Molecular Cell, Volume 28

Supplemental Data

Distinct Roles of Chromatin-Associated

Proteins MDC1 and 53BP1

in Mammalian Double-Strand Break Repair

Anyong Xie, Andrea Hartlerode, Manuel Stucki, Shobu Odate, Nadine Puget, Amy Kwok, Ganesh Nagaraju, Catherine Yan, Frederick W. Alt, Junjie Chen, Stephen P. Jackson, and Ralph Scully

Supplemental Experimental Procedures:

siRNA oligos and shRNA constructs

Control RNAi duplex (AAUAACAGUGACCUUUAUGGAdTdT), RNAi duplex against mouse *BRCA1* (AACCAGAAGAAAGGGCCUUCAdTdT), human *53BP1* (GCCAGGUUCUAGAGGAUGAdTdT), and RNAi smart-pool against mouse *BRCA2* and *Rad51* were purchased from Dharmacon. pSUPER-MDC1 and LacZ shRNA constructs have been described (Stucki et al, 2005). Two pSUPER-mouse 53BP1 shRNA constructs were created by replacing MDC1-targeting sequence with mouse 53BP1targeting sequences (#1: GTGGTCATCCAATGGCTAC or #2: GCCAGGTTCTGGAAGAAGA). The shRNA-expression cassettes were cloned into

retroviral vector MSIHyg to generate MSIH-mouse 53BP1 shRNA constructs.

Cell lines

Doxycylin (Dox)-inducible I-SceI expression system in U2OS reporter cells was established according to BDTM Tet-ON Gene Expression Systems User Manual (BD Biosciences) and will be described in detail in a later manuscript. Mouse reporter ES cells stably expressing control and mouse 53BP1 shRNA were generated by transfecting cells with MSIH-shRNA constructs and selecting in hygromycin (400µg/mL).

Antibodies

Commercial antibodies used include mouse monoclonal anti-CHK1 antibody (Santa Cruz Biotechnology) and rabbit polyclonal anti-53BP1 (Novus Biologicals) and anti-myc (Abcam). Mouse monoclonal anti-human 53BP1 antibody (BP13) and sheep polyclonal anti-human MDC1 antibody have been described previously (Rappold et al., 2001; Stucki et al., 2005).

Supplemental References:

Stucki, M., Clapperton, J.A., Mohammad, D., Yaffe, M. B., Smerdon, S. J., and Jackson S. P. (2005). MDC1 directly binds phosphorylated histone H2AX to regulate cellular responses to DNA double-strand breaks. Cell *123*, 1213-1226.

Rappold, I., Iwabuchi, K., Date, T., and Chen, J. (2001). Tumor suppressor p53 binding protein 1 (53BP1) is involved in DNA damage-signaling pathways. J. Cell. Biol. *153*, 613-620.

Supplemental figure legends:

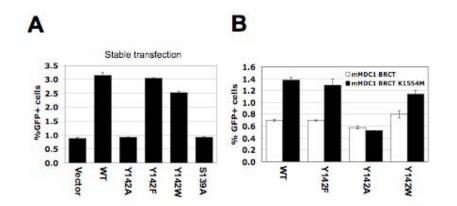
Figure S1. Influence of H2AX residue 142 on MDC1-BRCT suppression of HR. A. H2AX Y142F or Y142W, but not Y142A, stably expressed in $H2AX^{-/-}$ ES cells restores efficient HR. Paired *t*-test between "Y142A" and "WT": P < 0.2%; between "Y142A" and "Y142F": P < 0.003%; between "Y142A" and "Y142W": P < 0.08%; between "WT" and "Y142W": P < 4.35%. **B.** Transient over-expression of MDC1 BRCT suppresses I-SceI-induced HR function of H2AX Y142F or Y142W mutant stably expressed in $H2AX^{-/-}$ ES cells. Paired *t*-test between "mMDC1 BRCT" and "mMDC1 BRCT K1554M": P < 0.12% in WT, P < 0.88% in Y142F, P < 4.74% in Y142W, and not significant in Y142A.

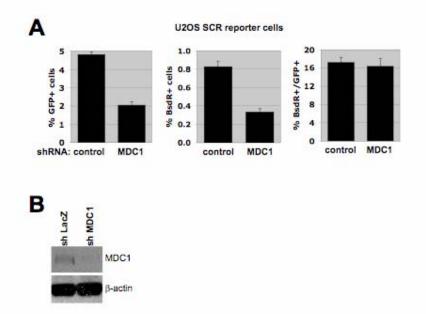
Figure S2. Depletion of MDC1 by shRNA reduces SCR in U2OS cells. A. I-SceIinduced GFP⁺ frequencies (left panel), BsdR⁺ frequencies (middle panel), and ratio of BsdR⁺ to GFP⁺ frequency (right panel) in U2OS reporter cells, transiently transfected with lacZ- and MDC1-targeting shRNA constructs. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "MDC1" and "control": P < 0.22% in %GFP⁺ cells (left panel), P < 1.47% in %BsdR⁺ cells (middle panel), and not significant in %BsdR⁺/GFP⁺ (right panel). **B.** Abundance of MDC1 protein in cells transfected with either lacZ- or MDC1-targeting shRNA plasmids.

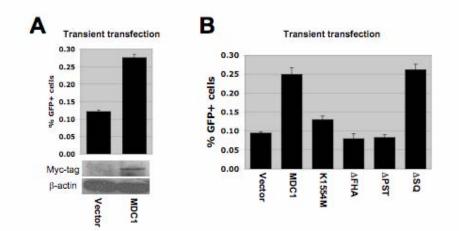
Figure S3. Transient expression of MDC1 rescues HR in $MDC1^{-/-}$ cells. A. I-SceI induced GFP⁺ frequencies in $MDC1^{-/-}$ MEF cells containing the SCR reporter, transiently transfected with myc-tagged mouse MDC1 expression plasmid. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "MDC1" and "Vector": P < 0.36%. Steady state level of mouse MDC1 protein is shown

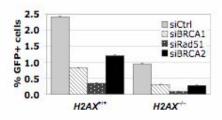
under the graph. **B.** I-SceI induced GFP⁺ frequencies in *MDC1^{-/-}* MEF reporter cells transiently transfected with myc-tagged mouse wt*MDC1* or mutant *MDC1* expression plasmids. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "WT" and "Vector": P < 1.14%; between "WT" and "K1554M": P < 1.14%; between "WT" and " Δ FHA": P < 1.18%; between "WT" and " Δ PST": P < 1.77%; between "K1554M" and "Vector": P < 4.21%; between "WT" and " Δ SQ": not significant.

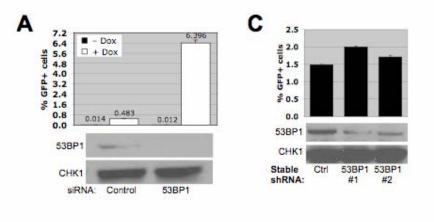
Figure S4. BRCA1, Rad51, and BRCA2 HR functions do not require *H2AX.* The percentage of I-SceI-induced GFP⁺ cells from ES cell lines transfected with RNAi duplex. $H2AX^{+/+}$ and $H2AX^{-/-}$ ES cell lines as indicated were transiently transfected with control RNAi or RNAi against BRCA1, Rad51, or BRCA2, together with I-SceI expression plasmid. GFP⁺ cells were quantified by flow cytometry analysis 3 days post-transfection. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "siCtrl" and "siBRCA1": P < 0.05% in $H2AX^{+/+}$ cells and P < 0.45% in $H2AX^{-/-}$ cells; between "siCtrl" and "siBRCA1": P < 0.004% in $H2AX^{+/+}$ cells and P < 0.30% in $H2AX^{-/-}$ cells; between "siCtrl" and "siBRCA2": P < 0.028% in $H2AX^{+/+}$ cells and P < 0.67% in $H2AX^{-/-}$ cells.

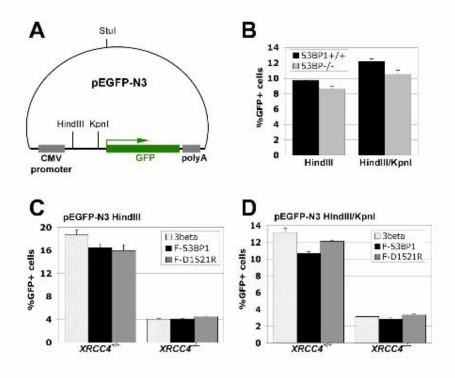

Figure S5. Depletion of 53BP1 stimulates HR. A. The percentage of I-SceI-induced GFP^+ cells from U2OS reporter cells containing Dox-inducible I-SceI expression system transfected with control RNAi duplex or RNAi against 53BP1. Dox (1µg/mL) was administrated to induce I-SceI expression 24 hours post-transfection. Mock treatment was


also indicated. GFP⁺ cells were quantified by flow cytometry 72 hours post-transfection. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "control siRNA" and "53BP1 siRNA" for Dox treatment: P < 0.14%. Protein levels with siRNA treatment were shown under the chart. **B.** Doxinducible I-SceI expression in U2OS reporter cells used in (**A**). Cells were administrated with Dox (1µg/mL), lysed at indicated time points, and analyzed for myc-I-SceI by Western blotting with anti-myc antibody. Non-specific protein bands detected by antimyc were used as a loading control. **C.** The percentage of I-SceI-induced GFP⁺ cells from mouse ES reporter cells stably expressing control or mouse 53BP1 shRNAs transfected with I-SceI expression plasmid. Bars represent mean of a representative experiment with triplicates. Error bars indicate SEM. Paired *t*-test between "ctrl shRNA" and "53BP1 shRNA #1": P < 0.5%; between "ctrl shRNA" and "53BP1 shRNA #2": P < 3.1%. Protein levels of 53BP1 with shRNA treatment were shown under the chart with protein levels of CHK1 as a loading control.


Figure S6. Effect of 53BP1 on NHEJ-dependent recircularization of a transfected linearized plasmid.


(A). Plasmid pEGFP-N3 as an NHEJ substrate in a plasmid-based assay. pEGFP-N3 (Clontech) contains unique HindIII and KpnI sites between the CMV promoter and the EGFP open reading frame (ORF) and is linearized as the NHEJ substrate by HindIII or HindIII/KpnI. Expression of GFP is abolished in these linear plasmids and restored by NHEJ-dependent re-circularization of linear DNA. pEGFP-N3 linearized by StuI serves as a control for transfection efficiency. HindIII, KpnI, and StuI sites are indicated. (B).


Percentage of GFP+ cells from mouse $53BP1^{+/+}$ and $53BP1^{-/-}$ embryonic cells, transiently transfected with either one of NHEJ substrates (as indicated), corrected for transfection efficiency. Bars represent mean of triplicate samples; error bars indicate SEM. Paired *t*-test between $53BP1^{+/+}$ and $53BP1^{-/-}$ embryonic cells: not significant for both NHEJ substrates (P > 0.1 and P > 0.07 respectively). (C). Percentage of GFP+ cells from mouse $XRCC4^{+/+}$ and $XRCC4^{-/-}$ embryonic stem cells, transiently transfected with linear pEGFP-N3-HindIII plasmid and expression plasmids for empty vector, HA-tagged F-53BP1 or F-D1521R as indicated. All data was corrected for transfection efficiency. Bars represent mean of triplicate samples; error bars indicate SEM. Paired *t*-test between "empty vector" and "F-53BP1" and between "F-53BP1" and "F-D1521R": not significant (all P > 6%). (D). Similar experiment to (C), but with transiently transfected linear pEGFP-N3-HindIII/KpnI plasmid as substrate. Paired *t*-test between "empty vector" and "F-53BP1" and "F-D1521R": not significant (all P > 0.2).



В

-	Hours after Dox administration								
	0	5	6	7	8	9	10 24	29 34	56
Myc-I-Scel		-	-	-	ä	ė	000	rei d	105
Loading control	-	-	-	-	-	-	-	-	-

