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Muñoz–Eaton (ME) Model. The free energy level of a protein conformation is described by an 

effective free energy function of ME model; 
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is a temperature and N is the number of amino acids in a protein. The conformational state of a 

protein with N amino acids is represented by the N-spin binary variables {Sk} for amino acids k = 

1, 2, …., N. When the dihedral angles (φk–1, ψk) of kth amino acid are native (non-native)-like, Sk 

takes the value 1 (0). The entropic cost of forming a native amino acid is 0
conf
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its non-native conformation. The pairwise-contact energy between ith and jth amino acid is 
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when the distance between two Cαs of ith and jth amino acid is less than a threshold value, for 

example 6.5 Å, in its native structure. The first term is the sum of pairwise-contact energy 
ij

ε  over 

native contacts <i, j> within the cut-off distance, which is defined to be established when all amino 

acids from ith to jth amino acid are in the native states; namely when the product 
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=∏ 1 1 1i i j jS S S S+ −⋅⋅ ⋅ = . In reality, ∆Sconf depends on the secondary structure of each amino 

acid, but confS∆  was chosen as a constant value (–3.8 cal/mol·K) for the sake of simplicity as was 

in the literature (1–4). Using different values of ∆Sconf sets the new value of the rescale factor J, 

since J was determined such that the folding mid-temperature Tm becomes a reference value, for 

example 300 K, for a given ijε . Thus, the value J/∆Sconf sets the energy scale and T/Tm sets the 

temperature scale of a protein under our consideration. 

 

Folding Kinetics by Master Equation. Provided with the exact one-dimensional free energy 

landscape (Fig. 1) using ME model, each point on there corresponds to a set of protein 

conformations having the same fraction of native residue. The reversible kinetic hopping between 

two adjacent points on this free energy landscape effectively describes the relaxational time 

evolution of the conformational probability vector 0 1 2( ) ( ) ( , , ... )l NP t P P P P P= =
ur

 satisfying a master 
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, where 0,1, 2,..., 1,l N N= −  denotes ( 1N + ) set of protein 

conformations each having the same fraction /M l N=  of native residue such that 0( )N  denotes 

a fully unfolded (native) state. ( )mnM M=  is a relaxation matrix constructed by the transition 

probability from a state n to m based on Metropolis algorithm, where 
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, 0,1,2,..., 1,m n N N= − . Here, 
m

G∆  and 
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G∆  are read from Fig. 1, and τ0 is a molecular time 

scale. The diagonal elements of M are set by 
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M  satisfies the detailed balance condition. The time evolution of 
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 toward its equilibrium one is governed by the eigenvalues of M. The eigenvector elements 

for the zero eigenvalue is the equilibrium population of a protein conformation, and the non-zero 

smallest eigenvalue λ1 governs the dominant relaxation behavior with the longest relaxation time 

and its eigenvector elements dictate the population flow among conformational states. The second 

non-zero smallest eigenvalue λ2 and its eigenvector give a correction to the dominant relaxation 

behavior. A chevron plot as a function of temperature is constructed from λ1, which becomes the 

folding (unfolding) rate at the low (high) temperature compared to Tm. A big separation between 

λ1, with the temperature dependence of Arrhenius type, and λ2 signifies the existence of the 

two-state folding behavior. 

 

Out-of-Equilibrium Monte Carlo Simulation. Starting from an initial conformation of a protein, 

which can be either a fully stretched or a native conformation, the relaxation of a protein 

conformation to its equilibrium one for the given temperature is simulated by Monte Carlo 

simulation using the Metropolis algorithm. Since the protein conformation is represented by the 

N-spin variables {Sk} for amino acids k = 1, 2, …., N within the context of ME model, the 

conformational move of a protein in three dimensional space is described by a single-spin flip 

kinetics using the Metropolis algorithm in the phase space of 2N conformations. Given the 

effective free energy of a protein conformation from ME model, the new protein conformation p, 

after flipping a randomly chosen spin in the old conformation q, is generated with the probability 
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The dynamic trajectory starting from an initial protein conformation and ending at the equilibrated 

one for a given temperature can be constructed by the successive generation of the new accepted 

conformation from the out-of-equilibrium Monte Carlo simulation. The time-dependent properties 

of a protein is averaged over 1,000 different dynamic trajectories in our simulation. We confirmed 

that the dynamic-free energy-like quantity F(M, t) calculated after the equilibration time for all 

temperatures converges well to the exact free energy landscape of ME model, implying that our 

Monte Carlo simulation is indeed reliable. 
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