
Supplement Material 
 

Supplement A: Modeling transcription activity of PahdICR promoter 
 
We here present a quantitative model of PahdICR transcription control by C.AhdI. The 
model is based on the following set of reaction: 
 

                                                  (1.1) 

                                                                            (1.2) 

                                                                            (1.3) 

 

                   (1.4) 

  (1.5) 

In the above equations, we introduced the following notation. M and D denote C.AhdI 
monomers and dimers respectively; D-DNA denotes C.AhdI dimer bound to the promoter 
distal (high affinity) C box; RNAP-DNA and T-DNA denote, respectively, complex of 
operator DNA with RNAP and C.AhdI tetramer; D-DNA-RNAP is the complex 
consisting of C.AhdI dimer, DNA and RNAP.  
 
The physical meaning of the equations is the following. Equation (1.1) presents 
dimerization of C.AhdI. Equation (1.2) presents reversible binding of RNA polymerase to 
the core promoter in the absence of C.AhdI, which is needed to reproduce the 
experimentally observed small basal transcription rate of C-R genes. Equation (1.3) 
presents binding of C.AhdI dimer to the promoter distal (high affinity) C box. Equation 
(1.4) presents recruitment of C.AhdI dimer to the promoter proximal (low affinity) C box, 
by the dimer that is bound at the promoter distal (high affinity) C box (1.4). Finally, Eq. 
(1.5) presents the competing reaction of RNAP recruitment to the promoter by C.AhdI 
dimer that is bound at the promoter distal C box. One should note that the reaction which 
presents binding of a dimer to the promoter proximal box is neglected, since the promoter 
proximal box has a much lower binding affinity compared to the promoter distal box. 
 
The equilibrium condition for Eqs. (1.1)-(1.5) leads to: 
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Similarly as in the previous subsection, we assume that transcription activity ϕ  is 
proportional to occupancy of the promoter by RNA polymerase: 
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In simplifying the above expression, we assumed that the concentration of [ ]D DNA−  is 

much smaller compared to the concentration of [ ]T DNA− , as indicated by the in-vitro 
binding studies. Next, by using Eqs. (1.6)-(1.10), from Eq. (1.11) follows: 
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,where 
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Supplement B: Changes of the model constants with the mutations 
 
We here address how constants b and c in the model given by Eq. (1.12) change with 
introducing mutations in the two C boxes. To derive this, we use the relationship between 
equilibrium binding constant K and the free energy of the reaction products. That is, if 
one starts from the following reaction: 
 



K
A B C D⎯⎯→+ +←⎯⎯ ,                                    (1.13)  

 
the equilibrium binding constant is given by: 
 

( )~ exp C D A BK G G G GΔ + Δ −Δ −Δ .           (1.14) 
 
In the above expression, AGΔ , BGΔ , CGΔ  and DGΔ  correspond, respectively, to the free 
energies of the complexes A, B, C and D in the units of Bk T  (where Bk  is the Boltzmann 
constant and T is temperature). Equation (1.13) and the related expression given by Eq. 
(1.14) can be straightforwardly generalized to the cases where different number of 
reactants and/or reaction products is involved. Further, let we denote by ( )w

dGΔ  and 
( )w
pGΔ  the interaction energy of a C.AhdI dimer with, respectively, the wild type 

promoter distal and promoter proximal C-box. Similarly, let we denote by ( )m
dGΔ  and 

( )m
pGΔ  the interaction energy of a C.AhdI dimer with the operator sequences in which, 

respectively, the promoter distal and the promoter proximal C-boxes are mutated.  
 
We first start from the case in which the mutations are introduced in the promoter 
proximal C-box. In that case, the general expression given by Eq. (1.14) leads to the 
following change in the equilibrium constant 4K  for Eq. (1.4): 
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In the above expression, ( )

4
wK  and ( )

4
mK  are the equilibrium binding constants that 

correspond, respectively, to the wild type operator sequence and to the sequence in which 
the promoter proximal C-box is mutated.  
 
Since all other equilibrium constants do not change by the mutation in the promoter 
proximal site, from Eqs (1.12) and (1.15) follows that the change in the constants b and c 
is given by the following expression: 
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In the expressions above, the superscripts (m) and (w) indicate, respectively, mutant and 
wild-type operator sequences, while the subscript p denotes that the mutation is exhibited 
in the promoter proximal C-box. We therefore conclude that constant b does not change 



due to the mutations, while constant c should decrease. (Note that ( )w
pGΔ  is more negative 

compared to ( )m
pGΔ  since the mutations reduce the binding affinity to the promoter 

proximal C-box). 
 
Similarly to the analysis given above, in the case of the mutation in the promoter distal C-
box, the following relations for the changes in the constants are obtained: 
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From the above two expressions, it follows that both constants decrease due to the 
mutations in the promoter distal C-box. 
 
Finally, in the case in which mutations are introduced in both the promoter proximal and 
promoter distal C-box, the following relations for the changes in b and c hold: 
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where the subscript indicates that the mutation is exhibited in both of the two C-boxes. 
The interpretation of this result is analogous as in the previous two cases.   
  
     
Supplement C: Modeling the in-vivo dynamics of C-R and M-S loops 
 
We start from the following equations, which are explained in the main text: 
 

( ) ( )( ) ( )dc t
C t c t

dt
ϕ λ= −                                                    (1.22) 

 
( ) ( ) ( )dC t

c t C t
dt

α β= −                                                     (1.23) 

 



The equilibrium for the two equations is given by the condition ( )( ) 0d C t dt =  and 

( ) 0dc t dt = , which leads to the following expression: 
 

 ( )eq eqC Cλβϕ
α

=  (1.24) 

  
From Eq. (1.24), we see that the value of the equilibrium is determined by the 
intersection of ( )Cϕ  curve and the line with the slopeλβ α , as stated in the main text. 
 
Further, we are interested under which conditions is the equilibrium state determined by 
Eq. (1.24) stable. For the equilibrium state to be stable, the system has to return to the 
equilibrium when perturbed for a small value. We, therefore, substitute 
( ) ( )eqC t C C tδ→ +  and ( ) ( )eqc t c c tδ→ +  in Eqs. (1.22) and (1.23), where ( )c tδ  and 

( )C tδ  are small perturbations of the transcript and protein concentrations respectively. If 

we use Eq. (1.24) together with ( )( ) ( ) ( ) ( )
eq
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substitution leads to the following two equations: 
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We can now eliminate ( )c tδ  from Eq. (1.26), which leads to: 
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Equation (1.27) is an equation of a dumped charmonic oscillator, which exhibits bound 
motion, under the condition: 
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One should note that the equation with the same form as Eq. (1.27), and with the same 
condition for the bound motion (Eq. (1.28)), is obtained when ( )C tδ  (instead of ( )c tδ ) 



is eliminated from Eq. (1.26). Therefore, as stated in the main text, the existence of the 
stable equilibrium, given by Eq. (1.28), is geometrically equivalent to the condition that 
the slope of the linear line is larger than the slope of the ( )Cϕ  curve, at the point of their 
intersection. 
 
Finally, we want to find how ( )C t , determined by Eqs. (1.22) and (1.23), changes with 

time, with the initial conditions ( )0 0C =  and ( )0
0

dC
dt

= .  By eliminating ( )c t  from  

Eq. (1.23) and substituting in Eq. (1.22), we obtain: 
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Equation (1.29) is a second order non-linear differential equation, which we numerically 
solve by using a Runge-Kutta method (MATLAB, MathWorks), to obtain the solutions 
shown in Fig. 9B. 



 


