Experimental Section

1. Chemistry

Melting points were determined on a Fisher-Johns melting apparatus and are uncorrected. ¹H-NMR spectra were recorded on a Varian INOVA-400 spectrometer. The chemical shifts are presented in terms of ppm with TMS as the internal reference. Electron-spray ionization mass spectra in positive mode (ESI-MS) data were recorded on a Bruker Esquire 3000⁺ spectrometer. Column chromatography purifications were carried out on Silica Gel 60 (E. Merck, 70-230 mesh). The purity of all new compounds was checked by thin-layer chromatography (TLC) and ¹H-NMR. All reactions were monitored by TLC analyses on pre-coated Silica Gel F254 plates (purchased from Qingdao Marine Chemical Factory, China) by UV detection. 4-fluorobenzaldehyde, 2-bromobenzaldehyde, 3,4-dihydro- α -pyran, 2-fluoro-3-(trifluoromethyl)benzaldehyde, 5-bromofuran-2-aldehyde and 3-bromobenzaldehyde were purchased from Aldrich. Other reagents were purchased from Sinopharm Chemical Reagent Co., Ltd, China.

1.1 General procedure for synthesis of 01, 02, 03, 04, 06, 08, 09, 10 and 12 analogues.

To a solution of 15 mmol arylaldehyde in MeOH (10 ml) was added 7.5 mmol ketone. The solution was stirred at room temperature (RT) for 20 min, followed by added dropwise 20%(w/v) NaOH (1.5 ml, 7.5 mmol). The mixture was stirred at RT and monitored with TLC. When the reaction finished, the residue was poured into saturated NH₄Cl solution and filtered. The precipitate was washed with water, then with cold ethanol, then cold acetone and dried in vacuum. The solid was purified by chromatography over silica gel using CH₂Cl₂/ CH₃OH as the eluent to afford compounds **01**, **02**, **03**, **04**,**06**, **08**, **09**, **10** and **12**.

(2E,5E)-2,5-bis(4-ethoxybenzylidene)cyclopentanone (A01). The product was recrystallized from ethanol/water (9:1). Orange powder, 76% yield, mp 191~192°C. ¹H-NMR (CDCl₃) δ : 1.44 (6H, t, *J*=7 Hz, CH₃×2), 3.08 (4H, s, CH₂-CH₂), 4.09 (4H, q, *J*=13.8 Hz, O-CH₂×2), 6.95 (4H, d, *J*=8.8 Hz, Ar-H^{2.6}×2), 7.54 (2H, s, Ar-CH=C×2), 7.56 (4H, d, *J*=8.8 Hz, Ar-H^{3.5}×2). ESI-MS *m/z*: 349.15 (M+1)⁺, calcd for C₂₃H₂₄O₃: 348.43.

(2E,5E)-2,5-bis(4-fluorobenzylidene)cyclopentanone (A02). The product was recrystallized from ethanol/water(9:1). Yellow crystal, 88% yield, mp 239~240°C. ¹H-NMR (CDCl₃) δ: 3.10 (4H, s, CH₂-CH₂), 7.14 (4H, t, *J*=8.4 Hz, Ar-H^{2.6}×2), 7.58 (2H, d, *J*=8.4 Hz, Ar-CH=C×2), 7.59 (4H, t, *J*=9 Hz, Ar-H^{3.5}×2). ESI-MS *m*/*z*: 297.13 (M+1) ⁺, calcd for $C_{19}H_{14}F_{2}O$: 296.31.

(2E,5E)-2,5-bis(3,4,5-trimethoxybenzylidene)cyclopentanone (A03). Yellow powder, 90% yield, mp 202~204°C. ¹H-NMR (CDCl₃) δ : 3.15 (4H, s, CH₂-CH₂), 3.91 (18H, s, O-CH₃×6), 6.85 (4H, s, Ar-H^{2,6}×2), 7.53 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 441.16 (M+1)⁺, calcd for C₂₅H₂₈O₇: 440.49.

(2E,5E)-2,5-bis(4-(dimethylamino)benzylidene)cyclopentanone (A04). Red powder, 71.1%

yield, mp >260°C. ¹H-NMR (CDCl₃) δ : 2.54 (4H, s, CH₂-CH₂), 2.98 (12H, s, N-CH₃×4), 6.74 (4H, m, *J*=8.8 Hz, Ar-H^{2.6}×2), 7.41 (4H, m, *J*=8.8 Hz, Ar-H^{3.5}×2), 7.77 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 347.21 (M+1)⁺, calcd for C₂₃H₂₆N₂O: 346.47.

(2E,5E)-2,5-bis(2-bromobenzylidene)cyclopentanone (A06). Yellow powder, 87% yield, mp 163°C. ¹H-NMR (CDCl₃) δ : 2.98 (4H, s, CH₂-CH₂), 7.23 (2H, q, *J*=15.8 Hz, Ar-H⁴×2), 7.37 (2H, q, *J*=14.8 Hz, Ar-H⁶×2), 7.53 (2H, q, *J*=7.6 Hz, Ar-H⁵×2), 7.66 (2H, q, *J*=8 Hz, Ar-H³×2), 7.86 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 418.94 (M+1)⁺, calcd for C₁₉H₁₄Br₂O: 418.12.

(2E,5E)-2,5-bis(2-fluoro-3-(trifluoromethyl)benzylidene)cyclopentanone (A08). Yellow powder, 91% yield, mp 223°C; ¹H-NMR (CDCl₃) δ : 3.05 (4H, s, CH₂-CH₂), 7.32 (2H, t, *J*=8 Hz, Ar-H₆×2), 7.64 (2H, t, *J*=7 Hz, Ar-H₅×2), 7.66 (2H, t, *J*=7 Hz, Ar-H₄×2), 7.79 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 430.92 (M-1)⁺, calcd for C₂₁H₁₂F₈O: 432.31.

(2E,5E)-2,5-bis((5-bromofuran-2-yl)methylene)cyclopentanone (A09). Yellow powder, 77% yield, mp 176°C. ¹H-NMR (CDCl₃) δ : 3.06 (4H, s, CH₂-CH₂), 6.47 (2H, d, *J*=3.6 Hz, Ar-H⁴×2), 6.65 (2H, d, *J*=3.6 Hz, Ar-H³×2), 7.25 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 398.81 (M+1)⁺, calcd for C₁₅H₁₀Br₂O₃: 398.05.

(2E,5E)-2,5-bis(3-bromobenzylidene)cyclopentanone (A10). Yellow powder, 91% yield, mp 186°C. ¹H-NMR (CDCl₃) δ : 3.12 (4H, s, CH₂-CH₂), 7.30 (2H, t, *J*=15.6 Hz, Ar-H⁵×2), 7.50~7.52 (6H, m), 7.73 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 418.98 (M+1) ⁺, calcd for C₁₉H₁₄Br₂O: 418.12.

(2E,5E)-2,5-bis(4-(3-(dimethylamino)propoxy)benzylidene)cyclopentanone (A12). Yellow powder, 72% yield, mp 154°C. ¹H-NMR (CDCl₃) δ : 1.98 (4H, m, CH₂×2), 2.26 (12H, s, N-CH₃×4), 2.46 (4H, t, *J*=7.4 Hz, CH₂-N×2), 3.08 (4H, s, CH₂-CH₂), 4.07(4H, t, *J*=6.2 Hz, O-CH₂×2), 6.96 (4H, d, *J*=8.8 Hz, Ar-H^{2.6}×2), 7.73 (2H, s, Ar-CH=C×2), 7.56 (4H, d, *J*=8.8 Hz, Ar-H^{3.5}×2). ESI-MS *m/z*: 463.33 (M+1)⁺, calcd for C₂₉H₃₈N₂O₃: 462.62.

(2E,5E)-2,5-bis((E)-3-phenylallylidene)cyclopentanone (A15) Yellow powder, 81.1% yield, mp 229°C. ¹H-NMR (CDCl₃) δ : 2.93 (4H, s, CH₂-CH₂), 6.98 (4H, t, *J*=6.8 Hz, Ar-H^{3,5}×2), 7.26~7.39 (8H, m), 7.53(4H, t). ESI-MS *m*/*z*: 313.11 (M+1)⁺, calcd for C₂₃H₂₀O: 312.40.

(1E,4E)-1,5-bis(4-ethoxyphenyl)penta-1,4-dien-3-one (B01). Yellow powder, 77% yield, mp 123°C. ¹H-NMR (CDCl₃) δ : 1.39 (6H, t, *J*=8.1 Hz, CH₃×2), 4.10 (4H, q, *J*=16.4 Hz, O-CH₂×2), 6.99 (4H, m, *J*=7.2, Ar-H), 7.14 (2H, d, *J*=16 Hz, CH-C=O×2), 7.68~7.74 (6H, m). ESI-MS *m/z*: 323.16 (M+1)⁺, calcd for C₂₁H₂₂O₃: 322.40.

(**1E**,**4E**)-**1**,**5**-bis(**4**-fluorophenyl)penta-**1**,**4**-dien-**3**-one (**B02**). The product was recrystallized from ethanol/water(9:1). Yellow crystal, 67% yield, mp 152°C [lit.²⁵ 152-154°C].

(1E,4E)-1,5-bis(3,4,5-trimethoxyphenyl)penta-1,4-dien-3-one (B03). Yellow powder, 81%

yield, mp 136°C. ¹H-NMR (CDCl₃) δ : 3.89 (18H, s, O-CH₃×6), 6.84 (4H, s, Ar-H), 6.98 (2H, q, *J*=16 Hz, CH-C=O×2), 7.65 (2H, q, *J*=16 Hz, Ar-CH=C×2). ESI-MS *m*/*z*: 415.14 (M+1)⁺, calcd for C₂₃H₂₆O₇: 414.45.

(1E,4E)-1,5-bis(4-(dimethylamino)phenyl)penta-1,4-dien-3-one (B04). Red powder, 91% yield, mp 185°C. ¹H-NMR (CDCl₃) δ : 3.04 (12H, s, N-CH₃×4), 6.69 (4H, m, *J*=8.4 Hz, Ar-H), 6.90 (2H, d, *J*=15.6 Hz, C=CH-CO×2), 7.52 (4H, m, *J*=8.4 Hz, Ar-H), 7.68 (2H, d, *J*=15.6 Hz, Ar-CH=C×2). ESI-MS *m*/*z*: 321.18 (M+1)⁺, calcd for C₂₁H₂₄N₂O: 320.43.

(1E,4E)-1,5-bis(2-bromophenyl)penta-1,4-dien-3-one (B06). Orange powder, 59% yield, mp 97°C ¹H-NMR (CDCl₃) δ : 7.03 (2H, d, *J*=16 Hz, C=CH-CO×2), 7.22~7.63 (8H, m, Ar-H), 8.09 (2H, d, *J*=16 Hz, Ar-CH=C×2). ESI-MS *m*/*z*: 393.10 (M+1)⁺, calcd for C₁₇H₁₂Br₂O: 392.08.

(1E,4E)-1,5-bis(5-bromofuran-2-yl)penta-1,4-dien-3-one (B09). Yellow powder, 79% yield, mp 138°C. ¹H-NMR (CDCl₃) δ : 6.44 (2H, d, *J*=3.6 Hz, Ar-H⁴×2), 6.63 (2H, d, *J*=3.6 Hz, Ar-H³×2), 6.89 (2H, d, *J*=15.6 Hz, C=CH-CO×2), 7.36 (2H, d, *J*=15.6 Hz, Ar-CH=C×2). ESI-MS *m/z*: 372.88 (M+1)⁺, calcd for C₁₃H₈Br₂O₃: 372.01.

(1E,4E)-1,5-bis(3-bromophenyl)penta-1,4-dien-3-one (B10). Yellow powder, 63% yield, mp 117°C. ¹H-NMR (CDCl₃) δ : 7.06 (2H, d, *J*=16 Hz, C=CH-CO×2), 7.22~7.52 (8H, m, Ar-H), 7.65 (2H, d, *J*=16 Hz, Ar-CH=C×2). ESI-MS *m*/*z*: 392.95 (M+1)⁺, calcd for C₁₇H₁₂Br₂O: 392.08.

(**1E,3E,6E,8E)-1,9-diphenylnona-1,3,6,8-tetraen-5-one (B15).** Yellow powder, 90% yield, mp 142°C. ¹H-NMR (CDCl₃) δ : 6.58 (2H, d, *J*=15.2 Hz, C=CH-CO×2), 6.97~7.00 (4H, m, C=CH-CH=C×2), 7.27~7.52 (12H, m, Ar-H). ESI-MS *m*/*z*: 287.07 (M+1)⁺, calcd for C₂₁H₁₈O: 286.37.

(2E,6E)-2,6-bis(4-ethoxybenzylidene)cyclohexanone (C01). Yellow powder, 77% yield, mp 147-149°C. ¹H-NMR (CDCl₃) δ: 1.56 (6H, t, *J*=7.2 Hz, CH₃), 1.81(2H, q, *J*=11.8 Hz, CH₂), 3.08 (4H, t, *J*=6 Hz, C-CH₂×2), 3.89 (4H, q, *J*=15.8 Hz, O-CH₂×2), 6.79~7.21 (8H, m, Ar-H), 7.73 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 363.18 (M-1)⁺, calcd for C₂₄H₂₆O₃: 362.46.

(2E,6E)-2,6-bis(4-fluorobenzylidene)cyclohexanone (C02). Yellow powder, 69% yield, mp 156°C. ¹H-NMR (CDCl₃) δ : 1.81 (2H, q, *J*=12 Hz, CH₂), 2.90 (4H, t, *J*=5.4 Hz, CH₂×2), 7.12 (4H, m, Ar-H^{2.6}×2), 7.45 (4H, m, Ar-H^{3.5}×2), 7.76 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 311.11 (M+1)⁺, calcd for C₂₀H₁₆F₂O: 310.34.

(2E,6E)-2,6-bis(3,4,5-trimethoxybenzylidene)cyclohexanone (C03). Yellow powder, 71% yield, mp 196°C. ¹H-NMR (CDCl₃) δ : 1.83 (2H, t, *J*=5.6 Hz, CH₂), 2.97 (4H, t, *J*=5.2 Hz, C-CH₂×2), 3.90 (18H, s, O-CH₃×6), 6.71 (4H, s, Ar-H), 7.73 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 455.15 (M+1)⁺, calcd for C₂₆H₃₀O₇: 454.51.

(2E,6E)-2,6-bis(4-(dimethylamino)benzylidene)cyclohexanone (C04). Yellow powder, 55% yield, mp 160°C. ¹H-NMR (CDCl₃) δ : 1.82 (2H, t, *J*=6 Hz, CH₂), 2.93 (4H, t, *J*=5.6 Hz, C-CH₂×2), 3.01 (12H, s, N-CH₃×4), 6.72 (4H, d, *J*=8.8 Hz, Ar-H_{2.6}×4), 7.45 (4H, d, *J*=8.8 Hz, Ar-H_{3.5}×4), 7.76 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 361.24 (M+1)⁺, calcd for C₂₄H₂₈N₂O: 360.49.

(2E,6E)-2,6-bis(2-bromobenzylidene)cyclohexanone (C06). Yellow powder, 83% yield, mp 120°C. ¹H-NMR (CDCl₃) δ : 1.75 (2H, q, *J*=9.3 Hz, CH₂), 2.75 (4H, m, *J*=6.1 Hz, C-CH₂×2), 7.18~7.35 (6H, m, Ar-H), 7.64 (2H, m, Ar-H), 7.86 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 432.98 (M+1)⁺, calcd for C₂₀H₁₆Br₂O: 432.15.

(2E,6E)-2,6-bis((5-bromofuran-2-yl)methylene)cyclohexanone (C09). Yellow powder, 61% yield, mp 127°C. ¹H-NMR (CDCl₃) δ : 1.90 (2H, q, *J*=9.4 Hz, CH₂), 2.92 (4H, m, *J*=6.2 Hz, C-CH₂×2), 6.44 (2H, d, *J*=3.6 Hz, Ar-H⁴×2), 6.66 (2H, d, *J*=3.6 Hz, Ar-H³×2), 7.43 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 412.87 (M+1)⁺, calcd for C₁₆H₁₂Br₂O₃: 412.07.

(2E,6E)-2,6-bis(3-bromobenzylidene)cyclohexanone (C10). Yellow powder, 52% yield, mp 112°C. ¹H-NMR (CDCl₃) δ : 1.81 (2H, s, CH₂), 2.90 (4H, s, C-CH₂×2), 7.28 (2H, t, *J*=7.8 Hz, Ar-H⁵×2), 7.37 (2H, d, *J*=7.6 Hz, Ar-H⁶×2), 7.47 (2H, d, *J*=7.6 Hz, Ar-H⁴×2), 7.59 (2H, s, Ar-H²×2), 7.70 (2H, s, Ar-CH=C×2). ESI-MS *m*/*z*: 433.32(M+1)⁺, calcd for C₂₀H₁₆Br₂O: 432.15.

1.2 General procedure of 07 and 11

A solution of 3,4-dihydro- α -pyran (22 mmol) in dichloromethane (20 mL) was added dropwise onto a well-stirred suspension of hydroxyl benzaldehyde (14.4mmol) and pyridinium *p*-toluenesulfonate (0.16 mmol) in the same solvent (40 mL). The mixture was stirred at room temperature and monitored by TLC, then was washed with saturated NaHCO₃ solution (50mL×3) and brine (50mL×3) and dried over Na₂SO₄. Evaporation of the solvent gave crude product which was purified by column chromatography on silica gel (hexane/ethyl acetate, 7:3, as eluent) to obtain the mediate 4-(tetrahydropyran-2-yloxy) benzaldehyde as a lightly yellow oil (69~78% yield).

A mixture of protected derivative (6.94 mmol) and ketone (3.47 mmol) in C_2H_5OH (10mL) was stirred at rt for 20min; then 20%(w/v) NaOH (0.7ml, 3.47 mmol) was added dropwise. After stirring for 60min, the mixture was treated with 100 ml cold water and filtered. The residue was washed with ethanol and acetone and dried in vacuum. The product was purified by recrystallization from ethanol/water(9:1) to obtain **07** and **11**.

(2E,5E)-2,5-bis(4-(tetrahydro-2H-pyran-2-yloxy)benzylidene)cyclopentanone (A07). Yellow powder, 72% yield, mp 209°C. ¹H-NMR (CDCl₃) δ : 1.60~1.90 (12H, m), 3.09 (4H, s, CH₂×2), 3.61 (2H, q, *J*=5.2 Hz, O-CH₂^e×2), 3.90 (2H, q, *J*=10.7 Hz, O-CH₂^a×2), 5.50 (2H, t, O-CH-O×2), 7.11 (4H, m, *J*=8.8 Hz, Ar-H^{2,6}×2), 7.56 (6H, m). ESI-MS *m*/z: 460.92 (M⁺), calcd for C₂₉H₃₂O₅: 460.56.

$(2E, 5E) \hbox{-} 2, 5 \hbox{-} bis (3 \hbox{-} methoxy \hbox{-} 4 \hbox{-} (tetrahydro \hbox{-} 2H \hbox{-} pyran \hbox{-} 2 \hbox{-} yloxy) benzylidene) cyclopentanone$

(A11). Yellow powder, 67% yield, mp 138°C. ¹H-NMR (CDCl₃) δ : 1.70~1.95 (12H,m), 3.11 (4H, s, CH₂-CH₂), 3.63 (2H, q, *J*=7.2 Hz, O-CH₂^e×2), 3.90 (2H, q, *J*=11.6 Hz, O-CH₂^a×2), 3.91 (6H, s, O-CH₃×2), 5.50(2H, s, O-CH-O×2), 7.09~7.23 (6H, m), 7.54 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 520.86 (M⁺), calcd for C₃₁H₃₆O₇: 520.61.

(1E,4E)-1,5-bis(4-(tetrahydro-2H-pyran-2-yloxy)phenyl)penta-1,4-dien-3-one (B07). Yellow powder, 71% yield, mp 146~150°C. ¹H-NMR (CDCl₃) δ : 1.65 (4H, m), 1.76 (4H, m), 1.94 (4H, m), 3.61 (2H, q, *J*=11 Hz, O-CH₂^e×2), 3.88 (2H, q, *J*=14.8 Hz, O-CH₂^a×2), 5.49 (2H, s, O-CH-O×2), 6.95 (2H, d, *J*=16 Hz, C=CH-CO×2), 7.08 (4H, m), 7.56 (4H, m), 7.70 (2H, d, *J*=16 Hz, Ar-CH=C×2). ESI-MS *m/z*: 434.95 (M⁺), calcd for C₂₇H₃₀O₅: 434.52.

(1E,4E)-1,5-bis(3-methoxy-4-(tetrahydro-2H-pyran-2-yloxy)phenyl)penta-1,4-dien-3-one (B11). Red oil, 66% yield. ¹H-NMR (CDCl₃) δ : 1.65~1.95 (12H, m), 3.63 (2H, d, *J*=12 Hz, O-CH₂^e×2), 3.86 (2H, q, *J*=15.2 Hz, O-CH₂^a×2), 3.94 (6H, s, O-CH₃×2), 5.49(2H, s, O-CH-O×2), 6.90 (2H, d, *J*=13.2 Hz, C=CH-CO×2), 6.91~7.26 (6H, m), 7.68 (2H, d, *J*=16 Hz, Ar-CH=C×2). ESI-MS *m/z*: 494.88 (M⁺), calcd for C₂₉H₃₄O₇: 494.57.

(2E,6E)-2,6-bis(4-(tetrahydro-2H-pyran-2-yloxy)benzylidene)cyclohexanone (C07). Yellow powder, 63% yield, mp 160°C. ¹H-NMR (CDCl₃) δ : 1.65~2.00 (12H, m), 2.04 (2H, m), 2.92 (4H, t, *J*=5.4 Hz, C-CH₂×2), 3.62 (2H, d, *J*=11.6 Hz, O-CH₂^e×2), 3.90 (2H, t, *J*=9.2 Hz, O-CH₂^a×2), 5.48 (2H, t, O-CH-O×2), 7.03 (4H, d, *J*=8.4 Hz, Ar-H^{2,6}×2), 7.43 (4H, d, *J*=8.4 Hz, Ar-H^{3,5}×2), 7.82 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 475.03 (M⁺), calcd for C₃₀H₃₄O₅: 474.59.

(1E,4E)-1,5-bis(3-methoxy-4-(tetrahydro-2H-pyran-2-yloxy)phenyl)penta-1,4-dien-3-one (C11). Yellow powder, 59% yield, mp 138°C. ¹H-NMR (CDCl₃) δ : 1.64~2.01 (14H, m), 2.94 (4H, t, *J*=5.2 Hz, C-CH₂×2), 3.62 (2H, d, *J*=11.2 Hz, O-CH₂^e×2), 3.89 (6H, s, O-CH₃×2), 3.97 (2H, t, *J*=9.0 Hz, O-CH₂^a×2), 5.47(2H, s, O-CH-O×2), 6.98~7.17 (6H, m), 7.74 (2H, s, Ar-CH=C×2). ESI-MS *m/z*: 534.88 (M⁺), calcd for C₃₂H₃₈O₇: 534.64.

1.3 General procedure of 13 and 14

The protected product(**07** or **11**, 10 mmol) was suspended in methanol (40 mL) and treated with a catalytic amount of *p*-toluenesulfonic acid. After stirring at room temperature for 10 h the solvent was removed. The residue was treated with water and neutralized with a saturated solution of NaHCO₃. The suspension was extracted with ethyl acetate (50 mL×3) and the collected organic extract was washed with brine (100 mL×3), followed by dring with Na₂SO₄. Evaporation of the solvent gave crude product and then recrystallization from C₂H₅OH/H₂O to obtain pure **13** or **14**.

(2E,5E)-2,5-bis(4-hydroxybenzylidene)cyclopentanone (A13) Yellow crystal, 89.3% yield, mp >300°C. ¹H-NMR (DMSO- d_6) δ : 2.89 (4H, t, *J*=20 Hz, CH₂-CH₂), 6.88 (4H, d, *J*=8.4 Hz, Ar-H^{2,6}×2),7.33 (2H, s, Ar-CH×2), 7.53 (4H, d, *J*=8.4 Hz, Ar-H^{3,5}×2), 10.01 (2H, br, Ar-OH×2). ESI-MS *m*/*z*: 291.13 (M-1)⁺, calcd for C₁₉H₁₆O₃: 292.33. (2E,5E)-2,5-bis(4-hydroxy-3-methoxybenzylidene)cyclopentanone (A14) Yellow powder, 76% yield, mp 214°C [lit.¹⁷ 212-214°C]. ¹H-NMR (DMSO-*d*₆) δ : 3.57 (4H, s, CH₂-CH₂), 4.45 (6H, s, O-CH₃×2), 7.41~7.72 (6H, m, Ar-H), 7.97 (2H, s, -CH=C×2), 8.83 (2H, br, Ar-OH×2). ESI-MS *m/z*: 350.98 (M-1)⁺, calcd for C₂₁H₂₀O₅: 352.4.

(1E,4E)-1,5-bis(4-hydroxyphenyl)penta-1,4-dien-3-one (B13) Orange crystal, 92% yield, mp 246~248°C [lit.¹⁷ 243-245°C]. ¹H-NMR (DMSO- d_6) δ : 6.83 (4H, d, J=8.4 Hz, Ar-H^{2,6}×2), 7.07 (2H, d, J=16 Hz, C=CH-O×2), 7.58 (4H, d, J=8.4 Hz, Ar-H^{3,5}×2), 7.66 (2H, d, J=16 Hz, Ar-CH=C×2), 10.03 (2H, s, OH×2). ESI-MS *m*/*z*: 267.09 (M+1) ⁺, calcd for C₁₇H₁₄O₃: 266.29.

(1E,4E)-1,5-bis(4-hydroxy-3-methoxyphenyl)penta-1,4-dien-3-one (B14) Yellow powder, 85% yield, mp 88~90°C [lit.²² 84-86°C]. ¹H-NMR (DMSO- d_6) δ: 4.61 (6H, s, O-CH₃×2), 7.02 (4H, d, *J*=8.0 Hz, Ar-H^{2.6}×2), 7.27 (2H, d, *J*=16 Hz, C=CH-O×2), 7.61 (4H, d, *J*=8.0 Hz, Ar-H^{3.5}×2), 7.98 (2H, d, *J*=16 Hz, Ar-CH=C×2), 9.11 (2H, br, OH×2). ESI-MS *m/z*: 327.27(M+1)⁺, calcd for C₁₉H₁₈O₅: 326.12.

(2E,6E)-2,6-bis(4-hydroxybenzylidene)cyclohexanone (C13) Yellow crystal, 59% yield, mp >300°C. ¹H-NMR (DMSO- d_6) δ : 1.71 (2H, m), 2.84 (4H, s, C-CH₂×2), 6.83 (4H, d, *J*=6.0 Hz, Ar-H^{2,6}×2), 7.40 (4H, d, *J*=6.0 Hz, Ar-H^{3,5}×2), 7.53 (2H, s, Ar-CH=C×2), 9.50 (2H, br, Ar-OH×2). ESI-MS m/z: 305.18 (M-1)⁺, calcd for C₂₀H₁₈O₃: 306.36.

(2E,6E)-2,6-bis(4-hydroxy-3-methoxybenzylidene)cyclohexanone (C14) Yellow powder, 67% yield, mp 172~173°C [lit.¹⁷ 178-179°C]. ¹H-NMR (DMSO- d_6) δ: 2.00 (2H, m), 2.99 (4H, m), 4.11 (6H, s, O-CH₃×2), 7.42 (4H, d, *J*=8.0 Hz, Ar-H^{2,6}×2), 7.74 (4H, d, *J*=8.0 Hz, Ar-H^{3.5}×2), 8.06 (2H, s, Ar-CH×2), 8.56 (2H, br, Ar-OH×2). ESI-MS *m/z*: 365.13 (M-1)⁺, calcd for C₂₂H₂₂O₅: 366.41.

1.4 General procedure of 16 and 17

A stirred suspension of 4-hydroxylbenzaldehyde (or 3-methoxyl-4-hydroxylbenzaldehyde, 10mmol) and anhydrous K_2CO_3 (1.39 g, 10 mmol) in dry acetone (30 mL) was refluxed for 30 min under nitrogen atmosphere. Then, a solution of allylbromide (15 mmol) in acetone (10 mL) was added and refluxed for 3.5 h under nitrogen atmosphere and monitored by TLC. The resulting solution was evaporated to remove most of acetone and then poured with AcOEt (100ml). The combined organic layers were washed with brine (100 mL×3), dried over Na₂SO₄ and evaporated in vacuo to afford the crude product 4-(allyloxy)benzaldehyde (or 4-(allyloxy)-3-methoxybenzaldehyde) as a colorless oil.

Compounds **16** (or **17**) was prepared according the procedure of **01** starting from 4-(allyloxy)benzaldehyde (or 4-(allyloxy)-3-methoxybenzaldehyde) and ketones, respectively.

(2E,5E)-2,5-bis(4-(allyloxy)benzylidene)cyclopentanone (A16). Yellow powder, 67% yield, mp 192°C. ¹H-NMR (CDCl₃) δ : 3.09 (4H, s, C-CH₂×2), 4.60 (4H, d, *J*=5.2 Hz, CH₂-O×2), 5.33 (2H, q, *J*=10.8 Hz, CH₂^{α}=C×2), 5.44 (2H, m, *J*=17.2 Hz, CH₂^{β}=C×2), 6.07 (2H, m), 6.98

(4H, d, *J*=8.8 Hz, Ar-H^{2,6}×2), 7.51 (2H, s, Ar-CH=C×2), 7.57 (4H, d, *J*=8.8 Hz, Ar-H^{3,5}×2). ESI-MS m/z: 372.89 (M⁺), calcd for C₂₅H₂₄O₃: 372.5.

(2E,5E)-2,5-bis(4-(allyloxy)-3-methoxybenzylidene)cyclopentanone (A17). Yellow powder, 67% yield, mp 116~117°C. ¹H-NMR (CDCl₃) δ : 3.02 (4H, s, CH₂-CH₂), 4.10 (6H, s, O-CH₃×2), 4.59 (4H, d, *J*=6.4 Hz, O-CH₂×2), 5.27 (2H, t, *J*=9.8 Hz, CH₂^{α}=C×2), 5.44 (2H, m, *J*=15.4 Hz, CH₂^{β}=C×2), 6.10 (2H, m), 6.71~7.32 (6H, m), 7.78 (2H, s, CH=C×2). ESI-MS *m/z*: 431.41 (M-1)⁺, calcd for C₂₇H₂₈O₅: 432.5.

(1E,4E)-1,5-bis(4-(allyloxy)phenyl)penta-1,4-dien-3-one (B16). Yellow powder, 67% yield, mp 123~124°C. ¹H-NMR (CDCl₃) δ : 4.55 (4H, t, J=4.2, CH₂-O×2), 5.33 (2H, d, J=10.4 Hz, CH₂^{α}=C×2), 5.44 (2H, m, J=17.6 Hz, CH₂^{β}=C×2), 6.08 (2H, m), 6.92 (2H, d, J=15.6 Hz, CH-C=O×2), 6.97 (4H, d, J=10 Hz, Ar-H^{2.6}×2), 7.57 (4H, d, J=10 Hz, Ar-H^{3.5}×2), 7.70 (2H, d, J=15.6 Hz, Ar-CH=C×2). ESI-MS *m*/*z*: 245.66 (M-1)⁺, calcd for C₂₃H₂₂O₃: 346.4.

(2E,6E)-2,6-bis(4-(allyloxy)benzylidene)cyclohexanone (C16). Yellow powder, 67% yield, mp 120~122°C. ¹H-NMR (CDCl₃) δ : 1.81 (2H, t, *J*=5.6 Hz, CH₂), 2.92 (4H, t, *J*=5.6 Hz, C-CH₂×2), 4.59 (4H, d, *J*=5.2 Hz, O-CH₂×2), 5.32 (2H, d, *J*=10.4 Hz, CH₂^{α}=C×2), 5.44 (2H, m, *J*=16 Hz, CH₂^{β}=C×2), 6.09 (2H, m), 6.95 (4H, d, *J*=8.8 Hz, Ar-H^{2.6}×2), 7.45 (4H, d, *J*=8.8 Hz, Ar-H^{3.5}×2), 7.76 (2H, s, CH=C×2). ESI-MS *m*/*z*: 387.81 (M+1)⁺, calcd for C₂₆H₂₆O₃: 386.5.

(2E,6E)-2,6-bis(4-(allyloxy)-3-methoxybenzylidene)cyclohexanone (C17) Yellow powder, 67% yield, mp 141°C. ¹H-NMR (CDCl₃) δ: 1.88 (2H, s, CH₂), 2.89 (4H, t, *J*=5.6 Hz, C-CH₂×2), 3.91 (6H, s, O-CH₃×2), 4.66 (4H, m), 5.31 (2H, t, *J*=10.2 Hz, CH₂^α=C×2), 5.42 (2H, m, *J*=16.4 Hz, CH₂^β=C×2), 6.09 (2H, m), 6.59~7.26 (6H, m), 7.40~7.75 (2H, s, CH=C×2). ESI-MS m/z: 446.67 (M⁺), calcd for C₂₈H₃₀O₅: 446.5.

2. Enzyme-linked immunosorbent assays (ELISA) of cytokines.

Mouse J774A.1 macrophages were pre-treated with curcumin or its analogues (10 μ M) or vehicle control for 2 h, then treated with LPS (0.5 μ g/ml) for 24 h. At the end of the treatment, the culture media were collected and centrifuged at 14,000 x rpm for 5 min. The supernatants were stored in aliquots at -70°C. TNF- α and IL-6 levels in the media were determined by ELISA using mouse TNF- α and mouse IL-6 ELISA MaxTM Set Deluxe Kits (BioLegend). The total protein concentrations of the viable cell pellets were determined using Bio-Rad Protein Assay reagent. Total amounts of the TNF- α and IL-6 in media were normalized to the total protein amounts of the viable cell pellets.