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SUMMARY

A mathematical model was used to estimate malaria transmission rates based
on serological data. The model is minimally stochastic and assumes an age-
dependent force of infection for malaria. The transmission rates estimated were
applied to a simple compartmental model in order to mimic the malaria
transmission.
The model has shown a good retrieving capacity for serological and parasite

prevalence data.

Section 1. Introduction
The historical tradition of modelling malarial transmission based on ento-

mological data has made such an approach a paradigm. Since the seminal work of
Ross [1-4], through the developments of Macdonald [5-7] and until the celebrated
Dietz-Molineaux-Thomas model [8], entomological parameters have been the
centre of the majority of models dealing with the transmission dynamics of
malaria. Indeed the two most important transmission concepts, namely
Macdonald's 'Basic Reproductive Rate' [6] and Garret-Jones' 'Vectorial
Capacity' [9] depend heavily on entomological data. To obtain the necessary data
for their estimations, however, requires a huge amount of field work, making such
an approach of poor practical feasibility. Counting mosquitoes, examining their
stomachs for human blood and dissecting their salivary glands in the search for
sporozoites are difficult and expensive procedures [1O, 11]. A recent review on the
entomological data required to estimate transmission, as well as the difficulties
related to their estimation can be found in Dye [12].
Due to the difficulties related to entomological procedures, parasitological data

have been chosen as a 'gold standard' to assess malarial transmission. However,
such an approach has also limitations, such as the influence of the widespread
usage of antimalarial drugs, the effect of concomitant immunity on parasitic
levels, and the high seasonal variation of the vector population [11].

In fact, the so-called parasite rate, that is, the proportion of individuals with
circulating parasites, which has been used as a gold standard in the measurement
of malaria transmission, has poor sensitivity due to the great variation over time
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in the parasite level. This variation reflects the relatively short period of
parasitaemia. In addition, the indiscriminate use of antimalarial drugs, which
decreases the quantity of circulating parasites, the seasonal variation in the
population of the vector, and the immunity level of the affected individuals are
additional causes of errors in the estimation of the actual parasite rate. In order
to circumvent these limitations, the World Health Organization recommends the
use of an averaged value taken repeatedly as many times as possible over the
whole year [11]. To keep trained personnel for a whole year under field conditions,
however, makes this kind of approach extremely expensive. Therefore a more
practical way to estimate malarial transmission is still required [11].
With the development of reliable serological techniques the use of antibody

prevalence data became an interesting candidate as an indicator of malarial
transmission levels. In fact, it is possible to estimate the effective inoculation rate
from serological data [13-15]. This parameter is usually defined as the number of
infective bites which results in parasitaemia in a non-immune individual, per unit
of time. Draper, Voller and Carpenter [13], probably the first investigators to
apply serological data to a mathematical model in order to estimate the infection
rate, pointed out that in serological surveys one is collecting period prevalence
data, the total experience of malaria in a community, which is in contrast to the
point prevalence derived from parasite data.

Draper and colleagues [13] developed a rough first model in which the
serological data were plotted against age in an inverse logarithmic scale. From this
relation they extracted the so-called R parameter, the probability of being
infected each year. Van Druten's analysis [15] is further refined by applying a
catalytic model to cross-sectional serological data. Both authors interpret this age
variation in the effective inoculation rate as being solely due to changes of malaria
transmission in time, reflecting a past situation.

In this paper we propose a model to assess the effective inoculation rate, h, from
cross-sectional serological data. The model considers an age-dependent inoculation
rate, the 'boosting effect' and the fading of antibodies in the absence of further
exposure to plasmodia. We also propose a simple compartmental structure in
order to provide a tool by which we can test the inoculation rate deduced as
applied to real epidemiological data. This compartmental structure could also be
used to predict in a simple, although still accurately enough way the age-related
profile of the parasite and serological prevalence data.

This paper is organized as follows: In section 2 we present a method to estimate
the inoculation rate from cross-sectional serological data, and also the rate of
immunity loss, y. Although the inoculation rate is generally age and time
dependent, in this paper we consider estimations in which either one or the other
of these dependencies can be neglected.

In section 2 we also present a four-compartment deterministic model designed
to serve as a tool to check the accuracy of the estimates and to describe in a simple,
though still accurately enough way, the malarial dynamics.

In section 3 we estimate the inoculation rate, h, and the rate of loss of antibodies
in the absence of further inoculations, y, from particular areas with distinct
patterns of endemicity. These estimates are intended to exemplify the theory
developed in section 2. Next we apply these estimates to the compartmental
model in an attempt to retrieve field data from real areas.
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In the appendices we elaborate the mathematical arguments involved in the

estimation of the inoculation rate.
The results presented in this paper are encouraging in providing an alternative,

feasible and sufficiently accurate way to quantify malarial transmission.

Section 2. The model
The basic aim of this paper is to estimate the effective inoculation rate (also

called dependent happening [1-4]), h(t, a) from serological data. Basically h(t, a) da
means the probability, at time t, that an individual may receive an inoculation
while his age is between a and (a+da). The inoculation is here defined as 'the
infective bite which results in parasitaemia in a nonimmume individual'. We
therefore, as in some previous works [8, 13, 15], do not take into account the cycle
of transmission in the vector population.
We begin by considering the population divided into two states: (1) individuals

who are negative to the serological test, i.e. those who have never had an
inoculation and those who having had a previous inoculation have already lost
their specific antibodies, and (2) individuals who are positive to the serological
test, i.e. those with at least one previous inoculation and who have not yet lost
their antibodies.
Our basic input is P+(t, a), the proportion of individuals with circulating

antibodies to malaria parasites, detected in an age-related cross-sectional survey.
We propose to estimate the classical 'happening' factor h(t, a) [1-4], from P+(t, a).

Actually, malarial transmission is both time and age-dependent. However, in
some endemic areas, either one of these dependencies may be neglected. When
transmission has not changed dramatically over the period of time corresponding
to the age of the eldest individual in the surveyed population, we have an
equilibrium transmission situation and the time dependence can be neglected; on
the other hand, there are areas in which the temporal variation has been so intense
that age-dependence is negligible. For the purpose of this section we will consider
a steady state situation and hence drop out the time dependence.
We assume that inoculations occur in a non-uniform Poisson fashion [16]. This

implies a non-constant inoculation rate. Individuals are assumed to reach a
variable immunity level after receiving an inoculation, which is sufficient to result
in a positive response to the serological test. In addition, we are considering the
possibility of a 'boosting effect', that is the sudden increase in antibodies levels in
previously exposed individuals, and individual variation in the immune response.
We are neglecting the effects of the sensitivity and the specificity of the serological
test in the analysis.

In the Appendix I we show that the relationship between P+(a) and h(a) is given
by:

P+(a) = h(a') da'er-v(a)+v(a )] f(a -a') (1)

where a
er-v(a)+v(a )] = e-Ja h(s)ds (2)

and f(a-a') describes the population process of losing antibodies. Equation (2)
gives the probability of not receiving any inoculation between ages a' and a.

Equation (1) means that the probability of being seropositive at age a is a
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product of the probabilities of having received the last inoculation at age a' and
of not have had sufficient time for antibodies to decay, integrated for all ages.

Given P+(a) from the cross-sectional serological data, h(a) can be determined from
equation (1) once f(a -a') is known.
We have assumedf(a-a') as a function ofthe interval between the last inoculation

and the instant of time of the serological survey. A simple form for f(a -a') is:
f(a- a') = e[-l/T(a-a')], (3)

where Tis a constant. Hence in the absence of any new inoculation, antibodies fade
away and the proportion of positive people decay in an exponential fashion with
the increasing interval between the last bite and the survey time.
Assuming (3) and solving (1) for h(a) gives:

h(a) = [(P+(a)/T) + (dP+(a)/da)] (4)

In order to provide a tool by which we could test h(a) as applied to real
epidemiological data we designed a compartmental model. This model is also
intended to describe in a simple, although sufficiently accurate way, the dynamics
of malaria. As we will see the model provides estimates of the parasite and
serological prevalences, which reproduce field data.

In our model the total population is divided into four compartments, namely,
'susceptibles', 'infected but yet seronegatives', 'infected seropositives', and
'immunes ', represented by X(t, a), Y(t, a), Y'(t, a) and Z(t, a), respectively, where a
stands for age and t for time, both in years. The compartments Y(t, a) and Y'(t, a)
represent the 'parasite positive' fractions of the population ('prevalence'), and
Y'(t, a) and Z(t, a) represent the fraction of the population with 'malaria anti-
bodies' detectable in a serological test ('seroprevalence'). Hence people in Y'(t, a)
are both 'parasite ' and 'seropositive'. Figure 1 shows the block diagram
representing the compartmental structure of the model.
The four compartments described in Fig. 1 can be identified under field

conditions. However, their magnitudes are subject to errors, particularly in the
determination of the parasite rate, i.e. the proportion of individuals positive to
parasitological tests, as discussed above.
The model has a dynamic form described by the following set of partial

differential equations:

_ + aX = -h(t, a)X (t, a) + rY(t, a) + yZ(t, a), (5)

ay+ a = h(t, a)X (t, a)-(r+ 8) Y(t, a), (6)at aa
air' air'

t + aa = Y(t,a)-qSY'(t, a), (7)

azaz
aZ+8a= q Y'(t, a)-yZ(t, a), (8)at aa

where h(t, a), r, 8, 0 and y are the transition rates between the compartments
described above.
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h (t, a)

Fig. 1. Block diagram representing the compartmental structure of the model. X
represents the susceptible fraction of the population; Y, the parasite positive but yet
seronegative fraction; Y', the parasite positive already showing circulating antibodies;
and Z, the seropositives recovered from parasitaemia. The rates h(t, a), r, 8, 0 and
y(t, a) represent the transitions rates of the model as discussed in the text.

In the Appendix I we show how y, the rate at which people leave the
seropositive status, is derived. For the simple form chosen forf(a-a'), given by
equation (3) we get:

1 (9)

This result follows from the simplicity of the assumption relating the way
individuals lose antibodies in the absence of further inoculation. However,
equation (9) can be solved for other forms off(a-a'). Equations (4) and (9) will
be applied to real epidemiological data.

In section 3 we solve numerically the above system of equations. For this we use
h(a) deduced from (4) and y from (9), which of course are only approximations
since they are deduced from a two compartment structure. However, by setting
the spontaneous recovery rate, r, equal to zero we will see that our estimates are
almost exact. In fact, though the spontaneous recovery rate is a biological
possibility, its value is negligible for most endemic areas. We believe, and the
results will show it to be correct, that this is a good approximation. Furthermore,
the period of time an individual takes to acquire circulating parasites and
thereafter become seropositive is very short (days) as compared to the time
antibodies take to decay (years).
The transitions rates 8 and 0 are arbitrarily set constants and chosen in order

to best fit the data. The limitations of this assumption will be discussed later.

Section 3. Testing the model
In order to check the retrieving capacity and reliability of the model, we fitted

the data from areas of distinct levels of endemicity.
The first set of data is derived from the Bioco Island (Equatorial Guinea)

survey, described by Merlin and colleagues [17]. This area was chosen as a typical
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Fig. 2. Result of the fitting procedures for the serological data from the Bioco area.
Squares represent the actual values whereas the continuous line represents the
function fitted to data [equation (17)]. The fitting parameters are bo= 0305; b=
0 190; b2 = 0125; and b3 = -0-0438.

situation in which to apply this analysis. It is characterized by a steady-state
situation in malaria transmission with practically no control measures. Even the
self medication index is reported as nil for this area.
The first step of the procedure is to fit the serological data to a continuous

function.
For this particular area the fitting equation has the form:

P+(a) = bo + b1 ln(a) + b2[1n(a)]2 + b3[1n(a)]3, (10)

where bi are the fitting parameter.
Equation (10) is a form of the well known logistic function, widely used in

biology and acknowledged as the best shape for an age-structured serological
profile [18]. We are well aware of the singularity in equation (10) at time zero. On
the other hand, for the kind of analysis proposed it is meaningless to consider the
period below 6 months of age due to the presence of maternally derived antibodies.
Figure 2 shows the fitting accuracy of the above equation.

It should be noted that equation (10) fits the raw data with a high degree of
accuracy.

Secondly we estimated h(a) as in equation (4) for P+(a) as in equation (10), with
r set as equal to 10 years. This value of T is reasonable when compared with data
found in the literature [19-21]. Figure 3 shows the curve of h(a).
The results obtained for the estimation of h(a), shown in Figure 3, corresponds

in its magnitude to a meso-to hyperendemic pattern of transmission, which is
indeed the case for this area. It is also highly significant that the h(a) profile found
is in accord with the age-dependent entomological observations for A. gambiae, the
main vector involved in malaria transmission for that area [22-24].
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Fig. 3. Estimate of the age-dependent 'happening factor', h(a), for the Bioco area.
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Fig. 4. Results of the numerical simulation of the model for the Bioco area, showing
the proportion of individual in each compartment and the serological and
parasitological levels. Squares represent the proportion of 'susceptibles', crosses the
'infected but yet seronegatives', diamonds the 'infected seropositives', triangles the
'seropositives recovered from parasitaemia', x 's the 'seroprevalence', and inverted
triangles the 'parasite prevalence'.

We then applied h(a), and y as estimated from equation (9), to the
compartmental model given by equations (5-8). The two other rates, namely a and
0q, were set as constants equal to 40 and 0-15, respectively. The results of the
integration of equations (5-8) can be seen in Figure 4, which shows all the
compartments simultaneously, in order to illustrate the model outcomes.
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Fig. 5. Retrieved seroprevalence levels for the Bioco area. Crosses represent the actual
values and continuous line the result of the numerical simulation of the model.

Figure 4 shows some interesting features whose interpretation could be applied
in planning control strategies. The age variation in the proportion of susceptibles
can be applied for designing mass chemoprophylaxis programmes. Since the
susceptibles curve decreases up to the age of 8 years and remains stable at low
levels for the older age groups, only those younger than that should be the target
fraction of the population eligible for such a programme.

In addition, it can also be noted that the model provides estimates of the
fraction of the population with parasitaemia and without a detectable immune
response. If we assume that these individuals are those at major risk for
developing severe illness, with higher mortality rates, then this will assist in the
planning of the allocation of resources in the malaria control programmes.
Of course these comments should be interpreted with caution and are intended

only to exemplify possible uses of the model. However, it should be stressed that
the age profile and magnitudes of such estimates are in agreement with the
morbidity and mortality rates due to malaria in areas with that endemic pattern.

Figures 5 and 6 show the retrieving of serological and parasite curves,
respectively. It should be noted that the retrieved serological and parasitological
curves are in good agreement with the epidemiological observations for the area.

Other examples of the retrieving capacity of the model are presented in the
following analysis.
We fitted the data from the 1972 immunofluorescence antibody (IFA) survey to

P. falciparum from the baseline period of the Garki Project [25], with equation
(10). The transmission of malaria can be considered as in a steady-state, with
virtually no variation in the period of time corresponding to the age of the eldest
component of the studied community [25].

This is a particularly challenging area for sero-epidemiological analysis, due to
the extremely high levels of endemicity. It was chosen in order to illustrate the
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Fig. 6. Retrieved parasite prevalence levels for the Bioco area. Crosses represent the
actual values and continuous line the result of the numerical simulation of the model.

difficulties of the method described in this paper when applied to areas with such
levels of endemicity. Usually, when faced with 100% of seropositivity (which is
indeed the case for this area), authors either dispose the point of [13] or declare
arbitrarily one individual of the sample as negative [15]. We chose as another
approximation to consider 99% of positives for those points. Any of the above
treatments, however disputable, are epidemiologically justifiable depending on
the area. In addition, for the Garki 1972 IFA survey there may be an
overestimation of seropositivity due to the low threshold positive titre chosen, 20,
which should be compared with the one used in the Bioco area, 100.
The age-dependent force of infection, h(a), and the rate of immunity loss, y,

were estimated with equations (4) and (9) and were applied to the compartmental
model given by equations (5-8). The transition rates a and 0 were assumed to be
equal to 6-00 and 0-25, respectively. Figure 7 shows the curve of h(a). The result
of the estimations for h(a) for this area is also in good agreement with the
entomological results. For instance, our average h is 10-8 years-', which should be
compared with the averaged entomological result for the effective inoculation
rate, 8-3 years-l, calculated with the parameters described in the Garki Project.
Figures 8 and 9 show the retrieving of serological and parasite curves, respectively.
As can be noted in Figure 8 the serological profile retrieved by the model is in

good agreement with the raw data. In contrast, for the parasitological curve, the
model underestimates the real data below 20 years. This is probably due to the
assumption related to the a and sb rates, considered as constants. Actually, these
rates are expected to increase with age. We believe that the observed differences
would probably be less marked if we had taken these age-dependencies into
account. The differences between this and the Bioco area concerning this point will
be further considered in the discussion section.

19-2
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Fig. 7. Estimate of the age-dependent 'happening factor', h(a), for the Garki area.

1.0

09

08

07

a0 066
0

02
0'u 0-4

0-3

0-2-

0.1

0
0 5 10 15 20 25 30 35 40

Age (years)

Fig. 8. Retrieved seroprevalence levels for the Garki area. Crosses represent the actual
data and continuous line the result of the numerical simulation of the model.

The third set of data intended to exemplify the model's application involves an
alternative interpretation. It is related to the Mauritius Island study [26]. This
region is characterized by a successful control programme, with levels of
transmission virtually nil at the time of survey. Hence, according to our
assumptions, age-dependence can be neglected.
The serological data were fitted by a third degree polynomial with respect to

time. As in the other areas, we calculated h(t), shown in Figure 10, and applied it
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Fig. 9. Retrieved parasite prevalence levels for the Garki area. Crosses represent the
actual data and continuous line the result of the numerical simulation of the model.

to the set of equations (5-8). The transition rates 8 and 0 were assumed to be equal
to 1-00 and 0-20, respectively.
The retrieved serological profile, now interpreted as a time variation, is shown

in Figure I1. Our results reflects a mesoendemic situation 40 years before the
survey, turning to hypoendemic some 20 years and to virtually nil in the last 3
years before the 1972 survey. These findings are in agreement with the historical
endemicity of malaria known for the area [26].

Section 4. Discussion
Basically, malarial transmission can be assessed directly through entomological

data, and indirectly through serological and parasitological data.
As mentioned in Section 1, Introduction, intrinsic difficulties of the direct

approach make it of poor practical use. Notwithstanding, the models based on
entomological data have provided important insights into the comprehension of
the dynamics of malarial transmission [10, 27]. Actually the best indicators of the
transmission dynamics of malaria are the Basic Reproductive Rate, Ro [6], the
Vectorial Capacity, C [9], and the inoculation rate, h [6, 7]. All these indicators
were deduced from entomological parameters. However, the need of continuous
monitoring of entomological parameters have made those studies unfeasible in
control practice. Therefore, alternative ways for the estimation of these
transmission indicators are necessary.
The use of the parasite rate and spleen rate, the classical malariometric indexes,

as alternatives to entomological data have also intrinsic limitations, which have
been extensively discussed elsewhere [11, 28].
With the development of reliable serological techniques the use of cross-

sectional antibodies prevalence data became an interesting candidate as an
indicator of malarial transmission levels. This can be done either by identifying
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Fig. 10. Estimate of the time-dependent 'happening factor', h(t), for the Mauritius
area. Here time is counted backwardly as related to the survey time.
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Fig. 11. Retrieved seroprevalence levels for the Mauritius area. Crosses represent the
actual data and continuous line the result of the numerical simulation of the model.

stage-specific antigens that could be related to transmission intensity [29] or by
estimating the effective inoculation rate from cross-sectional seroprevalence
surveys [13-15].
Draper and colleagues [13] developed their model in which they estimate the

probability of being infected each year. Van Druten's analysis [15] is further
refined by applying a catalytic model to cross-sectional serological data, and
attempts to deal with the loss of immunity. Both authors interpret the age
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variation in h as been solely due to changes in time of malaria transmission,
reflecting a past situation.

This paper is an attempt to improve the previous analysis of the above works
by considering the age-dependence in malaria transmission, and the individual
variation in the immune response to plasmodia, such as the 'boosting effect' and
the fading of antibodies.
Our assumption that the inoculation rate is age dependent is supported by

entomological data, which has been recognised since the mid 1950s [22-24].
Indeed, Carnevale [22] found a bite preference by mosquitoes three times higher
in adults than in children, a result which roughly coincides with our findings (see
Figure 3). Therefore, we consider h as both time and age dependent, but in this
paper we analyse only situations in which either the time or the age-dependence
can be neglected for practical purposes. As mentioned above, in the cases where
the time dependence could be neglected our results concerning h(a) are supported
by previous entomological works on the feeding habits of anophelenes.
The individual variation in the immune responses were treated stochastically.

The results obtained apply to a population rather than to individuals. This may
seem crude. However, the lack of sufficient experimental data on the immune
response justifies our approach. Appendix II shows a more detailed analysis of the
above.

Estimating h(t, a) according to equation (4), from serological data, we have
actually considered a two compartments model, namely, seronegatives and
seropositives. Notwithstanding, our results were applied to a four compartments
model, chosen in order to mimic, as best as possible, and in a practical way, the
actual clinical states of individuals. In addition, all the four compartments
considered can be identified in the field. Moreover, as mentioned above, by setting
r = 0 we guarantee that the use of h(a), as deduced in equation (4), is almost exact.
Furthermore, the average period of time necessary to raise a positive response to
a serological test is negligible (days) when compared with the time antibodies take
to decay (years). Also, the absence of superinfection is comprised by the two
compartments assumption. However, as shown by Dietz [27], the prevalence
curves retrieved by models with and without superinfections show practically no
difference.
We are well aware of the existence of models with more, or less, compartments,

including, for instance, subpopulations of individuals who are infected but are not
infective to mosquitoes, individuals who have a slow recovery rate and a fast
recovery rate, and others. Some of these models have shown a good accurate fit
like that of Dietz, Molineaux and Thomas [8], which retrieved the parasite
prevalence curve from entomological inputs. Another example is Aron's [30]
model, which proposed a three compartments structure, also retrieving the trends
in the parasite prevalence curves with good accuracy. However, none of the
models proposed so far allows the retrieving of seroprevalence curves.
As far as the results are concerned, some further points should be made. Despite

some over simplifications, the model has shown a good retrieving capacity of the
original data. It should be expected that the rates a and 0 would increase with age,
due to the cumulative experience with plasmodia. Actually Dietz (unpublished
work cited by Nedelman [31]) has already shown that the recovery rate in his
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model increases with age. On the other hand, y is expected to decrease with age.
The age dependencies of these rates, if considered, would probably result in a
better agreement of the parasite curve with the real situation. Such an effect is
probably due to very intense contact with plasmodia, which triggers the
individual immune response at an early age. Thus, this effect should be more
evident in areas with particularly high levels of endemicity, such as Garki. The
better retrieving capacity of the parasitological data observed for Bioco (a meso
to hyperendemic area), as compared with Garki (a holoendemic area) strongly
supports the hypothesis. Note that the values of the inoculation rate estimated for
Garki are approximately 16 times greater than those for Bioco. Also, the classical
definitions of holo versus hyperendemic endemicity of malaria implicity assumes
these mechanisms. However, the lack of appropriate field data and the present
stage of knowledge as far as the immunity process is concerned, make any attempt
to include these transition rates variations premature.
We are well aware that the falls in the h(a) curves after reaching their maximum

for the Bioco and Garki data are, to a certain degree, dependent on the falls in the
fitted curve of the serological data. However, we are sure that these shortcomings
do not compromise our analysis.
The history of the mathematical approach to malaria is nearly as old as the

discovery of its mode of transmission [27]. However, views on malaria control
have changed since then and, to a certain degree, so has the emphasis on
quantitative studies [12]. But the theory continues to be, in a sense,
inappropriately applied, particularly the quantification of transmission based on
entomological data. Therefore, as mentioned by Dye [12], a shift of emphasis is
needed, and the proposed comparative approach suggested by that author
provides more efficient solutions to the same range of questions related to malaria
transmission. Molineaux [10] argued that dynamic malaria models are employed
most successfully when asking comparative rather than absolute questions.

This work is an attempt to provide alternative ways to estimate malaria
transmission that should be compared with the classical entomological and
parasitological approaches.
An extension of this work dealing with the estimation of the inoculation rate to

regions in which both time and age dependencies have to be considered [32] will
be presented in a future paper.

In the accompanying paper [33] are the results of the method described here as
applied to an area where the control of malaria has been impaired by the
difficulties in the determination of the real pattern of transmission as assessed by
the classical parasitological and splenic indexes [34-36].

APPENDIX I

In this appendix we show how to derive equations (1) and (9) of the main text.
Inoculations are assumed to occur as a non-uniform Poisson process [16]. The

host population is assumed to be in a steady-state and the differential mortality
due to malaria is neglected. Therefore the probability of receiving at least one
inoculation at age a is:

P,,,,(n >, 1) = I .-foa h(s)ds. (A 1)
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Let us suppose that the fraction of the population aged a at the time of the

serological survey received an inoculation in the period between ages a' and
(a'+da') with a probability determined by the Poisson distribution of inocu-
lations:

h(a') da'. (A 2)

The probability of not receiving any inoculation between (a'+ da') and a is:

,-fa,-h(8)ds [-v(a)+v(a)] (A 3)

So the probability of having received the last inoculation between a' and
(a'+da') is:

h(a') da'e [v(a)+v(a')] (A 4)

Assuming that all individuals reach an immunity level above the positive
threshold after an inoculation, and that in the absence of further inoculations that
immunity level decays, the probability of still having detectable antibodies at age
a is given by:

h(a') da'e[v-(a)+v(a')]f(a-a'), (A 5)

where f(a-a') describes the population process of losing immunity.
Therefore the probability of an individual of age a being seropositive at the

survey time is:

P+(a)= h(a') da'e[-v(a)+v(a')]f(a-a'), (A 6)

Equation (A 6) is a 'Volterra Integral Equation' of second kind for h(a) [37].
Given P+(a) from the cross-sectional serological data, h(a) can be determined once
f(a-a') is known.
We have assumed f(a-a') as a function of the interval between the last

inoculation and the instant of time of the serological survey. A simple form for
f(a-a') is:

f(a-a') = e[ (aa')], (A 7)
where T is a constant. Hence in the absence of any new inoculation, antibodies
fade away and the proportion of positive people decay in an exponential fashion
with the increasing interval between the last bite and the survey time.
Assuming (A 7) and solving (A 6) for h(a) gives:

h(a) = [(P (a)/r) + (dP+(a)/da)] (A 8)
[I1-P+(a)]

which is equation (4) of the main text.
The next rate to be estimated is y, the rate at which people leave the

seropositive status.
Let us consider equation (A 6) which describes the proportion of people that are

still seropositive at age a. The proportion of individuals that are still seropositive
at age (a-dx) is:

J h(a') da'e[-v(a)+v(a')]f(a-a'-dx). (A 9)
0
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Note that the term in the exponential guarantees no further inoculation in the
infinitesimal interval dx. So the proportion of individuals leaving the seropositive
compartment between (a-dx) and a is:

- h(a') da'e[-v(a)+v(a')] [d]x. (A 10)

Hence the rate of individuals leaving the seropositive condition between (a-dx)
and a is:

- h(a') da'e[-v(a)+v(a)] [df/da] dx
ydx= J (A 11)

T h(a') da'e[-v(a)+v(a')]f(a- a')

It is illuminating to apply equation (A 11) to Aron and May's model of
immunity [30, 38]. In their model an individual is assumed to remain seropositive
for a period X after the last inoculation. So f(a -a') is the Heaviside function [39],
which has the form:

f(a-a') = 6,(a-a') = {1 if (a-a') <r

They also assume that the inoculation rate is constant (h). Therefore, noting that
the derivative of the Heaviside function is the Dirac's delta function [39], we have
immediately:

he-Wh)
y 1-e-07T)

which is exactly the same equation (1) of Aron's paper [30] or equation (5 33) of
[38].

Solving (A 11) for f(a- a') as in equation (3) gives:

= 1 (A 12)

This is the result given by equation (9) of the main text.

APPENDIX II

Equation (1) of the main text hides a number of assumptions related to the
mechanisms concerning the build up of the immune response against malarial
parasites. Actually this process is not entirely known.
The purpose of this Appendix is to show how to include, as much as possible,

some biological realities into the model.
Instead of calculating the probability of being positive or negative to the

serological test, we begin by calculating the average age-related antibody
concentration in the population as a function of h(a).
Assume that an individual receives n effective inoculations randomly distributed

along the interval between ages 0 and a. The first inoculation occurs at age a1, the
second at age a2, and so on. Let us also assume that each inoculation contributes
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Fig. Al. Hypothetical immunity level, expressed as a function of the age distribution
of inoculations and the time elapsed between these inoculations.

to the build up of the antibody level measured at age a. In addition, the level of
antibodies reached after an inoculation is assumed to decay in the absence of
further inoculations. This process is schematically illustrated by Figure A 1.

Let us assume that the antibody level measured at age a after the first
inoculation is given by:

J(1) (a, a1) = Ijf(a-a1) a, < a < a2, (A 13)

where I, means the level of antibodies reached after a single inoculation in a non-
immune individual andf(a -a1) is the function describing the fading of antibiotics
in the absence of further inoculations.
The level of antibodies after the second inoculation is assumed to be given by:

J(2) (a, al, a2) = {Ic+ (Imax-Ic) [1-1 + a) f(a- a2 < a < a3

(A 14)

Equation (A 14) means that the level of antibodies reached after the second
inoculation is equal to I, plus an extra amount (the boosting effect) given by the
second term of equation (A 14). In this equation Imax represents the maximum
level of antibodies attainable. The form chosen for the boosting effect is
phenomenological and incorporates the current beliefs about the building up of
immune response against malarial parasite. For instance, when inoculations are so
sparse that the second one occurs when there is almost no antibodies left from the
first inoculation the boosting effect is negligible and the antibodies concentration
rises to Ic. On the other hand, when inoculations are very frequent the level of
antibodies tends to a saturation level, Imax, that is, the boosting effect is also
negligible.
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The parameter yi is intended to represent the factors involved in immune

response that determine the magnitude of the boosting effect.
So the level of antibodies after n inoculations is given by:

I(n) (a, an, ..., al) = {Ic+ (Vmax-Ic) [ l+eY-In(a a) f(a-an)
(A 15)

Quite generally one can write:

I(n) (a, an, ..., al) = {Ic + [Imax Ic]F(I(n-1) (an *... , a1))} f(a-an) (A 16)

where F is some function that depends on (n-1) (an,..., a,) as described after
equation (A 2). Its exact form is not known.

This is a very general expression for the building up of an humoral response
comprising the concepts of 'boosting effect' and fading of antibodies.
Let us now calculate the probability of receiving n inoculations as shown in

Figure A 1. Let h(a) da be the probability of receiving an inoculation between a
and a+ da. Then, the probability of the 'history' n inoculations given by Figure
A1 is:

p(al, a2,..., ana) = e-[v(al)-o], h(aldal e-[v(a2)-v(al)] h(a2) da ... h(an) da. e-[v(a)-v(an)]
n

= [I h(ad)dare-P(a). (A 17)

So the average antibody level at age a due to n inoculations is:

In (a) = f ... Jf h(a) dai e-P(a)In(a, an,..., a,) 6(a2-aj)O(a3-a2) ...O(an-an-1),
0 O i=l

(A 18)

where I(n) (a, an a,) is obtained by solving equations (A 13-A 15).
The average level of antibodies at age a due to all possible histories of

inoculations is:

I(a) = E In(a). (A 19)
n=1

The sum of all histories described by equation (A 18) is similar to Feynman
integral [40]. This integral can be computed analytically in a number of particular
cases, as shown below:

Case 1
Assume that I(n) (a, an, ..., a1) = nI, that is, each inoculation adds I, a constant,

to the antibody level, and there is no fading of antibodies. Then, by integrating
equation (A 18) and substituting in equation (A 19), we have:

00(fh(a) njaj h(a) da

I(a)= nI ° . (A20)
n-1 n
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Case 2
Assume that the immunity level depends only on the last inoculation, that is

I (a, an, ..., al) = I exp [- c(a- a)]. This is a purely Markovian assumption for the
immunity process with fading of antibodies. Then, by integrating equation (A 18)
and substituting in (A 19), we have:

I(a) = da'h(a') Ie[v(a)-v(a')]eC(a-a'). (A 21)

Note that this equation is very similar to equation (1) of the main text.

Case 3
Assume that the level of immunity is given by a constant I that is simply added

to the pre-existing antibody level, also considering the fading process. This means,
for example, that after two inoculations at ages a, and a2, the level of antibodies
at age a is:

[I eic(a2-aj) +I] ec(a-a2). (A 22)
Then by integrating equation (A 18) and substituting in (A 19) we have:

fa
I(a) = I e-ca J h(a') eca' da'. (A 23)

0

As can be seen from the above analysis, the calculation of the average immunity
level is far from simple. Furthermore, the above analysis does not take into
account individual variations in the host and parasite populations. In order to
circumvent these difficulties, we now ask a different question:
'What is the probability of finding an individual positive to a serological test

after a history of n inoculations as shown in Figure A 1?'
This probability, P+(a), is given by:

P+(a) = p(a, an,..., a,)P+(aIaj,..., an), (A 24)
where the second term is the conditional probability of being positive given that
one has suffered n inoculations at ages a1,..., an.
The probabilities of being positive is given by the sun of histories:

P+(a) = , ...{n h(ai) dai e-,(a)P+(alaj,..., an),
n=1 O O i=1

x O(a2-a1) O(a3-a2) ...O(an-aan1) (A 25)
The conditional probability appearing in (A 24) can be calculated by counting

all histories that result in an antibody level greater than a certain threshold.
However, this is very complicated although it can be done numerically, for
instance by using Montecarlo techniques, or analytically in cases where the
immune response is taken unrealistically simple. However, as mentioned above,
one has to take into account individual variations in the immune response against
the parasite. How important this may be is not known. So, it is reasonable to
assume this condition probability independent of a1 ... an-1, and equal to:

P+(ala,, ..., an) = eI(a-an). (A 26)

Substituting (A 26) in (A 25) we get equation (1) of the main text.
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The assumption implied in equation (A 26), that is, that the conditional

probability of being positive given a history of inoculations as dependent only on
the average period of time elapsed since the last inoculation may seem crude. It
essentially states that the level of antibodies reached in a randomly selected
individual in the population after an inoculation is a stochastic quantity, but the
fading of antibodies is deterministic. Moreover, as mentioned in the main text the
lack of sufficient data on malaria immunology justify this approach. In addition,
it is possible to estimate the average duration of immune response to serological
test in a given population [19-21].
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