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Abstract
Evidence suggesting that dietary polyphenols, flavanols, and proanthocyanidins in particular offer significant cardiovascular
health benefits is rapidly increasing. Accordingly, reliable and accurate methods are needed to provide qualitative and
quantitative food composition data necessary for high quality epidemiological and clinical research. Measurements for
flavonoids and proanthocyanidins have employed a range of analytical techniques, with various colorimetric assays still being
popular for estimating total polyphenolic content in foods and other biological samples despite advances made with more
sophisticated analyses. More crudely, estimations of polyphenol content as well as antioxidant activity are also reported with
values relating to radical scavenging activity. High-performance liquid chromatography (HPLC) is the method of choice for
quantitative analysis of individual polyphenols such as flavanols and proanthocyanidins. Qualitative information regarding
proanthocyanidin structure has been determined by chemical methods such as thiolysis and by HPLC–mass spectrometry
(MS) techniques at present. The lack of appropriate standards is the single most important factor that limits the
aforementioned analyses. However, with ever expanding research in the arena of flavanols, proanthocyanidins, and health and
the importance of their future inclusion in food composition databases, the need for standards becomes more critical.
At present, sufficiently well-characterized standard material is available for selective flavanols and proanthocyanidins, and
construction of at least a limited food composition database is feasible.
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Introduction

Numerous studies have linked the consumption of

plant foods with improved health status and reduced

risk of chronic disease (Hertog et al. 1995, Santo-

Buelga and Scalbert 2001, Rice-Evans et al. 2001,

Knekt et al. 2002). Concurrently, advances in

separation science, biology, and chemistry have

catapulted the inter-disciplinary fields of pharmaco-

gnosy and natural products chemistry research to yield

a wealth of information about many classes of naturally

occurring dietary phytochemicals (Dawson 2000,

Drewnowski and Gomez-Carneros 2000, Bramley,

2002). This improved understanding of food compo-

sition has provided the opportunity to better under-

stand why some plant foods may offer important health

benefits beyond those commonly associated with

essential nutrients. Among the most commonly studied

plant derived compounds have been the polyphenols,

which in part, is due to their ubiquity throughout the

plant kingdom. More recently, the potential to prevent

the onset of disease (i.e. cancer, cardiovascular) by

consuming foods rich in polyphenols has done much to

encourage research endeavors in flavonoids and related

compounds. A brief overview and critique of current

methods of analysis for biologically relevant flavonoids;

C6–C3–C6 (Figure 1) and to a greater extent,

proanthocyanidins; ðC6 –C3 –C6Þn (Figure 2) will be

the focus of this manuscript. Specifically, methods of

quantification, structural characterization and anti-

oxidant activity assessment will be addressed. In

addition, the importance of analytical methodologies
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for food and nutritional composition data, and

epidemiological research will be discussed as well as

improvement of future analytical data.

Chemical methods of analysis

Colorimetric methods

Colorimetric assays utilize reagents that react with

phenolics to form colored products that are readily

quantifiable by absorption measurements. These

methods are of great utility for screening of plant

materials for phenolics and as a way to measure gross

phenolic content. Additionally, qualitative information

regarding nature of phenolic structure is obtainable by

methods described below. A very thorough description

and application of the various colorimetric methods are

available online (Hagerman 2002).

Figure 1. Major flavonoid subclasses found in foods.

Figure 2. Examples of common proanthocyanidins found in foods. Note linkage differences of B- and A-type dimers.

M. A. Kelm et al.36



Prussian-blue and Folin methods (Price and Butler

1977, Swain and Hillis 1959, Graham 1992) and

variations thereof are widely used methods to

screen plant material for phenolics. These methods

are based on redox chemistry and in the case of

Prussian-blue, involve treatment with ferric chloride

(FeCl3). Subsequent oxidation of phenolic com-

pounds, formation of Prussian-blue, and absorbance

measurements (700 nm) is used for quantification.

These assays are standardized typically with simple

phenolics such as gallic acid. However, in the case of

oligomeric proanthocyanidins, a different response

typically occurs. Therefore, data obtained cannot

be expressed on a mass basis rather in terms of

“gallic acid equivalents”. Furthermore, it should be

emphasized that these methods are non-specific in that

they measure total phenolic content (i.e. phenolic

acids, flavonoids, proanthocyanidins, etc.).

Other methods for detection of proanthocyanidins

(condensed tannins) include; vanillin, p-dimethyl-

aminocinnamaldehyde (DMACA), and acid–buta-

nol. The variations of these methods have been used

to provide qualitative (i.e. estimation of molecular

weights) and quantitative data (Hagerman 2002).

The vanillin assay or reaction has been used

extensively to quantify proanthocyanidin content of

various plant materials, whereby vanillin adducts is

measured at 500 nm. Chemically similar to the vanillin

assay, a high-performance liquid chromatography

(HPLC) colorimetric post-column derivatization by

DMACA procedure has been applied to catechin

(Treutter 1990). DMACA derivatization has also been

applied to proanthocyanidins (de Pascual-Teresa et al.

1998). DMACA condensates are detected at 640 nm

thus offering greater selectivity over conventional UV

detector settings. Problems associated with vanillin

and DMACA assays are due to the fact that both

measure flavonols, dihydrochalcones and proantho-

cyanidins. Other problems with the assay lie with the

use of catechin as a standard. Differences in color

formation between catechin standards and polymers

are due to differences in reaction rates. 5-deoxy

proanthocyanidins are under represented because

vanillin reacts more so with meta-substituted

flavonoids.

Proanthocyanidin estimates are determined by

acid–butanol method (a.k.a. Bates-Smith and Porter

methods) which oxidatively cleaves interflavanoid

bonds to yield anthocyanidins, which are subsequently

quantitated at 550 nm. Proanthocyanidin oligomeric

degrees of polymerization are determined by addition

of phloroglucinol following cleavage by acid–butanol,

thereby yielding adducts and terminal units which are

then analyzed by HPLC. Removal of chlorophyll or

other pigments are often necessary to minimize

interference. Reaction of acid–butanol with 5-deoxy

proanthocyanidins is similar to vanillin assay. How-

ever, the acid–butanol method tends to be quite

reliable and less problematic than vanillin based

methods.

Thiolysis

Degrees of polymerization and nature of flavan-3-ol

units of proanthocyanidins is achievable by thiolysis.

Thiolysis involves treatment of the proanthocyanidin

with benzyl mercaptan or toluene a-thiol in acidic

medium to yield corresponding benzyl-or tolyl

thioethers, respectively, whereas terminal units are

released as free flavon-3-ols. Thiolysis products are

distinguished by reverse phase (RP) chromatography

by UV detection at 280 nm. The average degrees of

polymerization are determined by calculating the ratio

between total units (terminal units plus thioethers)

and terminal units. Sodium cyanoborohydride has

been used to reductively cleave a type of proantho-

cyanidins (Lou et al. 1999). Thiolysis of polymeric

procyanidins ðDP . 10Þ by Gu et al. (2002) indicated

presence of both epicatechin and catechin as terminal

units and epicatechin extension units in cocoa,

sorghum bran, blueberry, and cranberry. Cranberry

also contained A-types in roughly half of its terminal

units. A-type proanthocyanidins (doubly linked, see

Figure 2) are resistant to degradation by thiolysis

(Kerchesy and Hemingway 1986, Hagerman 2002).

Usefulness of thiolytic methods are limited by

epimerization of flavan-3-ol units (Porter 1994,

Matthews et al. 1997) thus making it difficult to

estimate the composition of terminal units. Poor yields

due to reaction product instability, reactions with non-

proanthocyanidin compounds, and side reactions also

contribute negatively to the utility of thiolytic methods

(Matthews et al. 1997).

Instrumental methods of analysis

HPLC and HPLC–MS—flavonoids

Merken and Beecher (2000) have produced a

comprehensive review on the HPLC of food flavo-

noids. HPLC methods for anthocyanidins, flavones,

flavanones, flavonols, and flavonol glycosides are

tabulated. Typically, flavonoids are subjected to RP

chromatography and are detected between 245 and

350 nm. Generally the HPLC analysis of glycosylated

flavonoids is quite difficult due to co-elution and poor

resolution; however, Merken et al. (2001) reports a

simplified HPLC analysis of flavonoids by subjecting

food samples to acid hydrolysis. Acidic hydrolysis

converts flavonoid glycosides into their corresponding

aglycones, which were then subjected to HPLC

analysis and quantification. However, Merken

observed destruction of flavanols and flavanones

during acid hydrolysis. A better non-destructive

approach to the analysis of glycosylated flavonoids

would be to use HPLC/MS. Co-elution is less of
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an issue when one can differentiate between masses.

Grayer et al. (2000) demonstrated the utility of APCI

LC–MS in the characterization of flavonoid glyco-

sides from Ocimum gratissium. Tea catechins were

analyzed using the same technique (Zeeb et al. 2000).

In both papers, fingerprints composed of molecular

ions and diagnostic fragments (i.e. retro Diels-Alder)

for individual compounds aided in their unambiguous

identification. Anthocyanins (anthocyanidin glyco-

sides) were identified and quantified by LC/ES–MS

and HPLC, respectively, in a variety dried berry

powders (Chandra et al. 2001). Quantification of

individual anthocyanins was determined from external

standard (cyanidin-3-glycoside chloride) curves and

molecular weight correction factors. Estimated

measurements for total anthocyanidins are measured

at 520 nm using average extinction coefficients

(Shahidi and Naczk 1995). The analysis of intact

molecules would be more biologically relevant

especially when tabulating flavonoid values for foods

in nutrient databases.

HPLC and HPLC–MS—proanthocyanidins

For proanthocyanidins in foods, analysis by RP

chromatography often has been the primary method of

choice. HPLC–UV quantitative analysis of proantho-

cyanidins in foods is typically carried out at 280 nm.

However, UV detection is not specific for proantho-

cyanidins relative to other polyphenolic compounds.

Fluorescence detection (excitation 276 and emission

316 nm) offers increased sensitivity and selectivity to

procyanidins (Lazarus et al. 1999) but not for

prodelphinidins and gallic acid esters. RP C18 columns

have been used to fractionate monomers to trimers in

the Spanish diet (de Pascual-Teresa et al. 2000) to

trimers in apple (Yanagida et al. 2000), to tetramers in

wine (Carando et al. 1999) and grape seed (Fuleki 1997,

Peng et al. 2001). Proanthocyanidin oligomers do

separate based on their degree of polymerization

(monomers through tetramers) and as individual

compounds however, order of elution is not in

accordance with molecular size. Furthermore, analysis

beyond tetramers has not been achievable with RP

chromatography because of retention time overlap and

co-elution of higher oligomeric isomers (Guyot et al.

1997). These problems are largely overcome by

RP–HPLC–MS experiments where mass differen-

tiation of cocoa procyanidin monomers through

hexamers was demonstrated (Wollgast et al. 2001).

Early separations of proanthocyanidins by normal

phase chromatography were met with limited success

but over time more understanding came about for

example, increases in retention times were found to

correspond with increasing degrees of polymerization

(Wilson 1979). In the case of procyanidins, normal

phase HPLC separation is based on hydrogen bonding

interactions between silica hydroxyls with the larger

oligomers having more extensive interactions and thus

longer retention times (Waterhouse et al. 2000).

Rigaud et al. (1993) achieved the first successful

separation of cocao bean procyanidins on a silica

column by elution of dichloromethane–methanol–

formic acid. Preparative and analytical separation of

apple procyanidin oligomers (monomer through pen-

tamer) was achieved by isocratic elution of hexane–

methanol–ethyl acetate over a silica based columns

(Yanagida et al. 2000). Modifications of Rigaud’s

method (Rigaud et al. 1993) by Hammerstone et al.

(1999) resulted in improved separation of cocao

procyanidin oligomers up to decamer. In another

study, Adamson et al. (1999) purified cocoa procya-

nidin oligomers for quantification of procyanidins in

various chocolate and chocolate liquors. Alternatively,

Waterhouse et al. (2000) used a formula based on

cocoa procyanidin monomer, oligomers and polymer

retention times and number of subunits to describe

amounts of monomer, oligomers and polymer in the

more complicated grape seed extract. More recently,

procyanidin monomer through decamer and polymer

were quantified in cocoa, brown sorghum bran,

cranberry, and blueberry using purified cocoa oligo-

mers and polymers (Gu et al. 2002). Hammerstone

et al. (1999) coupled his HPLC method with API–MS

to provide additional qualitative information regarding

molecular characteristics of higher oligomeric procya-

nidins (Hammerstone et al. 1999). The HPLC–API–

MS method has been applied qualitatively to a variety

of other foods and beverages including peanut, tea,

almonds, wine, grape juice, apple, cinnamon (Lazarus

et al. 1999), blueberry and cranberry (Prior et al.

2001). Matrix assisted laser desorption ionization–

time of flight–mass spectrometry (MALDI–TOF–

MS) has been used in the identification of catechin

oligomers up to pentadecamer in apple (Guyot et al.

1997) and up to nonamer in grape seeds (Yang and

Chien 2000) however, these methods were not

quantitative.

Utilization of mass spectrometers for the unequi-

vocal quantification of higher oligomers necessitates

the use of pure standards. Unfortunately, oligomers

beyond trimer are commercially unavailable. Isolation

or synthesis of standards are options however with the

exception of some laboratories, are not feasible due to

lack of time and expertise. Typically, the researcher

would have to make the assumptions that molar

ionization efficiencies for all oligomers are identical.

Quantification would then be based on catechin

equivalent units much in the same way colorimetric or

antioxidant assays base their results.

Electrochemical detection methods

HPLC–electrochemical detection (ED) of proantho-

cyanidins (Chiavari et al. 1987, McMurrough and

Madigan 1996; Whittle et al. 1999) and flavonoids
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(Jungbluth and Ternes 2000) has become more

prevalent since these compounds are quite electroactive

thus offering a degree of selectivity and sensitivity not

obtainable with UV or FLD. Coulometric electro-

chemical detectors, composed of a series of electrodes

set at different potentials can provide additional

qualitative information with regards to different

hydroxyl substitution patterns on proanthocyanidins

(ESA—Detection of Free Proanthocyanidins).

Antioxidant methods of analysis

Antioxidant activity

Proanthocyanidins, as well as other phenolics are potent

biological antioxidants because of their favorable redox-

potentials, free radical scavenging activity and thus their

ability to form less reactive phenoxyl radicals. Numer-

ous assays exist for the measurement of antioxidant

activity in plasma and in various foods and beverages.

Several assays routinely conducted include; oxygen

radical absorbant capacity (ORAC), trolox equivalent

antioxidant capacity (TEAC), ferric reducing/anti-

oxidant power (FRAP), and total radical-trapping

antioxidant parameter (TRAP) assays. Discussions

regarding assays with biological endpoints such as

oxidative DNA damage, LDL damage, and reactive

nitrogen species is presented elsewhere (Shi et al. 2001).

Of these assays, the ORAC assay tends to be the

preferred method to determine antioxidant capacity in

foods and as an indicator for potential biological activity.

The ORAC assay has been widely applied to

measure in vitro and in vivo antioxidant activity. The

ORAC assay provides a means to measure antioxidant

activity of various plant extracts, pure compounds and

plasma. Complete antioxidant protection level in

plasma and potential risk of developing age related

degenerative diseases have been determined by

ORAC. Unlike, TEAC, FRAP and TRAP assays,

ORAC uniquely measures both inhibition time and

inhibition degree—which better represents overall

antioxidant activity since reaction is driven to

completion. With ORAC, 2, 20-azobis(2- amidino-

propane) (AAPA) is used to generate free radicals,

then free radical damage is assessed with a fluorescent

probe (i.e. b-phycoerythrin) and represented by a

decrease in fluorescence intensity. When a phenolic

antioxidant is present, the fluorescent probe is

preserved and this is indicative of the phenolic

antioxidant capacity or ability to protect the probe

from free radical damage. Ou et al. (2001, 2002)

reported an improved ORAC assay that replaces

b-phycoerythrin with fluorescein as a new fluorescent

probe. Problems with original method (Cao et al.

1993) included photo bleaching of b-phycoerythrin

and complexation between b-phycoerythrin and

proanthocyanidins were overcome with this advance-

ment. Authors of the improved method also provide

detail on merits of this assay over other commonly

used assays (TEAC, FRAP, and TRAP). More

recently, a high throughput fully automated ORAC

assay was developed that utilizes 96-well microplates

(Huang et al. 2002). Prior to this development, the

ORAC assay was limited to laboratories possessing the

discontinued COBAS FAR II instrument.

The ORAC assay described above is useful in

determination of antioxidant activity for many tested

compounds. However, is this data biologically

relevant? Biological relevance of in vitro data comes

into question since only intact compounds have been

studied. The metabolic fate of many flavonoids can

involve deglycosylation, methylation, sulphation,

glucuronidation, and degradation into simpler phe-

nolics (Rice-Evans et al. 2001). These modifications

in structure will dictate absorbtion and where they

function in vivo. The lack of analyses of modified

flavonoids is in part due to an incomplete under-

standing of the metabolic fate for a given compound.

However, for the known flavonoid metabolites, it is a

lack of commercial standards that impedes research in

this area. Consequently, some laboratories have

synthesized the 30 and 40 methyl ethers of (þ) catechin

and (2) epicatechin for use in HPLC method

development (Donovan et al. 1999).

Ascorbate and vitamin E (typically, TROLOX a

water-soluble form of Vitamin E) are often selected

because they are considered the gold standard for

antioxidant assays to which other compounds are

compared. Speculation based on in vitro data where

TROLOX is a standard for in vivo importance of a given

flavonoid is problematic due to the fact that vitamin E is

lipophilic whereas flavonoids are not—the in vivo sites of

possible function would be different.

Analytical standards

Availability of more standards to analytical chemists

would lead to better analytical methods critical to

scientists from a wide variety of disciplines. Preparation

of analytical standards is expensive and laborious. The

most common method of standard preparation involves

isolation from crude plant extracts. Most commercially

available standards are obtained in just such a manner.

Standards could be prepared via alternative methods

such as plant tissue culture or biotransformation.

However, these methods are limited in their application.

Complete organic synthesis is another possibility,

however synthesis can be quite challenging especially

in the synthesis of flavonoids and proanthocyanidins

oligomers. The production of 2H- and 13C-labeled

phenolics would provide the analytical chemist with

ideal standards that would behave nearly identical

to natural forms in terms of MS ionization

efficiencies. Despite synthetic challenges, several groups

(Arnaudinaud et al. 1998, Caldwell et al. 2000,

Kozikowski et al. 2000) have demonstrated the
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successful synthesis of flavonoids and procyanidins.

Kozikowski et al. (2000) described the synthesis of

procyanidin B2 dimer, however rather low yields were

obtained. The synthesis of 13C-labeled quercetin 40-O-

b-D-glucoside was accomplished for future studies

examining the biological fate of this flavonol in rats

(Caldwell et al. 2000). The synthesis of a 13C-labeled

chalcone, a key intermediate in the synthesis of

procyanidins has been demonstrated (Arnaudinaud

et al. 1998). Research previously conducted using

several analytical methods was used to study the

metabolism of 2H- and 13C-labeled carotenoids

(Pawlosky et al. 2000, Wang et al. 2000, Yao et al.

2000). Analogous projects with isotopically labeled

flavonoids and proanthocyandins would be of great

value to human nutrition investigations and results from

such research would provide better insight on the

absorption, bioavailability, and metabolism of

flavonoids.

Conclusions

Flavanols and proanthocyanidins are attracting tre-

mendous interest in field of health and nutrition,

especially with regard to their potential cardiovascular

health benefits. Given their ubiquitous occurrence in

plant-based foods, it is critical that appropriate

analytical methodologies be developed and used to

characterize and quantify at least the major flavanols

and proanthocyanidins present in commonly con-

sumed foods and beverages.

At present, a variety of analytical assays and methods

are used to assess the levels of flavanols and

proanthocyanidins in foods and beverages, with many

of these being wholly inadequate. In particular, non-

specific assays can completely misrepresent the true

flavanol and proanthocyanidin content of many foods

and beverages, and therefore results from studies

utilizing these assays should be interpreted with great

caution. The development of increasingly robust and

sensitive HPLC methodologies has made possible the

construction of useful databases for many classes of

phytochemicals, and just such a database is under

development at present. However, the most significant

limitation to constructing more comprehensive phyto-

chemical food and beverage composition databases is

the general lack of appropriate standards. Indeed, the

lack of all but a limited number of flavanol and

proanthocyanidin standards will limit the number of

compounds that can be reliably included in this initial

database. Nevertheless, it is possible to generate reliable

food and beverage composition data for a limited

number of individual flavanols and proanthocyanidins,

including many of those specifically associated with

potential cardiovascular health benefits. Going forward,

it will be essential for investigators to use appropriate

analytical methodologies to properly characterize the

contribution of dietary flavanols and proanthocyanidins

to human health. In addition, it will be important for the

analytical and nutrition research communities to

collaborate in a multi-disciplinary manner to facilitate

the development of increasing number of reliable

analytical standards so that the full extent of the health

effects of these fascinating phytochemicals can be fully

understood.
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