∏
α

Γ(nij
αβ + λ′)
Γ(λ′)

]
.

(5)
It is easy to see that this will only match the conditional probability we cal-
culated through P (Di|Dj) = P (Dij)

P (Dj)
if λ = 21λ′. In addition, in the Methods

section of the main paper we also noted that equation (7) is independent of the
choice of the root. However, this is also only true when λ = 21λ′.

2.1 Probabilities of unassigned kinases and receivers

The calculation of the joint probability P (J,K, R), with J the alignments of
assigned pairs, K the alignment of unassigned kinases, and R the alignment
of unassigned receiver domains, is identical for each particular class of kinases.
We thus focus on a single class. As described in the main paper we make the
assumption that K depends only on the kinase sequences in J and R only on
the receiver sequences in J . That is, for the probability of the kinases that are
not assigned, only the amino acids in the kinases of the assigned pairs matter,

3



not the amino acids of the receivers in the assigned pairs (and vice versa for the
receivers). Formally, we thus assume that we can factorize P (K, R, J) as follows

P (K, R, J) = P (K|Jk)P (R|Jr)P (J) (6)

with Jk the sequences of the assigned kinases and Jr the sequences of the
assigned receivers.

Since the calculation of P (K|Jk) and P (R|Jr) is identical we focus on the
calculation of the kinase probabilities P (K|Jk). We first calculate this condi-
tional probability for a specific dependence tree T , i.e. we calculate P (K|Jk, T ).
Note that, in contrast to the dependence tree for the joint alignment J , this tree
includes only positions within the kinase. We now use the general identity

P (K|Jk, T ) =
P (K, Jk|T )
P (Jk|T )

(7)

and use equations (2), (4), (5), and (7) from the main paper to calculate the
factors in numerator and denominator. In particular, let Kij denote the set of
counts in the ith and jth columns of the unassigned kinases K, with Kij

αβ the
number of times the combination (αβ) occurs at positions (ij). Similarly let kij

denote the counts in columns i and j of the kinases in Jk with kij
αβ the number

of times combination (αβ) occurs in columns (ij). We also have the marginal
counts Ki

α and ki
α in columns Ki and ki. Using equation (7) from the main

paper

P (D|T ) =

[∏
i

P (Di)

]∏
i 6=r

Riπ(i)

 , (8)

we have

P (K|Jk, T ) =

[∏
i

P (ki + Ki)
P (ki)

]∏
i 6=r

Riπ(i)(kij + Kij)
Riπ(i)(kij)

, (9)

where the function P (ni) of the set of marginal counts ni is given by expression
(2) in the main paper

P (ni) =
Γ(21λ)

Γ(n + 21λ)

∏
α

Γ(ni
α + λ)

Γ(λ)
, (10)

and the function Rij(nij) of the set of counts nij in a pair of columns (ij) is
given by combining equation (4) from the main paper:

P (nij) =
Γ(212λ′)

Γ(n + 212λ′)

∏
αβ

Γ(nij
αβ + λ′)
Γ(λ′)

, (11)

with equation (5) from the main paper: Rij(nij) = P (nij)/[P (ni)P (nj)]. In
summary, the conditional probability P (K|Jk, T ) given a dependence tree T
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can be determined by using the exact same expressions as used for calculating
P (J |T ) in the main paper, only now we calculate the ratio of the probabilities of
the alignment containing both counts K and Jk and the alignment containing
only counts Jk.

Finally, if we define the ratio of Rij values:

R̃ij =
Rij(kij + Kij)

Rij(kij)
, (12)

we could again calculate the sum over spanning trees by defining the Laplacian
matrix

M̃ij = δij

(∑
k

R̃ik

)
− R̃ij , (13)

from which one row and column have been removed, and using

P (K|Jk) =

[∏
i

P (ki + Ki)
P (ki)

]
1
|T |

det(M̃). (14)

However, as detailed below, calculating this determinant accurately is a chal-
lenging numerical problem which has currently not be satisfactorily solved, see
e.g. (Cerquides and de Màntaras, 2003), and we instead use the approximation
of only using the dependence tree T ∗ with maximal probability, i.e.

P (K|Jk) ≈ P (K|Jk, T ∗). (15)

We choose the dependence tree T ∗ that maximizes the probability of all the
cognate kinases and keep this tree fixed throughout the sampling runs. In
addition, to reduce numerical error due to small spurious correlations, we score
positions that show no evidence of dependence with any other position according
to a WM model. In particular, all positions i for which log(Rij) < 10 for all
positions j are excluded from the dependence tree T ∗ and are scored with a
WM model.

2.2 Approximation of the determinant

The matrix components Rij and R̃ij correspond to the ratios of probabilities of
all observed data in columns (i, j) under a general dependent model and under
the assumption that i and j are independent. These in turn involve the ratios of
products of gamma functions whose arguments, i.e. the number of occurrences
of certain combinations of letters in certain columns, can become quite large.
As a result, some of the matrix components are extremely large numbers, and
others are extremely small numbers. In principle this is no numerical problem
because we can easily calculate the logarithms of the matrix entries instead of
the matrix entries themselves. However, when we calculate the determinant
we need to calculate combinations of products, sums, and differences of these
matrix entries and this is numerically very challenging.
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In order to approximate the determinant we used the same approach as in
(Cerquides and de Màntaras, 2003). We rescaled all matrix entries as follows

Rij → 10
C(

log(
Rij

Rmin
)

log( Rmax
Rmin

)
−1)

(16)

where Rmax (Rmin) is the maximal (minimal) entry of the matrix Rij . This
function essentially rescales and shifts all the log(Rij) values such that they now
map to the interval

[
10−C , 1

]
. These scaled R values can be considered a more

conservative estimate of dependence, as they diminish the relative difference in
dependence between different pairs of positions (Cerquides and de Màntaras,
2003).

For our predictions of cognate two-component interactions as well as polyke-
tide synthase interactions, we set C = 5, calculated log(Rmax) as well as
log(Rmin) at the beginning of the simulation and kept it fixed during the simu-
lation (the highest log(Rij) values correspond to pairs of residues (ij) that lie
in the same protein and thus do not depend on the current assignment). In
order to keep the absolute log-probability differences of different assignments
approximately the same the resulting determinants need to be rescaled by an
appropriate factor in order to counteract the reduction of log-probability dif-
ferences due to the rescaling of the R-matrix entries. We chose this factor by
demanding that the model reduces to the maximum-likelihood tree model in
the case of one dominating tree. Let det(M ′) be the minor of the Laplacian
with scaled R values and det(M) the minor of the Laplacian with the actual R
values. We then approximate det(M) as

det(M) ≈
[

det(M ′)

10−C(n−1)(1+
log(Rmin)

α )

] α
C log(10)

(17)

where α = log(Rmax

Rmin
) and n is the dimension of the matrix Rij . Note that this

approximation is also very accurate in the case of a set of dominating dependence
trees with similar likelihoods.

In an attempt to reduce numerical error due to positions that show no de-
pendence on other positions to start with, we do not score all columns according
to the general model, but filter out a subset of positions that show either very
low variability, or that show no dependence on any of the other positions. In
particular all positions with entropy less than 10% of the maximum possible
entropy log(21), and all positions with more than 50% gaps are filtered out.
These positions are scored using a simple WM model, i.e. with the probability
of the letter independent of other columns. Again, this complication is to re-
duce numerical errors and would not be necessary if we had a better numerical
procedure for calculating the determinant.

2.3 Sampling scheme for the sum-over-trees model

Without any prior knowledge about the connectivity nor about the dependence
tree structure, our search space is vast and there is a great danger of getting
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stuck in local optima during the sampling procedure. In order to deal with
this problem we used simulated annealing starting from a relatively high ‘tem-
perature’. We sample from the distribution P (D)1/T setting T = 100 at the
start and decreasing T linearly with time until T = 1 is reached. Due to
the ‘heating’, the probability distribution over the space of assignments is ef-
fectively flattened and it is easier to move out of local maxima in this initial
phase. After T = 1 is reached we continue sampling at T = 1 and allow the
system to reach equilibrium. In a final phase of sampling (still at T = 1) we
record interaction partners to estimate the posterior distribution of interaction
for any kinase/regulator pairs. The simulated annealing resulted in a signifi-
cant improvement in performance compared to simulations where T = 1 is used
throughout (data not shown).

3 Reconstruction of cognate pairs

3.1 Results for the small classes

The results of the reconstruction of cognate pairs for the smaller kinase classes
are shown in figure 2. The smaller kinase classes, particularly the chemotaxis
and HWE classes, have only very few kinases and regulators per genome and
therefore random scoring, i.e. where every possible kinase/receiver pair inside
the same genome is assigned the same probability of interaction, already pro-
duces a reasonable number of correct predictions. Additionally, the sizes of the
corresponding alignments are very small and there is only little co-evolutionary
information. Nonetheless, it is apparent in figure 2 that the method produces
highly accurate predictions on these smaller classes as well.

3.2 Performance of the extended model on all cognate
pairs

The prediction of orphan interactions requires two extensions to our model. Re-
sponse regulators must be allowed to interact with kinases of any class and, due
to unequal numbers of kinases and regulators, our way of assigning kinases and
regulators demands that in every assignment a number of kinases and regulators
do not have any interaction partner (see Methods).

A simple way of testing the performance of the former extension is to run our
MCMC simulation with all cognate pairs of all 7 classes at the same time. The
results are shown in figure 3. Due to the fact that the search space is now much
bigger as every kinase can interact with any response regulator of the 7 classes,
i.e. every regulatory can switch between the 7 classes of kinases, the quality of
our predictions, though still quite accurate, generally decreases. It is important
to note that although the chemotaxis and HWE families are very small and
thus contain very little co-evolutionary information, the algorithm predicts the
interaction partners of kinases of these classes with very high accuracy. This
is due to the fact that regulators of the chemotaxis and HWE families form
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clearly distinct subfamilies (see figure 1) and thus, since they come in very
small numbers per genome, a correct classification of their class membership is
sufficient for determining their right interaction partners.

4 Network structure predictions

As described in the main text, for the prediction of the two-component signaling
network structure, we assign a log-ratio score to any kinase/regulator pair of the
HisKA class. In figure 4, we show the PPV/sensitivity curve for this log-ratio
score. The used cut-off of 1 corresponds to a sensitivity of 0.56 and a PPV-value
of 0.48. Note that although, at this cut-off, every second prediction corresponds
to a non-cognate pair, the false positive rate is very low (0.04). Also note that
for figure 4 we consider all predicted interactions between proteins belonging
to different cognate pairs as false positives, which is very conservative since
cross-talk between cognates is likely to exist. If we use the log-ratio score to
predict HisKA orphan interactions, we get a p-value of 10−7 for the set of known
Caulobacter interactions (and 10−3 when in addition the putative cognate pairs
are excluded from our dataset (see below)).

5 P-value calculation

In order to test the significance of our predictions in Caulobacter Crescentus,
we calculated a p-value as follows. For each of the HisKA kinases with known
interactions, we collected the posterior probabilities of interaction for all or-
phan regulators. We then sorted the entire list of all predictions by posterior
and ranked each prediction, starting at rank 0 for the prediction with highest
posterior. We then summed the ranks of all known interactions, obtaining the
rank-sum rtot, and calculated the probability P (r ≤ rtot), of getting a rank-sum
r not larger than rtot with random predictions (i.e. a randomly ordered list).

When the total number of predictions, n, is larger than rtot, the probability
P (r ≤ rtot) can be very well approximated analytically as follows. Let Xi be
the rank of the known interaction i (Xi ∈ {0, .., n− 1}) and l the total number
of known interactions.Then, for m < n,

P (
l∑

i=1

Xi = m) =
1
nl

(
m + l − 1

l − 1

)
(18)

where 1
nl is the probability for the variables Xi to take on any value between

0 and n − 1 and
(
m+l−1

l−1

)
is the total number of possible combinations of l

numbers that sum up to m. In our problem, two known interactions cannot
have the same rank, but this effect should be small as the number of known
interactions is small compared to the number of possible interactions. From
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Figure 2: Analysis of the predictions for cognate pairs for the His kinase (top
left), long hybrid/Hpt (top right), short hybrid (middle left), chemotaxis (middle
right) and HWE classes (bottom left). In all figures, the red curves show the
performance of the model in which P (D|a, T ) is averaged over all dependence
trees, the blue curve shows the performance of the model P (D|a, T ∗) that uses
only the best dependence tree, and the green line shows the performance of
random predictions. For the chemotaxis and HWE predictions, the blue curve
is not shown as it is identical to the green curve due to the fact that there are
no pairs of positions with a log(R) value higher than our threshold of 10 and the
sequences are thus scored with a simple position-specific weight matrix model.
All pairs of curves show estimated PPV plus and minus one standard error.9



Figure 3: Reconstruction of cognate pairs when response regulators are allowed
to interact with kinases of any of the 7 classes.Left panel: Quality of predictions
for kinases of class HisKA (red line), H3 (blue line) and HisKin (green line).
Right panel: Quality of predictions for kinases of class long hybrid/Hpt (red
line), short hybrid (blue line), chemotaxis (green line) and HWE (orange line).
All pairs of curves show estimated PPV plus and minus one standard error.

equation (18), we calculate the p-value,

P (r ≤ rtot) =
rtot∑
f=0

1
nl

(
f + l − 1

l − 1

)
(19)

For the orphan predictions in Caulobacter we obtain a p-value of 7.5 · 10−18.
Some of the predicted pairs are found to actually lie near each other on the
genome (although they were not predicted to be in the same operon, and where
thus not classified as orphan pairs). If we exclude these putative cognate pairs
the p-value becomes 1.1 · 10−9.

6 Comparison with orphan interactions

6.1 Orphans in Caulobacter crescentus

The orphan kinase ChpT of Caulobacter crescentus only has a HisKA domain
and does thus not fall into the HisKA class as defined in table 2 in the main
text (ChpT does not have an ATP-binding domain). However, to increase the
number of experimentally determined interactions that we could use to bench-
mark our predictions, we added the ChpT kinase as well as its orthologs as
defined by COG (Tatusov et al , 1997) to our set of orphan HisKA kinases (for
our predictions, we only use the HisKA domain (see above), so the absence of
the ATP-binding domain does not cause any difficulties).

10



Figure 4: Reconstruction of cognate pairs with the log-ratio model that is used
to predict network structure. The curves show estimated PPV plus and minus
one standard error.

kinase regulator posterior se exp evidence

HP0244 HP0703 0.9427 0.0485 (Beier and Frank, 2000)
HP0244 HP1043 0.05336 0.0487 (Beier and Frank, 2000)
HP0244 HP1021 0.0039 0.0022
HP0244 HP1067 0 0
HP0244 HP0616 0 0
HP0244 HP0393 0 0
HP0244 HP0019 0 0

Table 1: Predictions for the one orphan HisKA kinase in Helicobacter pylori for
which an interaction is known. There are 7 orphan regulators in H. pylori and
we show the posterior probabilities for all of them. Posterior probabilities and
their standard errors were calculated over 20 sampling runs.

6.2 Additional orphan interactions

Besides Caulobacter crescentus that accounts for the largest part of known or-
phan interactions, there are three more species with experimentally determined
orphan interactions involving HisKA kinases, namely Helicobacter pylori, Bacil-
lus subtilis and Ehrlichia chaffeensis. Our predictions for these species are shown
in tables 1, 2 and 3. As in table 1 in the main paper, the list of predictions is
shown ordered by posterior, up to and including all known interactions. Correct
predictions are shown in green, incorrect predictions (at odds with the exper-
imental results) are shown in red. All other predictions are shown in black.
Posterior probability and standard error of the posterior probability over 20
sampling runs are shown for each prediction.

In H. pylori the known interaction matches the top prediction of the algo-
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kinase regulator posterior se exp evidence

KinA Spo0F 0.0361 0.0060 (Piggot and Hilbert, 2004)

KinB CheV 0.7929 0.0348
KinB Spo0A 0.1649 0.0256
KinB YneI 0.0412 0.0294
KinB Spo0F 0.0006 0.0004 (Piggot and Hilbert, 2004)

KinC Spo0F 0.6765 0.0731 (Piggot and Hilbert, 2004)

KinD YneI 0.5215 0.0975
KinD Spo0F 0.2840 0.0692 (Piggot and Hilbert, 2004)

KinE Spo0A 0.4516 0.0768
KinE YneI 0.3751 0.0972
KinE CheV 0.1649 0.0366
KinE Spo0F 0.0028 0.0008 (Piggot and Hilbert, 2004)

Table 2: Predictions for orphan HisKA kinases with known interactions in B.
subtilis. There are 6 orphan regulators in total in B. subtilis. For every known
interaction shown there are several kinds of evidence, see (Piggot and Hilbert,
2004). Posterior probabilities and their standard errors were calculated over 20
sampling runs.

kinase regulator posterior se exp evidence

ECH 0299(NtrY) ECH 0339(NtrX) 1 0 (Kumagai et al , 2006)

ECH 0885(PleC) ECH 1012(CtrA) 1 0 (Kumagai et al , 2006)
ECH 0885(PleC) ECH 0773(PleD) 0 0.2236 (Kumagai et al , 2006)

Table 3: Predictions for the two orphan HisKA kinases with known interactions
in E. chaffeensis. There are 3 orphan regulators in total in E. chaffeensis.
Posteriors and their standard errors were calculated over 20 sampling runs.

rithm which is assigned a 94% posterior probability.
In B. subtilis it is known that the regulator Spo0F interacts with all Kin ki-

nases, i.e. KinA, KinB, KinC, KinD, and KinE. Indeed we predict that Spo0F
interacts with all these kinases with nonzero probability. The interaction proba-
bilities of Spo0F with all other kinases is zero (data not shown). Table 2 shows,
however, that the fraction of time Spo0F is associated with each of these kinases
varies significantly across the different Kin kinases, with Spo0F associating with
KinC more than 65% of the time, with KinD 28% of the time and only roughly
4% with the other Kin kinases. Note also that some of the Kin kinases are
predicted to interact with other regulators as well.

For kinase ECH 0299 of E. chaffeensis (an ortholog of NtrY), we correctly
predict that it interacts only with ECH 0339 (an ortholog of NtrX). Kinase
ECH 0885 is the only example where our predictions clearly disagree with
the experimental evidence. Whereas the experimental evidence suggests that
ECH 0885 interacts only with ECH 0773, we assign 100% posterior probability
to ECH 0885 interacting with ECH 1012.
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CK OK -

CR 9.184 0.009 3.59
OR 0.015 0.055 1.02
- 1.326 0.346 382.5

Table 4: Ortholog statistics for cognate pairs. For each cognate kinase/receiver
pair and each of the 398 other genomes, there can be either: no orthologs for
both (-,-), two orthologs that form a cognate pair (CK,CR), no ortholog for
the kinase and an ortholog for the receiver which is an orphan receiver (-,OR),
etcetera. The table shows the average number of times each of the 9 possible
combinations occurs for cognate kinase/receiver pairs.

7 Ortholog Statistics

Our predictions suggest that orphan kinases interact predominantly with orphan
regulators, that cognate kinases interact predominantly with cognate regulators,
and that there is relatively little interaction between orphan kinases and cognate
regulators or between cognate kinases and orphan regulators. Since orphans and
cognates almost certainly share a common phylogenetic ancestry, we decided
to investigate to what extent cognates and orphans change class on relatively
short evolutionary time scales. To this end we determined orthologous genes for
each cognate kinase/regulator pair, for each orphan kinase, and for each orphan
regulator.

Table 4 shows the ortholog statistics for cognate pairs. For each cognate
kinase/regulator pair there are 9 possibilities for its orthologs in each of the 398
other genomes varying from the cognate pair mapping to another cognate pair
in the other genome, to absence of orthologs for both genes in the pair. The
table shows the average number of occurrences of each of the 9 possibilities.

The table shows that in on average over 380 genomes there are no orthologs
for either gene. The next most common occurrence is that the cognate pair
maps to a cognate pair (in on average 9.184 genomes). After that it is by far
most likely that only one of the two genes has an ortholog. In all cases cognates
are significantly more likely to map to cognates than to orphans.

Similarly, for each orphan kinase we counted the number of times that it has
no ortholog in each of the 398 other genomes, the number of times the ortholog
is itself an orphan, and the number of times the ortholog is part of a cognate
pair. Finally, for each orphan receiver we counted the number of times it has
no ortholog in each of the other genomes, the number of times its ortholog is an
orphan, and the number of times its ortholog is part of a cognate pair. These
orphan ortholog statistics are shown in table 5.

The table shows that for both orphan kinases and for orphan receivers there
are on average a handful of genomes with orthologs. In both cases, if there is
an ortholog, it is much more likely to be an orphan as well.
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Orphan Cognate -

Orphan kinase 3.78 0.61 393.6
Orphan receiver 4.595 1.153 392.25

Table 5: Ortholog statistics for orphans. For both orphan kinases and orphan
receivers, the table shows how many of 398 other genomes on average have: an
ortholog that is also an orphan, an ortholog that is part of a cognate pair, or
no ortholog.

8 Prediction of polyketide synthase interactions:
classification model

In order to compare the quality of our predictions to the simple classification
scheme proposed in (Thattai et al , 2007), we calculated posterior probabilities
of interaction using only the information about the class membership of the head
and tail sequences as follows. We used the annotation of (Thattai et al , 2007)
to label every head (tail) as H1 (T1), H2 (T2), H3 (T3) or as ’unclustered’.
For a given head sequence of class Hi of a genome g, we assign an interaction
probability of 0 to all tails of classes Tj with j 6= i and a probability of 1/ni

g,
where ni

g is the number of tails of class i of genome g, to all tails of class
i of genome g. If the head belongs to the class of unclustered heads, it is
assigned a probability of 1/ng to interact with any of the ng tails of genome
g. In other words, for the H1, H2 and H3 classes, each head sequence can only
interact with tail sequences of the correct corresponding tail class, but within
the corresponding class, every tail is equally likely to be an interaction partner.
Heads that are unclustered can interact with any tail of the same genome with
equal probability.
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