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Two views of medical science 
 

Two views about medical research seem to have split ever more apart over the past decades. 

One view is that of medical researchers who rejoice in discoveries and explanations of causes 

of disease. Discoveries happen when things are suddenly seen in another light. Ideas strike by 

seeing the odd course of a disease in a patient, the strange results of a lab experiment, a 

peculiar subgroup in the analysis of data, or some juxtaposition of papers in the literature. 

Researchers continuously have masses of ideas. They get enthusiastic about one idea, and will 

try to find data to see whether there is “something in it”. For first exploration, they will 

preferably use existing clinical or epidemiologic data, do a quick additional lab experiment, a 

quick search for more literature, or look for some more patients. As soon as there is a hint of 

confirmation, a paper is submitted. The next wave of researchers reads this paper and 

immediately tries to check this idea, using their own existing data or their trusted lab 

experiments. They will grill the idea by looking at different subgroups of diseased persons, by 

varying the definition of exposures, by taking potential bias and confounding into account, or 

by varying the lab conditions to explain why the new idea holds – or why it is patently wrong. 

In turn they swiftly submit their results for publication. These early exchanges may lead to 

strong confirmation or strong negation. If not, new studies are needed to bring a controversy 

to resolution.  

  

The other view is that of medical researchers whose aim is to set up studies to evaluate 

whether the patient’s lot is really improved by the new therapies, diagnostics and insights that 

looked so wonderful in the lab or on initial testing? The most developed branch of evaluation 

research is randomised trials of drug therapy, which I will use as its prototype in this paper. 

One major condition for credibility of such trials is complete preplanning of every aspect of 

the trial, and nowadays even advance registration and documentation of everything that was 

preplanned [1]. This preplanning should not be strayed from, however promising some side 

alley looks, because the credibility of the results will immediately take a nose dive. 

 

What they think about each other 

 

From the perspective of the evaluative researcher, this method of discovery and explanation is 

dangerously biased: clinicians present case series out of the blue, epidemiologists do multiple 

analyses on existing data collected for completely different purposes, basic scientists repeat 
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lab experiments with endless new variations, changing the hypothesis as well as the 

experiment continuously, until something fits. And all these researchers always dream up 

perfect explanations. This leads to irresponsible “hypes” and “scares” in the popular press, 

and to unnecessary research loops that are a burden to the pubic purse.  

 

In contrast, the discovery type of researcher is convinced that evaluation is not just hopelessly 

dull, but that too much emphasis on evaluation actually hampers the progress of science - 

precisely because everything is preplanned. For discovery you need chance and one-sided 

views. You need to look at the literature in a slanted way, to examine data of others as well as 

your own to see them in a different light. To discoverers, evaluation is mainly a form of 

“quality control” that society needs for financial reimbursement by third party payers, but it is 

not truly science. And finally: numbers are not explanations. That idea was already expressed 

by Trousseau, in France in the 1850s [2], in his polemic opposition to numerical medicine.  

Numbers do not tell a story of what produces what and why it does so. Numbers do not give 

insight upon which you can build the next step of your reasoning, i.e., your next investigation, 

your next application in patients, or to understand what is happening in a particular patient. 

Still today, this is the feeling of the discovery-type scientist towards numerical evaluation.  

 

Co-existence in the mind of an individual? 

 

Yet, these two views of medical research can exist simultaneously in the mind of one person. 

Over the past decades, I may have made one contribution to unravel the aetiology of a 

disease: the detection of the interaction between factor V Leiden and oral contraceptives in 

causing venous thrombosis [3]. Young women who carry the factor V Leiden mutation (about 

5% of the population of white European descent) and also use oral contraceptives have a 

much higher risk of venous thrombosis than women with either risk factor alone (Table 1).  
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Table 1 - Analysis of oral contraceptive use, presence of factor V Leiden allele, 
and risk for venous thromboembolism.  

Factor V 
Leiden 

Oral 
Contraceptives 

Number 
of 

Patients

Number 
of 

Controls 

Odds Ratio 
(rounded)  

Yes Yes 25 2 35  
Yes No 10 4  7 
No Yes 84 63  4 
No No 36 100 1 (Reference 

group) 
*Modified from Vandenbroucke et al. [3] 
 
 

This finding was not at all preplanned. Our study originally aimed at quantifying existing 

biochemical and genetic risk factors for venous thrombosis. The factor V Leiden mutation, a 

new risk factor for venous thrombosis, was discovered during the study by biochemical 

means, in part through data from the study. After the mutation was established, we looked 

again at the data which included patients and controls of both sexes from age 15 to 70, and 

found a few homozygotes for the Factor V Leiden mutation among the patients. To our 

surprise, almost all these homozygotes with venous thrombosis were young women who used 

oral contraceptives [4]. This was our moment of discovery. Since the early 1960s it was 

known that some women develop venous thrombosis when using oral contraceptives, but no 

mechanism ever stood out as a possible explanation. We felt that our data might be the 

beginning of an understanding and we analysed homozygotes and heterozytoges together for 

the interaction with factor V Leiden (Table 1). The findings provided insight into the question 

of why exogenous hormones cause venous thrombosis, and were the source of much 

subsequent research [5].  

 

However, whenever I suspect that a report from a randomised controlled trial has strayed from 

the path of complete preplanning, e.g. by having highlighted some subgroup in the analysis or 

by cutting corners in the completeness of the follow-up, I might be the first to cry “beware” 

[6]. While the two views on medical research lead to completely different mindsets about 

subgroups and exploring new findings in data, I do teach and encourage both to young 

researchers.  
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Different hierarchies for different problems 

 

Underlying the difference in views are differences in the hierarchy of research designs that 

apply to different research problems. 

 

A hierarchy of “strength” of research designs with the randomised trial on top and the 

anecdotal case report at a suspect bottom is well known. It has been used since the 1980s in 

various guises [7] and under various names, but a rather typical rendering is shown in Box 1. I 

have qualified this hierarchy by naming it the hierarchy of study designs for “intended effects 

of therapy”, i.e., the beneficial effects of treatments that are hoped for at the start of a study. 

 

Box 1: Hierarchy of study designs for intended effects of therapy 
1.Randomised controlled trials 
2.Prospective follow-up studies 
3.Retrospective follow-up studies 
4.Case-control studies 
5.Anecdotal: case reports and series 
 
 

The opposing hierarchy ranks study designs in the order in which they give the best chances 

of discovery and of studying new explanations, and is shown in Box 2. 

 

Box 2: Hierarchy of study designs for discovery and explanation 
1.Anecdotal: case reports and series, findings in data, literature  
2.Case-control studies 
3.Retrospective follow-up studies 
4.Prospective follow-up studies 
5.Randomised controlled trials 
  
 

The entries in the second hierarchy are almost the same, except that the ranking is reversed. 

The first entry is somewhat enlarged, as anecdotal reports that lead to new ideas comprise not 

only case descriptions of patients, but also discoveries in data and juxtaposition of ideas in the 
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literature. Any clinician or laboratory researcher will immediately recognise that this is the 

sequence of how new discoveries are made: the odd course of disease in a patient, a 

remarkable lab result, a peculiar subgroup such as the factor V Leiden homozygotes, or a 

finding in a seemingly unrelated part of the literature, spark a new idea. Only thereafter do 

analytic research designs come into play. Some examples: genetic research begins with an 

interesting family tree, infectious disease outbreak investigations begin with a few cases that 

come to the attention of a doctor and provide the first clues of transmission, the first signal of 

adverse effects of therapy is more often than not from individual observations by astute 

patients or physicians [8], as are the first ideas about the harms of occupational exposures [9]. 

 

A juxtaposition of the hierarchies 

 

In both hierarchies, there are large gaps of credibility and usefulness between the different 

levels. For evaluation of the intended effects of therapy, the randomised controlled trial stands 

out, followed at quite a distance by all observational designs. The second in line, the 

prospective follow-up is already suspect for the evaluation of therapy because any 

observational study of intended outcomes has nearly intractable problems of confounding by 

indication. Only very rarely we will believe case reports or series as evidence for therapy, for 

instance when effects are dramatic, which means that we have a secure feeling for a “mental 

control group”, and the deviation from the mental control group is large [10, 11]. 

 

For discoveries, the original case reports, lab observations, data analysis, or juxtaposition in 

the literature may be so convincing that they stand by themselves, either because of the 

magnitude of the effect or because the new explanation suddenly and convincingly makes the 

new finding fall into place with previous unexplained data or previous ideas. In most 

instances, however, we need analytic studies to see whether the observation really holds. The 

preferred designs of researchers are case-control studies, or possibly retrospective follow-up 

studies (where the exposure and follow-up experience lies in the past from the point of view 

of the researcher when she had her new idea), because such designs will give the quickest 

answer for the least effort. If at all possible, researchers will use existing data. For many 

problems in genetics, for infectious disease outbreaks, or for adverse effects of drugs no 

further evidence may be needed. A truly prospective follow-up study (i.e., involving new data 

collection and start of follow-up after the formulation of the specific hypothesis) is so huge an 

undertaking for the study of causes of disease - as most diseases are relatively rare - that 
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researchers only begin such investigations when they are really necessary to confirm 

something important. Even for prognostic studies into the course of disease in patients, 

retrospective follow-up studies or case-controls studies on existing data are often preferred – 

although a prospective study might be more feasible when the disease endpoints among the 

patients is sufficiently frequent. Randomised controlled trials are rarely used for research to 

detect or to establish causes of disease. Randomised trials are by definition set up as 

verification, and not to detect new causes of disease: any discovery in a randomised trial is 

accidental and might need a new investigation. Most importantly, randomisation is usually 

impossible to study causes of disease, but quite fortunately, randomisation is most of the time 

not needed. 

 

Randomisation: needed for intended effects, not for discovery and explanation 

 

I have presented previously the argument for why randomisation is most of the time not 

needed in observational etiologic research of causes of diseases [12]. This can be briefly 

recapitulated by pointing out the contrast between the investigation of beneficial effects 

versus the investigation of adverse effects of treatments. Beneficial effects are “intended 

effects” of treatment. In daily medical practice prescribing will be guided by the prognosis of 

the patient: the worse the prognosis the more therapy is given. This leads to “confounding by 

indication” that is intractable. Hence, to measure the effect of treatment, we need “concealed 

randomisation” to break the link between prognosis and prescription [13]. Concealed 

randomisation guarantees that the act of allocating treatments is unbiased for prognosis – it 

does not guarantee equality of prognostic factors but instead guarantees that any difference 

arises by chance.  

 

In contrast, adverse effects are “unintended effects” of treatment, and are mostly unexpected 

and unpredictable. Therefore, adverse effects are usually not associated with the indications 

for treatment [14]. In such circumstances, there is no possibility of “confounding by 

indication”, and observational studies on adverse effects can provide data that are as valid as 

data from randomised trials. Thus, data from daily practice can be used for research. A 

straightforward example of an unexpected and unpredictable adverse effect is the 

development of a rash after prescription of ampicillin in a patient who never used any 

penicillin derivative or analogue before. The prescribing physician cannot predict this 
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occurrence, and a study with data from daily practice suffices to investigate the frequency of 

such rashes. 

 

To rule out any residual “confounding by indication” as much as possible, observational 

studies can be refined, e.g. by limiting studies to idiopathic cases of the disease that is the 

potential adverse effects of a drug: patients who have no risk factor for the adverse effect that 

could in any way have guided treatment [15]. For example, a study on the risk of venous 

thrombosis with different types of oral contraceptives can be restricted to young women 

without any risk factor for venous thrombosis. It is reasonable to assume that, because the 

choice of oral contraceptive could not be guided by known risk factors - as there were no risk 

factors at the time of prescribing - any difference in rates of venous thrombosis can be 

ascribed to a difference in the contraceptive [15, 16]. In the absence of risk factors, the choice 

for different types of pill could have been guided by anything, such as convenience, cost, 

practice guidelines, or the latest visit by an industry representative, which are not risk factors 

for venous thrombosis. The “pseudo-randomness” of the allocation to diverse types of pills, 

given this selection of idiopathic cases, only applies to the outcome of venous thrombosis. It 

may not apply to other outcomes. In general, the assumption works best when the disease that 

is the adverse effect is a totally different disease from the one that is treated [12]. Of course, it 

may still be necessary to adjust for potential confounders that may arise, such as a difference 

in age between users of different types of oral contraceptives [12]. In a similar way, in 

randomised trials adjustment for baseline imbalances may be necessary when such imbalances 

occur by chance.  

 

An empirical evaluation of the idea that adverse effects can be investigated validly by 

observational studies was given by a comparison of the findings on the same adverse effects 

between large meta-analyses of randomised trials and large observational studies [17]. This 

comparison found no overall predilection for either design to lead to higher or lower effect 

measure estimates. If anything, observational studies were more conservative: on average they 

yielded somewhat lower excess risks of harm than randomised trials. In the few instances 

where observational studies yielded much larger relative risks than randomised trials, the 

observational data were likely to reflect actual prescribing to a less selected group of patients 

than had been enrolled in the trials - which made the observational data a better reflection of 

the real harms suffered by patients [16, 17]. This comparative study was only possible for a 

limited number of adverse effects, because the adverse effect needed to be relatively frequent, 
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must have occurred rather soon after initiation of treatment, and must have been thought about 

beforehand in the randomised trials. Despite these limitations, the comparison is compatible 

with the idea that observational studies on adverse effects can be equally credible as 

randomised studies. 

 

Generalisation to observational studies on causes of disease 

 

Almost all potential causes of disease can be viewed as producing effects that are 

undesired, unintended, and unexpected [12]. This becomes clear from classic success stories 

of epidemiologic research: e.g., before the links between smoking and lung cancer or asbestos 

and mesothelioma were known, people who exposed themselves to these risks were unaware 

of the consequences– which is why the risks could be investigated by observational studies. 

Some researchers hold the view that these effects stood out because they are large. However, 

other epidemiologic classics concerned much lower relative increases in risk: e.g., lead in 

indoor paint and the mental development of children, or age at first pregnancy and the 

development of breast cancer. 

  

No blank cheque for observational research  

 
The above reasoning should not lead to uncritical acceptance of all observational research 

about causes of diseases. A mental device to guide our judgement about new claims from 

observational research is to position the research on an “axis of haphazardness of exposure” 

(Figure 1).  

 

Figure 1: Axis of haphazardness of exposure 

 
 
Vegetarians    Genetic  
& mortality    effects 
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At one side there is research on genetic effects. Most researchers accept that this is the closest 

that observational research can come to randomisation – even if “Mendelian randomisation”, 

i.e. the independent assortment of genes on different chromosomes when gametes are formed, 

is a biological mechanism and therefore not exactly the same as physical randomisation [18]. 

At the other end of the axis there is research contrasting, for example, the mortality of 

vegetarians to non-vegetarians. That contrast is completely non-haphazard: vegetarians have 

different social backgrounds, different education, different life styles, and may have taken up 

the habit because they are health-conscious which makes the health effects “intended”. The 

differences in (self) assignment of the vegetarian diet will bias the comparison and it is known 

in advance that the bias will be next to intractable in the analysis, since the various 

components of this bias cannot be known in sufficient detail. Therefore, an assessment of the 

effect of vegetarian diets needs randomised trials, e.g., to show whether vegetarian diets 

nibble off some millimetres of mercury from blood pressure. If an effect on blood pressure is 

found, this might be a good reason to advocate a more vegetarian diet. Observational studies 

on mortality, however, cannot be the basis for such recommendations because of their low 

credibility. Even if the possibility exists that part of a reduced mortality is due to blood 

pressure reduction, that effect cannot be credibly separated from all confounding effects in an 

observational study.  

 

Most observational research  hovers somewhere between the extremes. Sometimes an 

observational researcher is quite close to the quasi-random haphazardness of genetic 

exposures, for example, when studying adverse effects in selected groups of patients where 

the adverse effect is unpredictable. When confronted with a new exposure that is not that 

close to ideal haphazardness, it is useful to ask oneself whether the most important 

confounders can be listed, can be measured fairly accurately, and can be controlled for. If the 

answer to these questions is positive, that will lead to greater credibility of the results. If 

negative, as in the vegetarian example, we may attach no credibility to the results despite any 

attempts at statistical correction for confounders.  

 

Unexpected beneficial effects? 

 

A difficult area is the unexpected beneficial effects of medical treatments, e.g. beneficial 

effects of drugs on organ systems, other than their original targets, that were not foreseen. A 

priori, they are less likely, as it is not likely that a new external agent will suddenly improve 
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the human constitution that has evolved over tens of thousands of years; external agents are 

more likely to wreck havoc in this finely tuned biologic machinery [12]. Still, an unexpected 

beneficial effect is possible, as was shown by the discovery of the preventive effect of aspirin 

on heart disease [19]. However, the study of unexpected beneficial effects, seems to suffer 

more often from problems of selection than adverse effect research. Amongst others, a 

“healthy user bias” may exist. For example, among cardiovascular patients, those who use 

their statins diligently are a positive selection, for cardiovascular risk as well as in many other 

respects [20-22]. In observational studies statins have been described to protect from dementia 

as well as from fractures, which was not confirmed in randomised trials [16]. Likewise, an 

apparent protection from pneumonia by statins was explained because statin users also 

received pneumococcal vaccinations more often [23]. The health intentions that accompany 

statin use wreck the possibility to study beneficial effects. In contrast, when major diseases 

are an adverse effect of therapy, such as myocardial infarction with Cox-2 inhibitors, 

observational evidence gave the same results as randomised [24]. 

 

In sum, observational research on humans is most credible when it concerns negative 

unexpected effects. Sufficient haphazardness of exposure allocation offers an admittedly 

subjective guide to the credibility of observational research findings. However, in the words 

of Rosenbaum: “Haphazard is not random.... Still, haphazard or ostensibly irrelevant 

assignments are to be preferred to assignments which are known to be biased in ways that 

cannot be measured and removed analytically.” [25, page 345] 

 

 

Subgroups and multiplicity of analyses 

 

Even if it is accepted that physical randomisation may not be necessary, many scientist still 

feel that results from observational research are less credible because of the problem of 

subgroups and multiplicity of analysis: multiple looks at data for associations that were not 

the original aims of the data collection.  

 

This problem can be conceptualised on an “axis of multiplicity” (Figure 2).  

 
 
 
 



 12

 
 
Figure 2: Axis of multiplicity  
 
Single Nucleotide       Randomised  
Polymorphisms    trials 
 
Prior belief    Prior belief 
1 in 100,000    50 - 50 
 
 

 

 

At one extreme there are genome-wide analyses, where tens of thousands of single nucleotide 

polymorphisms (SNPs) are investigated for disease associations. The prior probability that 

some grain of explanation will come from any individual SNP is slim, say, 1 in 100,000 [26]. 

At the other extreme, there are randomised trials about a single disease, a single therapy, and a 

single outcome. Randomised controlled trials are started under equipoise [27, 28]: the prior 

odds that the therapy that is tested is worthwhile are 50-50, and multiplicity of analysis is 

strictly not allowed. Thus, the axis of multiplicity is at the same time an axis of prior belief: 

the prior belief that some factor will be a causal explanation for a condition or that some 

therapy or treatment will work [29]. In general, when many exposures are investigated, most 

will have low priors; conversely, when only a singly exposure and outcome is studied, the 

study is often started with a much higher prior.  

 

An often-heard objection about multiplicity in observational research is that many large 

clinical and epidemiologic data sets exist, and many PhD students analyse these data, which 

leads to data dredging and hunting for significance. However, “many PhD students looking at 

data” is not the same situation as the analysis of tens of thousands of SNPs. PhD students do 

not mindlessly grind out one analysis after another [30]. A PhD student often starts by 

verifying tentative ideas from previous publications; next she will look whether she can form 

new insights herself. The clues that guide the analysis involve reasoning, much like in the 

example of  factor V Leiden and oral contraceptives above. That example also shows that we 

did not “try to explain a subgroup” after we found it. Many people think that researchers find 
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subgroup and then dream up explanations for that finding. While this happens, the inverse is 

more likely and more interesting: finding something strange in the data suddenly makes a 

researcher realise that this could explain another phenomenon, outside of the data, which was 

already known but had never been explained before. Thereby, the explanation reaches out to 

the existing literature.  

 

In practice, PhD students hover over the axis of multiplicity.  Sometimes they are closer to 

SNPs when trying out a bold idea. At other times they are closer to the randomised trial 

situation with 50-50 prior odds, or they are in an even better a priori position when exploring 

an association that is well known. For example, a PhD student may look at active smoking 

and lung cancer in data not collected for that purpose. Critics will never say: “You only found 

that association because of multiple analyses by many PhD students”. On the contrary, if an 

association between active smoking and lung cancer were not found, a critic would doubt the 

validity of the data – rightfully - so strong is the prior belief. 

 

Hypotheses before or after seeing the data? 

 

Many researchers have the intuition that findings on subgroups that were specified before data 

analysis are more credible than explanations that arose after seeing the data. In general, the 

logical proof of this intuition is difficult [31]. The difference between the confirmation of an 

hypothesis that was specified beforehand and the confirmation of ideas that are constructed 

during data analysis is much smaller than is usually believed, because new explanations in 

science often gain most of their credibility when they can explain previous findings that were 

not understood [32].  

 

Again, the ways of observational and randomised research may split. For randomised trials, 

this intuition remains useful [33]. Large randomised trials are set up after years of deliberation 

by dozens of experts. As the trial concerns one therapy, one disease and one outcome, it is not 

likely that any important prior idea about subgroups in which the therapy might work better or 

worse was overlooked in the planning stage. Usually this recognition is dealt with by 

including or excluding such subgroups from the trial. It is therefore unlikely that a new and 

worthwhile subgroup would turn up during data analysis. Thus, the post hoc discovery of 

subgroups in randomised trials has low prior probability, from which follows low credibility 

of subgroup findings.  
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However, because observational studies concern aetiology, and because aetiologies are often 

multiple, prior evidence might exist without investigators or data-analysts being aware of it. 

This becomes evident when data are used for new purposes. The Framingham study is an 

archetypical example: originally started to investigate a few cardiovascular risk factors, it has 

branched off in many directions, from chronic pulmonary disease to genetics, for which a mix 

of old and new data are used [34].  

 

When data are used for a different purpose, even if that purpose was found during the data 

analysis, the data acquire new priors, i.e., a different body of literature - even if that literature 

was not part of setting up the study of the analysis [32, 35]. Such a change in prior 

information happened to me when investigating a case series of autopsies of patients who had 

died of idiopathic pulmonary emboli. The original aim of the study was to determine the 

frequency of factor V Leiden in the DNA of the autopsy material of a series of deceased 

patients. Unexpectedly, when looking at the autopsy summaries, about one third were found 

to be psychiatric patients, and most were apparently medically treated [36]. When turning to 

the literature it was found that in the early days of neuroleptic drug use in German psychiatric 

clinics, there had been multiple reports about an increase in pulmonary emboli following the 

introduction of these drugs – a body of literature that was forgotten [37].  At the time of our 

investigation (around 1997), a new study was published with an unexpected and unexplained 

large relative risk for pulmonary emboli for a new antipsychotic agent [38]. Thus, the finding 

in our case series acquired prior knowledge from the older literature and from the newer 

study. Taken together, this was reasonable evidence and the line of investigation was 

continued by others in existing pharmacoepidemiologic databases [39]. Again, this example 

shows that the unexpected finding led to an idea that enabled the incorporation of existing 

knowledge and thereby gained credibility. 

  

Replication: universal solution for multiplicity and subgroup analysis 

 

Subgroups and multiple analyses are a necessary part of observational research: otherwise, 

one cannot make new discoveries, nor quickly check discoveries by others. Still, many 

interesting ideas will have low priors. The universal solution is replication [40]. Systematic 

reviews and meta-analysis may play a major role in formalising replication. This was already 

advocated for subgroups in randomised trials, which have low priors and are usually 
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presented with severe caution, emphasising the post hoc nature of the finding. The veracity of 

a surprising finding in a post-hoc randomised trial subgroup can be strongly enhanced if 

similar subgroup results are found across similar trials in a meta-analysis [33]. In genome-

wide analyses, which may have the most severe problems of multiplicity, investigators often 

collaborate in consortia, to replicate findings from genetic analyses as a prerequisite for 

publication [41].  

 

In observational research, an original report on a new finding should give a candid account 

about the circumstances in which the finding arose. For example, it may be important that 

readers know what the aim was of the original study, because this tells which variables were 

the original focus, and might therefore have been measured best [42].  If the new finding 

arises from a re-analysis of existing data, the reader might be informed what prespecified 

question led to the re-analysis, even if during that analysis something else was found. The 

authors might indicate what prior evidence existed (even if found after the analysis), and 

reflect self-critically upon the validity and reliability of the measurements that were not the 

primary focus of the data collection. This helps to inform the reader where on the axis of 

multiplicity - the axis of prior belief - the authors have been operating.  

 

For observational research, it is important to realise that the replication that is needed is not a 

“simple replication” of the same type of study to obtain larger numbers. When the validity of 

observational research is doubted, it is usually not in the first place because of fear of chance 

events, but because of potential bias and confounding. Repeating a study in more or less the 

same way as previous studies may replicate the same problems. Therefore, different studies 

are needed with different designs, different methods of data collection, and with different 

analyses, to tackle potential problems of previous studies. This makes systematic reviews of 

observational studies more difficult, and at the same time more interesting: it does not suffice 

to amass research to obtain larger numbers, but it is necessary to reason about the advantages 

and disadvantages of the different studies, and to ponder how one study remedies potential 

weaknesses of the other [43].  

 

What is needed to convince an audience of a new finding, may also depend on the 

“sensitivity” (cultural or other) of the finding: if a new finding challenges established beliefs, 

more and stronger evidence may be needed than if the new finding fits very well with current 

beliefs, which may lead to rapid acceptance. 
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Publication bias: registration for observational research? 

 

When only positive findings come to print, multiplicity of analysis may lead to “publication 

bias”. For randomised trials this has been addressed by mandatory registration which permits 

to track the record of all trials that were started as well as their originally intended endpoints 

and analyses [1]. Could the same work for observational research? The difference becomes 

obvious when thinking about studies whose aims change or when additional analyses are done 

on existing data because of new ideas. It is impossible to register every fleeting thought in the 

head of the person analysing data, in particular when the thought is rejected at the first pass. 

Thus, replication remains the only possibility for observational research.  

 

A different issue would be to register which variables are available in major epidemiologic 

and clinical studies – whether or not the variables (exposures and outcomes) were the primary 

aim of the study – so that others might benefit from that knowledge, to try out a new idea, to 

attempt replications, or to wonder why a particular analysis was never done or never 

published [30]. The “cohort profiles” published by the International Journal of Epidemiology 

come some way in this direction [44].  

 

 

Rethinking the hierarchy of evidence 

 

The ideas about subgroups and prior odds of hypotheses lead to further insight in the 

background for the usual hierarchy of strength of study designs – with the randomised trial on 

top and the case report at a suspect bottom (Box 1). This hierarchy may actually be a 

hierarchy of prior odds. Intuitively, we may feel that randomised trials are the most robust 

type of study because positive findings from such trials stand the test of time better than 

findings from other designs. We think that this is because of their superior design, but perhaps 

they are more robust because they start with higher prior odds. 

 

The importance of the prior odds at which research is started was highlighted in a paper 

describing “Why most research findings are false” [45]. In the calculations in that paper, 

randomised trials start with high prior odds of truth: 50-50 which is an ethical necessity under 

equipoise [27, 28]. In contrast, all observational studies are given much lower prior odds (1:10 



 17

or less, especially the discovery oriented studies). Because most of the literature is 

observational, most priors in the literature will be way below 50-50. In itself that makes it 

more difficult to achieve a more than 50% posterior probability of truth. Also, in the paper, a 

generous dose of potential bias and confounding is added to observational research. In a 

certain sense the reasoning is circular because the combination of low prior odds with bias 

and confounding will always lead to the conclusion that a majority of so-called positive 

research findings are false [46]. However, it does suggest why much research concerning new 

discoveries or new explanations - which will inevitably have low prior odds - will not be 

upheld by future research.  

 

The way in which prior odds might shape our views about the strength of research designs can 

be understood when imagining an upside-down world in which randomised trials would be 

started with the same prior odds of truth as individual SNPs in a genome-wide analysis, say, 1 

in 100,000. Suddenly, randomised trials would look abysmally poor: almost all their positive 

findings would be chance findings, as 1 in 20 would be significant by conventional testing. In 

this upside-down world, almost no positive result of any randomised trial would stand the test 

of time. Imagine further that observational studies would only be started with priors of at least 

50-50. When positive, posterior odds would be of the order of 80-20 or more. Their results 

would stand the test of time, and would have great face credibility. Observational research 

would suddenly look very good. In such a world, we would readily find explanations for this 

difference in credibility: we might feel that the allocation to the groups in randomised trials 

was only a game of chance, while in observational studies much thinking went into defining 

which groups to contrast, and we might feel that this made these studies superior. 

 

The above reasoning should not let us lose sight of the idea that randomisation can indeed 

solve the problem of confounding by indication in circumstances where observational studies 

can not. Still, this particular advantage does not lead to universal superiority for all types of 

research questions in all circumstances. This idea was stated already in 1954 by Jerome 

Cornfield: “There are no such categories as first-class or second-class evidence. There are 

merely associations, whether observational or experimental that, in a given state of 

knowledge, can be accounted for in only one way or in several different ways.” [47]  
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The role of case-control studies 

 

Within the realm of observational research, there exists a near universal idea that prospective 

follow-up studies give stronger evidence than retrospective ones and they in turn stronger than 

case-control studies. A truly prospective follow-up into causes of disease (with new baseline 

data collection and follow-up after a hypothesis is formulated), however, is only started when 

there is strong prior opinion that something important will be found, or when it is deemed 

necessary to convince others.  

 

Sir Richard Doll described how he was invited in 1947 by Sir Austin Bradford Hill for the 

first formal study on smoking and lung cancer in the UK, which was a case control study [48]. 

It was set up and analysed admirably – even with a shrewd method of approximating the 

relative risk without using the odds ratio – as the odds ratio had not yet been invented [49]. 

Later, Austin Bradford Hill proposed a follow-up study in doctors, not to convince himself or 

other researchers in the field, but to convince others – the follow-up study was started with a 

high prior [48] 

 

The case-control study is often the first analytic study after an original idea has been 

formulated. Thereby the case-control study is the universal work-horse of observational 

research, the “default” of many an etiologic researcher [50]. Researchers constantly have 

masses of ideas. Case-control studies are the most expedient form of research in terms of time 

and money. They can be set up as completely new studies or nested in existing follow-up 

data, like in pharmacoepidemiologic databases that link medication use with outcomes. Case-

control studies yield the same rate ratio estimate as a follow-up study if care is taken about the 

choice of the control group [51]. Case-control studies often allow better assessment of 

outcome, as each diseased person can be investigated soon after diagnosis which is often 

impossible in large follow-up studies (where disease outcomes are reported by participants 

and investigators have to rely on diagnoses from other hospitals or from a registry). Case-

control studies also often permit better assessment of exposure, because they allow the 

application of more focused time and money. For recent exposures, e.g. in the months before 

disease develops, they are the only possibility. Thus, case-control studies have at least the 

same, and in some circumstances greater validity than follow-up studies. They often suffice in 
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themselves for many subjects in pathogenesis and aetiology, e.g., for genetics, for outbreak 

investigations, for many environmental and occupational exposures and for studies of adverse 

effects of drugs. The few instances in which they cannot be applied are when some etiologic 

factor changes after disease onset, or when the evolution of some parameter has to be 

followed over time. Despite all their advantages, case-control studies have a bad press. It is 

often believed that they have a greater potential for bias. The basic argument seems to be that 

their findings are too often not replicated [7, 52, 53]. That is inevitable, however, when they 

are the first analytic study of a new idea. 

 

Large vs. small relative risks 

 

Some scientists believe that the results of observational research are only really trustworthy if 

relative risks are large, e.g. larger than 3, and that smaller relative risks should be eyed with 

suspicion. This notion is based on an epochal paper by Cornfield et al. about the 1950s 

smoking and lung cancer controversies [54]. The paper proposed that it is difficult to think of 

potential confounders to explain a 9-fold relative risk of smoking on lung cancer incidence 

because potential confounders should be even more strongly associated with smoking. That 

does not mean that such confounders cannot exist, but that it is difficult to come up with 

likely candidates to explain away such a large relative risk. However, the inverse is not true: it 

is not because a relative risk is small that it is untrustworthy. More candidate confounders can 

be imagined, but that does not mean that the association is in fact confounded. Large relative 

risks may stand by themselves, and may need little additional evidence. Smaller relative risks 

may need more epidemiologic evidence, from repeated studies trying to tackle potential bias 

and confounding. In accepting small relative risks as credible, the idea that the allocation of 

the exposure could not really be confounded, i.e., that the exposure was sufficiently 

haphazard, may also play a role. Small relative risks often need additional evidence from 

other lines of research, e.g., experimental evidence from basic science about mechanisms. 

 

Several recent adverse effects findings that strongly influenced drug prescribing involved 

relative risks that were small, e.g., about Cox-2 inhibitors and myocardial infarction, and the 

difference in thrombosis risk between second and third generation oral contraceptives which 

was upheld by coagulation evidence [5]. Relative risks from SNPs found in genome wide 

analyses are also usually quite small – yet, are held to be credible if replicated, and in 

particular if they point to genes that are likely candidates to have a role in the disease that is 
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studied, which is a “prior” that is established after finding a SNP that stands out statistically 

[41].  

 

In thinking about the role of basic science in supporting epidemiologic findings, it is often 

forgotten that the relation between evidence from basic science and from numerical data 

analysis is a two-way process. Epidemiologic findings can become acceptable because of 

basic science findings that explain mechanisms, but the inverse is also true: a basic science 

finding would have no meaning – i.e., would never be an explanation - if we did not know 

about the numerical human data. For example, findings of in vitro mutagens in tobacco smoke 

can only be interpreted because we know about the association between smoking and lung 

cancer. Otherwise, such a finding would have no interpretation [55].  

 

 

Synthesis: a difference in loss function?  

 

We need both hierarchies, the hierarchy of discovery and explanation as well as that of 

evaluation. Without new discoveries leading to potentially better diagnosis or therapy, what 

would we do randomised trials on? Conversely, how could we know that a discovery is 

useful, if not evaluated? The two hierarchies coexist because they serve different purposes. 

 

Still, there is an almost emotional difference. Many researchers enjoy the game of multiplicity 

of analysis with low priors in observational research. Finding explanations is a puzzle solving 

process that leads to what Leonardo da Vinci is reputed to have called the noblest pleasure: 

“the joy of understanding”. However, the same researchers can become quite upset at any 

shortcut or lapse from protocol in randomised trials, because results of such trials are applied 

to real people and should be true, and not just an interesting idea.  

 

The essential difference between these views may have been well encapsulated in a few lines 

by Michael Ignatieff, the Harvard academic who turned Canadian politician, about the 

difference between academics and politicians: “In academic life, false ideas are merely false 

and useless ones can be fun to play with. In political life, false ideas can ruin the lives of 

millions and useless ones can waste precious resources. An intellectual's responsibility for his 

ideas is to follow their consequences wherever they may lead. A politician's responsibility is 

to master those consequences…" [56].  Ignatieff’s academics correspond to the observational 
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etiologic researchers in the present essay, while his politicians are akin to the researchers that 

populate the world of randomised trials. The latter want to make decisions with a high degree 

of certainty, to avoid harm to people.  

 

There is a difference in “loss function” between these two types of activity. R. A. Fisher once 

explained why significance tests are good for practical decision making – e.g., to decide 

whether to accept or reject a batch of manufactured goods, because a loss function can be 

specified: on the one hand lost time and money in making the goods if they are wrongly 

rejected, on the other hand dissatisfied consumers who turn away if goods are wrongly 

accepted. Science, Fisher suggested, was different because it is impossible to calculate the 

loss function of a wrongly held or wrongly rejected explanation. Thus, significance tests 

would never be useful in science [57]. According to Fisher, the aim of data collection is to 

quantify predictions from explanations; after seeing the data, reasoning about the explanations 

continues. 

 

Paraphrasing these ideas, I propose that the loss function of evaluation research - the 

prototypical randomised trial of drug therapy, concerns real people who are cured or harmed 

by our acceptance or rejection of a particular therapy. Under equipoise, the data from 

randomised trials are the best information that we have. We will accept them, always knowing 

that we can be wrong, but within the limits of “acceptable regret” [58]. Above all, we should 

not tamper with such data: our delight in exploring new ideas should not be allowed to affect 

a future patient’s health. Thus, it is right that randomised trials are only started when the odds 

are favourably large (say, 50-50) and that they are carried out with adequate numbers under 

tight protocols: the results are applied to people, first of all the people in the trial, and later a 

much larger number of similar patients. If we get it wrong, in whatever direction, many 

people may be harmed. 

 

In contrast, the loss function of discovery and explanation cannot be defined equally directly. 

Aetiologic researchers have a duty to play around with low-probability hypotheses, because 

these may lead to new insights. Much good can come from going down the wrong alley and 

detecting why it is wrong, or from playing around with a seemingly useless hypothesis: the 

real breakthrough might come from that experience. What is lost if we go too far in the wrong 

direction is time and money for science. That is again inevitable: science makes progress “in a 

fitful and meandering way” as described by Stephen Jay Gould [59]. His words are an echo of 
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Sir William Osler’s in his Harveian oration on the “Growth of Truth” in 1906: “Truth may 

suffer all the hazards incident to generation and gestation… [and]… all scientific truth is 

conditioned by the state of knowledge at the time of its announcement” [60]. Two scientists, 

working one hundred years apart in totally different fields and totally different circumstances 

give a similar verdict. Nothing much has changed in the way science progresses, presumably 

because scientific progress is an activity of human brains, and our brains haven’t changed that 

much. 

 

The idea that science “meanders” when making progress seems difficult to accept. However, 

the process of sieving out “right” from “wrong”, which many persons believe is a matter of 

having the “right” data, is compounded by the fact to which Osler already alluded: all data 

analyses are interpretations in the light of particular hypotheses and a particular state of 

knowledge. All communication about data, like all data collection, is selective and 

interpretative. This inherent selection and interpretation may lead scientists to stray 

collectively too far in a wrong alley. Again this is inevitable, as data cannot be collected, nor 

analysed or communicated, without interpretation [59, 61, 62].  

 

In the present essay, I have deliberately painted contrasting extremes of evaluation vs. 

discovery and explanation. I have equated the first with randomized trials and the second with 

observational research - as if all observational research was about discoveries and new ideas. 

For my purpose of elucidating how the two forms of medical research are different, and to 

disentangle the several mutual misunderstandings, it was necessary to start with each in its 

extreme form.  Of course, randomised trials can also deal with etiology, as in explanatory 

trials [63].  Observational research can also be evaluative - particularly if it concerns a much 

needed replication - and may then also lead to action. Whenever acting, on the basis of 

whatever type of studies, we should remain aware of potential residual uncertainties. For 

randomized trials as well as for observational research, the threshold for action will therefore 

be different according to importance, cost, and balance of potential benefits and adverse 

effects of the action. 

 

In the end, we will have to live with the fitful and meandering ways of discovery and 

explanation, and at the same time call for as strict an evaluation as possible before we apply 

new insights to people. There is no other way forward.  
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Note added in proof: after acceptance of this essay, I was made aware of a paper about a 

similar theme: how to bridge basic and applied research, and what the role of epidemiology 

would be (Swales J. The troublesome search for evidence: three cultures in need of 

integration. J R Soc Med. 2000 Aug;93(8):402-7) 
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