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Supplementary Text 
 
Supplementary Results 
 
Similarly to the case shown in Figures 1 and 2 for the best-takes-over strategy adoption rule 
in canonical Prisoner’s Dilemma games, the three short-term strategy adoption rules (pair-
wise comparison dynamics, proportional updating and best-takes-over) resulted in a rather 
remarkable variation of cooperator levels in Hawk-Dove games when using large number of 
small-world and scale-free model networks (Figures S1.1 and S1.2). For the description of 
game types, strategy adoption rules and model networks see Methods and refs. [1-11].  
 
At Figure S1.1 the m=1 scale-free networks display an irregular ‘phase-transition’-like 
phenomenon, which is most pronounced at the proportional updating strategy adoption rule 
but leads to a faster decay of cooperation at all short-term strategy adoption rules tested. At 
the construction of these m=1 scale-free networks the novel nodes are linked to the existing 
network with a single link only, which results in a tree-like final topology. Due to the 
especially large wiring-irregularity of these networks (as compared to the similarly scale-free, 
but more ‘cross-linked’ networks, where the new nodes are joined with more than one links to 
the existing network) a gradual change in the payoff values makes a more rapid disappearance 
of cooperation. At panel E of Figure S1.1 a non-monotonic behavior of p=0 networks is 
observed. This is derived from the extreme sensitivity of these p=0 regular networks on initial 
conditions, strategy update rules, etc (see references listed in Table S1.1). 
 
Both Q-learning and the long-term versions of all three strategy adoption rules above 
outperformed the short-term variants resulting in a higher proportion of cooperators in Hawk-
Dove games on small-world and scale-free model networks especially at high cooperation 
costs (Figures S1.2A, S1.2B and S1.3). Long-term strategy adoption rules (including Q-
learning) were also more efficient inducers of cooperation even at high costs in modular 
networks (Figure S1.7). Moreover, long-term strategy adaption rules maintained cooperation 
even in randomly mixed populations as well as in repeatedly re-randomized networks (Figure 
S1.5). Interestingly, long-term strategy adoption rules (especially the long-term version of the 
best-takes-over strategy adoption rule) resulted in an extended range of all-cooperator 
outcomes in Hawk-Dove games (Figures S1.3–S1.5 and S1.7). Finally, long-term strategy 
adoption rules helped cooperation in canonical and extended Prisoner’s Dilemma games in 
case of all three strategy adoption rules tried (Figure S1.6). 
 
While short- and long-term strategy adoption rules resulted in a remarkable variation of the 
cooperation level in a large variety of random, regular, small-world, scale-free and modular 
networks in Hawk-Dove and both canonical and extended Prisoners’ Dilemma games 
(Figures S1.1–S1.6), Q-learning induced a surprising stability of cooperation levels in all the 
above circumstances (Figures S1.2–S1.6). Interestingly, but expectedly, Q-learning also 
stabilized final cooperation levels, when games were started from a different ratio of 
cooperators (ranging from 10% to 90%) than the usual 50% (data not shown). When we 
introduced innovativity to long-term strategy adoption rules in Hawk-Dove games (for the 
description of these innovative strategy adoption rules see Methods) similarly to that shown 
for the canonical Prisoner’s Dilemma game on Figure 2, cooperation levels were closer to 
each other in small-world and scale-free networks than their similarity observed when using 
only long-term, but not innovative strategy adoption rules (Figure S1.7). Importantly, 
innovativity alone, when applied to the best-takes-over short-term strategy adoption rule 
could also stabilize cooperation levels in small-world and scale-free networks (Figure S1.7C). 
When we compared different levels of innovation by changing the value of innovationP  in our 
simulations (Figure S1.8), an intermediary level of innovation was proved to be optimal for 
the stabilization of cooperation in small-world and scale-free networks. Scale-free networks 
and Prisoner’s Dilemma game were more sensitive to higher innovation levels than small-
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world networks or Hawk-Dove games, respectively (Figure S1.8). Summarizing our results, 
Figures S1.9 and S1.10 show that similarly to canonical Prisoner’s Dilemma games (Figure 
3), both in Hawk-Dove games (Figure S1.9) and extended Prisoner’s Dilemma games (Figure 
S1.10) long-term strategy adoption rules and innovation (including Q-learning) resulted in a 
stable non-zero cooperation in a large variety of network topologies in combination only. 
 
Figure S1.11 shows the distribution of hawks (blue dots) and doves (orange dots) at the last 
round of a repeated Q-learning game on small-world (Figure S1.11A and S1.11B) or scale-
free networks (Figure S1.11C and S1.11D) at low (Figure S1.11A and S1.11C) and high 
(Figure S1.11B and S1.11D) relative gain/cost ( G ) values. Under these conditions both 
hawks and doves remained isolated (see arrows). On the contrary, when Hawk-Dove games 
were played with any of the three short-term, non-innovative strategy adoption rules doves, 
but even hawks showed a tendency to form networks (Figure S1.12 and data not shown). This 
effect was especially pronounced for doves in both small-world and scale-free networks, as 
well as for hawks in small-world networks, and present, but not always that strong for hawks 
in scale-free networks, where hawks remained more isolated in all configurations. 
Interestingly, the proportional updating strategy adoption rule quite often showed an extreme 
behavior, when in the last round of the play all agents were either doves or hawks. This 
behavior was less pronounced with a larger number (2,500) of players. All the above findings 
were similarly observed in extended Prisoner’s Dilemma games (data not shown). 
 
Supplementary Discussion 
 
Explaining cooperation has been a perennial challenge in a large section of scientific 
disciplines. The major finding of our work is that learning and innovation extend network 
topologies enabling cooperative behavior in the Hawk-Dove (Figures S1.1–S1.5 and S1.7–
S1.9, S1.11, S1.12) and even in the more stringent Prisoner’s Dilemma games (Figures 1–3, 
S1.6, S1.8 and S1.10). The meaning of ‘learning’ is extended here from the restricted sense of 
imitation or learning from a teacher. Learning is used in this paper to denote all types of 
information collection and processing to influence game strategy and behavior. Therefore, 
learning here includes communication, negotiation, memory and various reputation building 
mechanisms. Learning makes life easier, since instead of the cognitive burden to foresee and 
predict the ‘shadow of the future’ [4–6] learning allows to count on the ‘shadow of the past’, 
the experiences and information obtained on ourselves and/or other agents [12]. Likewise to 
our understanding of learning, the meaning of ‘innovation’ is extended here from the 
restricted sense of innovation by conscious, intelligent agents. Innovation is used in this paper 
to denote all irregularities in the strategy adoption process of the game. Therefore, innovation 
here includes errors, mutations, mistakes, noise, randomness and increased temperature 
besides conscious changes in game strategy adoption rules.  
 
In the Supplementary Discussion, first we summarize the effects of network topology on 
cooperative behavior, then discuss the previous knowledge on the help of cooperation by 
learning and innovation, and, finally, we compare our findings with existing data in the 
literature and show their novelty and implications. 
 
Effect of network topology on cooperation. Cooperation is not an evolutionary stable 
strategy [13], since in the well-mixed case, and even in simple spatial arrangements it is 
outcompeted by defectors. As it is clear from the data summarized in Table S1.1, the 
emergence of cooperation requires an extensive spatial segregation of players helping 
cooperative communities to develop, survive and propagate. Cooperation in repeated multi-
agent games is very senitive to network topology. Cooperation becomes hindered, if the 
network gets over-connected [14–16]. On the contrary, high clustering [17,18], the 
development of fully connected cliques (especially overlapping triangles) and rather isolated 
communities [14,18] usually help cooperation. Heterogeneity of small-worlds and, especially, 
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networks with scale-free degree distribution can establish cooperation even in cases, when the 
costs of cooperation become exceedingly high. 
 
However, in most spatial arrangements cooperation is rather sensitive to the strategy adoption 
rules of the agents, and especially to the strategy adoption rules of those agents, which are 
hubs, or by any other means have an influential position in the network. Moreover, minor 
changes in the average degree, actual degree, shortests paths, clustering coefficients or 
assortativity of network topology may induce a profound change in the cooperation level. 
Since real world networks may have rather abrupt changes in their topologies [17,20–26], it is 
highly important to maintain cooperation during network evolution. 
 
Effect of learning on cooperation. From the data of Table S1.2 it is clear that learning 
generally helps cooperation. Cooperation can already be helped by a repeated play, assuming 
‘learning’ even among spatially disorganized players. Memory-less or low memory strategy 
adoption rules do not promote cooperation efficiently. In contrast, high-memory and complex 
negotiation and reputation-building mechanisms (requiring the learning, conceptualization 
and memory of a whole database of past behaviors, rules and motives) can enormously 
enhance cooperation making it almost inevitable. As a summary, in the competitive world of 
games, it pays to learn to achieve cooperation. However, it is not helpful to know too much: if 
the ranges of learning and the actual games differ too much, cooperation becomes impossible 
[18]. 
 
Learning requires a well-developed memory and complex signaling mechanisms, which are 
costly. This helps the selection process in evolution [13], since ‘high-quality’ individuals can 
afford the luxury of both the extensive memory and costly signaling [27]. However, 
cooperation is rather widespread among bacteria, where even the ‘top-quality individuals’ do 
not have the extensive memory mentioned above. Here ‘learning’ is achieved by the fast 
succession of  multiple generations. The Baldwin-effect describing the genetic (or epigenetic) 
fixation of those behavioral traits, which were benefitial for the individuals, may significantly 
promote the development of bacterial cooperation and the establishment of biofilms [28–32]. 
Genetically ‘imprinted’ aids of cooperation are also typical in higher organisms including 
humans. The emotional reward of cooperation uncovered by a special activation of the 
amygdalia region of our brains [33] may be one of the genetically stabilized mechanisms, 
which help the extraordinary level of human cooperation besides the complex cognitive 
functions, language and other determinants of human behavior. 
 
Effect of randomness (‘innovation’) on cooperation. From the data of Table S1.3 it is clear 
that a moderate amount of randomness, ‘innovation’ generally helps cooperation. Many of the 
above learning mechanisms imply sudden changes, innovations. Bacteria need a whole set of 
mutations for interspecies communication (such as quorum sensing), which adapt individual 
organisms to the needs of cooperation in biofilms or symbiotic associations. The improved 
innovation in the behavior of primates and humans during games has been well documented 
[34–36].  
 
An appropriate level of innovation rescues the spatial assembly of players from deadlocks, 
and accelerates the development of cooperation [18]. Many times noise acts in a stochastic 
resonance-like fashion, enabling cooperation even in cases, when cooperation could not 
develop in a zero-noise situation [37,38]. As a special example, the development of 
cooperation between members of a spatial array of oscillators (called synchrony) is grossly 
aided by noise [39]. Egalitarian motives also introduce innovative elements to strategy 
selection helping the development of cooperation [40]. 
 
However, innovation serves the development of cooperation best, if it remains a luxurious, 
rare event of development. Continuous ‘innovations’ make the system so noisy, that it looses 
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all the benefits of learning and spatial organization and reaches the mean-field limit of 
randomly selected agents with random strategy adoption rules (Table S1.3). 
 
Comparison and novelty of our findings. In Hawk-Dove games on modified Watts-
Strogatz-type small-world [2,9] and Barabasi-Albert-type [10] scale-free model networks we 
obtained very similar results of cooperation levels in all synchronously updated pair-wise 
comparison dynamics, proportional updating and best-takes-over strategy adoption rules to 
those of Tomassini et al. [2,3]. The success of our various ‘long-term’ strategy adoption rules 
to promote cooperation is in agreement with the success of pair-wise comparison dynamics 
and best-takes-over strategy adoption rules with accumulated payoffs on scale-free networks 
[1,3].  
 
On the contrary to Hawk-Dove games, in the Prisoner’s Dilemma game defection always has 
a fitness advantage over cooperation, which makes the achievement of substantial cooperation 
levels even more difficult. In the extended Prisoner’s Dilemma games on scale-free networks 
[10] we obtained very similar results of cooperation levels using synchronously updated pair-
wise comparison dynamics and best-takes-over strategy adoption rules to those of Tomassini 
et al. [3]. Similarly to the Hawk-Dove game with the extended Prisoner’s Dilemma game our 
results with various ‘long-term’ strategy adoption rules on scale-free networks are in 
agreement with those of pair-wise comparison dynamics and best-takes-over strategy 
adoption rules using accumulated payoffs [1,3].  
 
We have to note that the definition of pair-wise comparison dynamics strategy adoption rule 
was slightly different here, than in previous papers, and on the contrary to the non-averaged 
payoffs used previously, we used average payoffs [1–3], which allows only a rough 
comparison of these results to those obtained before, and resulted in a lower level of 
cooperation than that of e.g. ref. [1]. The reason we used average payoff was that this made 
the final level of cooperators more stable at scale-free networks even after the first 5,000 
rounds of the play (data not shown). When we used non-averaged payoffs in the extended 
Prisoner’s Dilemma game with 100,000 rounds of play, we re-gained the cooperation levels 
of ref. [1] at scale-free networks (m=4, data not shown). The additional papers on the subject 
used differently designed small-world networks or different strategy adoption rules, and 
therefore can not be directly compared with the current data. It is worth to mention that none 
of the previous papers describing multi-agent games on various networks [1–3] used the 
canonical Prisoner’s Dilemma game, which was used obtaining our data in the main text, and 
which gives the most stringent condition for the development of cooperation. 
 
As a summary, our work significantly extended earlier findings, and showed that the 
introduction of learning and innovation to game strategy adoption rules helps the 
development of cooperation of agents situated in a large variety of network topologies. 
Moreover, we showed that learning and innovation help cooperation separately, but act 
synergistically, if introduced together especially in the complex form of the reinforcement 
learning, Q-learning.  
 
Interactions of learning and innovations, conclusions. Real complexity and excitement of 
games needs both learning and innovation. In Daytona-type car races skilled drivers use a 
number of reputation-building and negotiation mechanisms, and by continuously bringing 
novel innovations to their strategies, skilfully navigate between at least four types of games 
[41].  
 
Noise is usually regarded to disturb the development of cooperation. Importantly, complex 
learning strategies can actually utilize noise to drive them to a higher level of cooperation. 
Noise may act as in the well-known cases of stochastic resonance, or stochastic focusing 
(with extrinsic and intrinsic noise, respectively) enabling cooperation even in cases, when it 
could not develop without noise. In a similar fashion, mistakes increase the efficacy of 
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learning [37,38,42]. Additional noise greatly helps the optimization in the simulated 
annealing process [43–45]. 
 
Noise not only can extend the range of cooperation to regions, where the current level of 
learning would not be sufficient to achieve it, but extra learning can also ‘buffer’ an increased 
level of noise [19]. Thus, learning and innovation act side-by-side and – in gross terms – 
correct the deficiencies of the other. Learning and innovation also cooperate in the Baldwin 
effect, where beneficial innovations (in the form of mutations) are selected by the inter-
generational ‘meta-learning’ process of evolution [28–32]. Mutual learning not only makes 
innovation tolerable, but also provokes a higher level of innovation to surpass the other agent 
[36].  
 
Our work added the important point to this emerging picture that the cooperation between 
learning and innovation to achieve cooperation also works in the extension and buffering of 
those network configurations, where cooperation becomes possible. 
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Supplementary Tables 
 

Table S1.1. Effect of network topology on cooperation 
 
Network 
topology 

Effect on cooperation Games; 
strategy 
adoption 
rules 

Agents 
(players) 

References 

Lattice Sensitive to strategy 
adoption rules and 
topology (cooperation 
level is very sensitive on 
strategy adoption rules, 
high degree inhibits 
cooperation) 

HD, PDa Simulation 14, 46–48 

Lattice with 
dilution (with 
empty spaces) 

Helps (localized groups of 
cooperators emerge better) 

PD Simulation 49 

Lattice with 
hierarchical layers 

Helps (at top level, if the 
number of levels is lower 
than 4; in middle layers 
otherwise) 

PD Simulation 50, 51 

Regular random 
graphs 

Sensitive to topology 
(triangles help, loops>3 
and high degree inhibit 
cooperation) 

PD Simulation 14, 52 

Random graphs Sensitive to topology, 
long-lasting avalanches 
may develop (high degree 
inhibits cooperation) 

PD Simulation 14, 15, 53 

Small-world 
(Watts-Strogatz-
type) 

Mostly helps (helps the 
spread of cooperation + 
introduces heterogeneity to 
stabilize it, high degree 
inhibits cooperation) 

PD Simulation 14, 15, 54, 55 

Small-world 
(randomly replaced 
edges) 

Sensitive to strategy 
adoption rules (very 
sensitive to the applied 
strategy adoption rules) 

HD Simulation 2, 3 

Small-world 
(Watts-Strogatz-
type) with an 
influential node 

Destabilizes (the central 
node is very sensitive for 
attacks by defectors) 

PD Simulation 56 

Homogenous 
small-world 
(degree is kept 
identical) 

Sensitive to topology and 
temptation level (at small 
temptation helps the attack 
of defectors via shortcuts, 
helps at high temptation) 

PD Simulation 54, 55 

Scale-free 
(Barabasi-Albert-
type) 

Sensitive to to strategy 
adoption rules (hubs 
stabilize cooperation but 
make it vulnerable to 
targeted attacks, clusters 
and loops help, sensitive to 
strategy adoption rules, 
high degree inhibits 
cooperation) 

HD, PD; 
pair-wise 
comparison 
dynamics, 
imitation of 
the best  

Simulation 1, 3, 14–16, 57–59 
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Table S1.1. Effect of network topology on cooperation (continued) 
 
 
Network 
topology 

Effect on 
cooperation 

Games; strategy 
adoption rules 

Agents 
(players) 

References 

Scale-free with 
hierarchy (Ravasz-
Barabasi-type 
hierarchy) 

Inhibits (makes it 
very sensitive for 
the attack of 
defectors) 

PD Simulation 50 

Scale-free with 
communities 

Helps (isolated 
communities help 
intra-community 
cooperation) 

PD Simulation 16 

Real world 
networks 

Generally helps 
(small-worlds and 
hierarchy help 
cooperation) 

PD Internet 
communities, 
emails, karate club 

60 

Dynamic (evolves 
during the game) 

Generally helps (a 
small-world and 
hierarchy develops, 
which stabilizes 
cooperation, a 
slower reaction to 
new information is 
beneficial) 

PD Simulation 17, 21–26 

aHD = Hawk-Dove (Snowdrift, Chicken) game;  PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed). 
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Table S1.2. Effect of learning on cooperation 
 
Type of 
learninga 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

One-step learning 
strategy adoption 
rules 

Help (increases 
cooperation in repeated 
multi-agent games) 

Lattice; PDb; Tit-
for-tat strategy 
adoption rule and 
its generous 
versionsc 

Simulation 61–63 

Two-step learning 
strategy adoption 
rulesd 

Help (make cooperation 
rather resistant to noise 

 often win against Tit-
for-tat) 

Lattice; PD; 
Pavlov strategy 
adoption rule and 
its generous 
versionsc 

Simulation 61–66 

Extended learning 
strategy adoption 
rules (3 or more 
steps) 

Help (each additional 
memory unit contributes 
less to the increase of 
cooperation) 

Lattice, scale-free; 
HDb, PD, 
alternating PD 
with noise; higher 
memory ‘Firm 
Pavlov’, ‘Meta-
Pavlov’ strategy 
adoption rules 

Simulation 32, 62, 67–71 

Complex learning 
strategy adoption 
rules (adaptive 
learning, operant 
conditioning, 
preferential 
learning, Q-
learning, 
reinforcement 
learning) 

Help (are not only 
resistant to noise but can 
exploit noise to drift 
towards cooperation, 
reinforcement learning 
based on local or global 
information enables 
sophisticated strategy 
adoption rules to 
emerge and allows 
efficient network 
formation) 

Lattice, scale-free; 
HD, matching 
pennies game, PD; 
pair-wise 
comparison 
dynamics strategy 
adoption rule 

Simulation, 
primates, 
humans 

12, 36, 37, 46, 72–
77 

Natural learning 
processes 

Help (fishes, monkeys 
remember their 
cooperators; birds learn 
cooperation with 
feedback signals or 
accumulated payoffs; 
lions learn cooperative 
hunting to capture fast 
prey; vampire bats share 
blood by regurgitation; 
students are more 
successful using 
complex Pavlov strategy 
adoption rules than tit-
for-tat, which is the 
default, if their memory 
capacity is 
compromised 
disfavoring cooperation; 
subjects with 
psychopathy disorders 
have a deficit of 
emotional reward for 
cooperation, which can 
be corrected by 
learning) 

PD (interfering 
Memory game) 

Guppies, birds, 
vampire bats, 
lions, monkeys, 
humans 
(controls, 
subjects with 
psychopathy, 
autism, or 
attention-deficit 
hyperactivity 
disorder) 

33, 78–86 
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Table S1.2. Effect of learning on cooperation (continued) 
 
Type of 
learninga 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

Communication, 
negotiation 

Help (viruses lack 
communication and 
cooperation; quorum 
sensing is required for 
bacterial biofilm 
formation; avoidance of 
discussion blocks 
cooperation; complex 
communication allows 
better cooperation; 
feedback eases internet 
and traffic congestion; 
firm’s market image 
helps cooperative 
response; description of 
future goals greatly 
enhances cooperation) 

PD, ‘game of 
sexes’, biofilm 
formation, internet 
usage, car-race, 
trade 

Simulation, 
viruses, bacteria, 
humans, firms 

41, 72, 73, 87–94 

Quantum 
entanglement 
(‘quantum 
communication’) 

Helps (quantum bits, 
‘qubits’ enable a 
continuous cooperation, 
which works as a 
contract) 

Quantum minority 
game, quantum PD 

Simulation 95 

Tag, reputation-
building 

Help (establishing and 
learning tags and 
reputation help 
cooperators to detect 
each other – even 
without memory – and 
build communities) 

Donation game, 
PD, ultimatum 
game, car-race, e-
trade 

Simulation, 
humans 

19, 27, 41, 67, 96–
98 

Evolutionary 
preserved 
recognition (using 
the Baldwin-effect) 

Helps (enables the 
detection and avoidance 
of cheaters; the learned 
habbit is selected and 
fixed by evolution) 

Hermaphrodites 
exchanging eggs 

Hermaphrodite 
worms 

99 

Memory of 
cooperation 
patterns (cultural 
context) 

Helps (cooperation in 
previous games; 
cooperative educational 
or cultural traits) 

Intergenerational 
public good game, 
PD, ultimatum 
game 

Humans 12, 27, 100, 101 

aThe term ‘learning’ is used here in the sense of the collection and use of information influencing game strategy 
adoption rules and behavior, and not in the restricted sense of imitation, or directed information-flow from a 
dominant source (the teacher). Therefore, learning here includes communication, negotiation, memory, label-
assignment and label-recognition, etc. 
bHD = Hawk-Dove (Snowdrift, Chicken) game;  PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed). 

cTit-for-tat = this strategy adoption rule copies the opponent’s step in the previous round; Pavlov = a ‘win stay – 
lose shift’ strategy adoption rule; generous strategy adoption rules = allow ‘extra’ cooperation options with a given 
probability. 
dThese strategy adoption rules are interchangeably called as ‘memory-one’ or ‘memory-two’ strategy adoption 
rules referring to the fact that e.g. in the Pavlov strategy adoption rule agents remember the outcome of only the 
last step (‘memory-one’) but that of both players (‘memory-two’). 



 13

Table S1.3. Effect of innovation on cooperation 
 
Type of 
innovationa 

Effect on 
cooperation 

Networks; 
games; strategy 
adoption rules 

Agents 
(players) 

References 

Topological 
irregularities 
(empty sites = 
‘sterile defectors’, 
small-world 
shortcuts, hubs) 

Mostly help (see Table 
1, block the spread of 
defection, however high 
degree inhibits 
cooperation and 
irregularities make it 
sensitive for strategy 
adoption rules) 

Lattice, small-
world; HD, PDb  

Simulation 49, 102 and Table 
S1.1 

Low noise (random 
noise, errors, 
mistakes, the 
‘trembling hand’) 

Helps (at low levels 
resolves deadlocks, at 
high levels inhibits 
cooperation) 

Evolutionary 
language learning 
game, ultimatum 
game 

Simulation 42, 98 

High noise (random 
noise, errors, 
mistakes, the 
‘trembling hand’) 

Inhibits (PD game is 
noise-sensitive, 
especially on lattices, 
where noise makes 
cooperator boundaries 
irregular) 

Lattice; PD Simulation 52, 102–104 

Pink noise (chaotic 
changes in 
environment 
affecting payoff) 

Mostly helps (smaller, 
but reliable payoffs 
become more attractive) 

Lattice; PD Simulation 105 

Random elements 
in strategy 
adoption rules 
(strategy selection, 
payoff 
determination, etc.) 

Help (at low levels 
resolve deadlocks, at 
high levels inhibit 
cooperation)  

Lattice, random, 
small-world; HD, 
PD 

Simulation 48, 50, 55, 106, 107 

Random extra 
cooperation in 
strategy adoption 
rules 

Helps Lattice; PD; 
Generous tit-for-tat, 
‘double-generous-
tit-for-tat’ 

Simulation 65, 108 

Mutation of 
strategy adoption 
rules 

Helps (may re-introduce 
cooperation)  

Lattice; PD Simulation 66 

Extra loner 
strategy adoption 
rulec 

Helps (even for large 
temptation values) 

Lattice, small-
world; PD, public 
good game 

Simulation 107, 109–112 

Quantum 
probabilistic 
strategies 

Help (ancillary quantum 
bits, ‘qubits’ enable to 
use ‘mixed’ strategies) 

Quantum minority 
game, quantum PD 

Simulation 95 

Random elements 
in strategy 
adoption rules 

Help (increased when 
playing games)  

matching pennies 
game, PD and other 
social dilemma 
games 

Simulation, 
humans, 
primates 

34–37, 113 

Mixed strategies Help (reputation 
building is 
supplemented with 
costly punishment)  

PD Humans 114 

Egalitarian 
motives 

Help (help the 
development of 
reciprocity)  

Public good game Humans 40 

aThe term ‘innovation’ is used here in the sense of irregularities in the process of the game. Therefore, innovation 
here includes errors, mutations, mistakes, noise, randomness and increased temperature besides the senso stricto 
innovation of conscious, intelligent agents. 
bHD = Hawk-Dove (Snowdrift, Chicken) game; PD = Prisoner’s Dilemma game (please note that in this 
supplementary table we did not discriminate between conventional and cellular automata-type games, where in the 
latter simulating evolution agents ‘die’, and are occasionally replaced; in our simulations we used only 
‘conventional’ games, where agent-replacement was not allowed).  

cLoners do not participate in the game and share the income with the co-player. 
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Supplementary Figures 
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Figure S1.1. Variation of cooperation level using short-term, non-innovative strategy adoption rules in 
Hawk-Dove games on small-world and scale-free networks. The modified Watts-Strogatz small-world 
networks (Panels A, C and E) were built on a 50 x 50 lattice, where each node was connected to its 
eight nearest neighbors. The rewiring probability of the regular links was 0 (pale blue triangles), 0.05 
(green circles), 0.1 (red squares) and 1 (dark blue diamonds). The Barabasi-Albert scale-free networks 

(Panels B, D and F) also contained 2,500 nodes, where at each construction step a new node was added 
with m=1 (pale blue triangles), m=3 (green circles), m=5 (red squares) or m=7 (dark blue diamonds) 
new links attached to the existing nodes. For the description of the networks, Hawk-Dove games and 
the three different strategy adoption rules, the pair-wise comparison dynamics (Panels A and B), the 
proportional updating (Panels C and D) and the best-takes-over strategy adoption rules (Panels E and 
F), see Methods. For each strategy adoption rule and G values (representing the gain of hawk meeting a 
dove, see Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S1.2. Q-learning improves and stabilizes the cooperation of agents forming small-
world and scale-free networks in Hawk-Dove games. A, The modified Watts-Strogatz small-
world networks [2] were built on a 50 x 50 lattice, where each node was connected to its eight 
nearest neighbors. The rewiring probability of the regular links was 0.05. B, The Barabasi-
Albert scale-free networks [10] also contained 2,500 nodes, where at each construction step a 
new node was added with m=3 new links attached to the existing nodes. For the description of 
the Hawk-Dove games and the four different strategy adoption rules, pair-wise comparison 
dynamics (pale blue triangles), proportional updating (green circles), best-takes-over (red 
squares) and Q-learning (dark blue diamonds) see Methods. C, The rewiring probability of the 
small-world network of panel A was 0 (regular network, pale blue triangles), 0.05 (small-
world, green circles), 0.1 (small-world, red rectangles) and 1 (random network, dark blue 
diamonds). D, The number of nodes added to the existing nodes of the scale-free network of 
B was varied between 1 and 7. For each strategy adoption rule and G values (representing the 
gain of hawk meeting a dove, see Methods), 100 random runs of 5,000 time steps were 
executed. 
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Figure S1.3. Long-term learning strategy adoption rules help cooperation in Hawk-Dove 
games played on various networks. For the description of the small-world [2] and scale-free 
[10] networks, the Hawk-Dove game and the different strategy adoption rules, pair-wise 
comparison dynamics (pale blue open triangles and dashed line), proportional updating (green 
open circles and dashed line), best-takes-over (red open squares and dashed line), Q-learning 
(dark blue diamonds and solid line) pair-wise comparison dynamics long (pale blue filled 
triangles and solid line), proportional updating long (green filled circles and solid line) and 
best-takes-over long (red filled squares and solid line) strategy adoption rules see Methods. A,  
Long-term learning strategy adoption rules on small-world networks with a rewiring 
probability of 0.05. B,  Long-term learning strategy adoption rules on scale-free networks 
with m=3. For each game strategy adoption rule and G values (representing the gain of hawk 
meeting a dove, see Methods), 100 random runs of 5,000 time steps were executed.  



 17

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs
A
Long-term learning on modular networks 

(level=1)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs

B
Long-term learning on modular networks 

(level=6)

 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs

C
Long-term learning on modular networks 

(level=11)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs

D
Long-term learning on modular networks 

(level=16)

 

Pair-wise comparison Pair-wise comparison long
Proportional updating Proportional updating long

Best-takes-over Best-takes-over long
Q-learning

 
 
 
Figure S1.4. Long-term learning strategy adoption rules help cooperation in Hawk-Dove 
games played on modular networks. In the modular networks described by Girvan and 
Newman [11] each network had a scale-free degree distribution, contained 128 nodes and was 
divided into 4 communities. The average degree was 16. Panels A through D show the % of 
cooperation when playing on Girvan-Newman modular networks with levels 1, 5, 10 or 16, 
respectively, where ‘level 1’ means that for each node in the network, the expected number of 
links between a node and the nodes which are in other communities was 1. With increasing 
‘level’ the community structure died down gradually. For the description of the Hawk-Dove 
game and the different strategy adoption rules, pair-wise comparison dynamics (pale blue 
open triangles and dashed line), proportional updating (green open circles and dashed line), 
best-takes-over (red open squares and dashed line), Q-learning (dark blue filled diamonds and 
solid line) pair-wise comparison dynamics long (pale blue filled triangles and solid line), 
proportional updating long (green filled circles and solid line) and best-takes-over long (red 
filled squares and solid line) strategy adoption rules see Methods. For each game strategy 
adoption rule and G values runs on 100 Girvan-Newman-type modular networks of 5,000 
time steps were executed. 



 18

 
 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs

A
Long-term learning on randomly mixed 

population

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
G (Gain of hawk meeting a dove)

Pr
op

or
ti

on
 o

f 
C

oo
pe

ra
to

rs

B
Long-term learning on repeatedly

re-randomized networks

 

Pair-wise comparison Pair-wise comparison long
Proportional updating Proportional updating long

Best-takes-over Best-takes-over long
Q-learning

 
 
 
 
Figure S1.5. Long-term learning strategy adoption rules help cooperation in Hawk-Dove 
games on randomly mixed population and on repeatedly re-randomized networks. For the 
description of the Hawk-Dove game and the different strategy adoption rules, pair-wise 
comparison dynamics (pale blue open triangles and dashed line), proportional updating (green 
open circles and dashed line), best-takes-over (red open squares and dashed line), Q-learning 
(dark blue filled diamonds and solid line) pair-wise comparison dynamics long (pale blue 
filled triangles and solid line), proportional updating long (green filled circles and solid line) 
and best-takes-over long (red filled squares and solid line) strategy adoption rules see 
Methods. A, Games between two randomly selected agents from 100 total. For each game 
strategy adoption rule and G values, 100 random runs of 100,000 time steps were executed. B, 
Before each individual rounds of the repeated Hawk-Dove game, we generated a new random 
graph of the agents with a connection probability, p=0.02, where the number of agents was 
200. In this way for a specific agent, its neighbors changed in each round of game. For each 
game strategy adoption rule and G values (representing the gain of hawk meeting a dove, see 
Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S1.6. Long-term learning strategy adoption rules help cooperation in both canonical 
and extended Prisoner’s Dilemma games played on small-world and scale-free networks. The 
small-world (panels A  and C, [2]) and scale-free (panels B and D, [10]) networks were built 
as described in the Methods. For the description of the Prisoner’s Dilemma games and the 
different strategy adoption rules, pair-wise comparison dynamics (pale blue open triangles 
and dashed line), proportional updating (green open circles and dashed line), best-takes-over 
(red open squares and dashed line), Q-learning (dark blue filled diamonds and solid line) pair-
wise comparison dynamics long (pale blue filled triangles and solid line), proportional 
updating long (green filled circles and solid line) and best-takes-over long (red filled squares 
and solid line) strategy adoption rules see Methods. Panels A and B, extended Prisoner’s 
Dilemma games ( 0,0,1 === SPR  T was changed from 1 to 2; 1). Panels C and D, 
canonical Prisoner’s Dilemma games ( 0,1,3 === SPR  T was changed from 3 to 6; [6]). In 
the canonical Prisoner’s Dilemma games when using the Q-learning, the initial annealing 
temperature was set to 10,000 to extend the annealing process [115]). For each game strategy 
adoption rule and T values 100 random runs of 5,000 time steps were executed. 
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Figure S1.7. Comparison of innovative strategy adoption rules in Hawk-Dove games on 
small-world and scale-free networks. The small-world (A and C blue symbols and dashed 
lines) and scale-free (B and C red symbols and solid lines) networks were built as described in 
Methods. For the description of the Hawk-Dove game and the different strategy adoption 
rules, pair-wise comparison dynamics (pale blue filled squares, solid line), pair-wise 
comparison dynamics long (pale blue filled triangles, solid line), pair-wise comparison 
dynamics long innovative (pale blue filled circles, solid line), proportional updating (green 
filled squares, dashed line), proportional updating long (green filled triangles, dashed line), 
proportional updating long innovative (green filled circles, dashed line), best-takes-over (on 
panel A and B: red filled squares, on panel C: filled circles), best-takes-over long (on panel A 
and B: red filled triangles, on panel C: open circles), best-takes-over innovative (on panel C: 
filled squares), best-takes-over long innovative (on panel A and B: red filled circles, on panel 
C: open squares), and Q-learning (blue filled diamonds) strategy adoption rules, see Methods. 
For each game strategy adoption rule and G values (representing the gain of hawk meeting a 
dove, see Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S1.8. Comparison of different innovation levels of the best-takes-over long innovative 
strategy adoption rule in Hawk-Dove and extended Prisoner’s Dilemma games on small-
world and scale-free networks. The small-world (panels A and B, [2]) and scale-free (panels C 
and D, [10]) networks were built as described in the Methods. For the description of the 
Hawk-Dove game (panels A and C), extended Prisoner’s Dilemma game (panels B and D) and 
the best-takes-over long innovative strategy adoption rule, see Methods. The probability of 
innovation was changed from zero to 0.1 as described in the Figure legend. For each game 
strategy adoption rule and G values (representing the gain of hawk meeting a dove, see 
Methods), 100 random runs of 5,000 time steps were executed. 
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Figure S1.9. Long-term learning and innovative strategy adoption rules extend cooperative 
network topologies in the Hawk-Dove game. The top middle panel shows the level of 
cooperation at different network topologies. small-world (spheres) and scale-free (cones) 
networks were built as described in the Methods. The rewiring probability, p of small-world 
networks was increased from 0 to 1 with 0.05 increments, the number of edges linking each 
new node to former nodes in scale-free networks was varied from 1 to 7, and the means of 
shortest path-lengths and clustering coefficients were calculated for each network. Cubes and 
cylinders denote regular (p = 0) and random (p = 1.0) extremes of the small-world networks, 
respectively. For the description of the games and the best-takes-over (green symbols); long-
term learning best-takes-over (blue symbols); long-term learning innovative best-takes-over 
(magenta symbols) and Q-learning (red symbols) strategy adoption rules used, see Methods. 
The left and right panels show the 2D side views of the 3D top middle panel using the same 
symbol-set. For each network 100 random runs of 5,000 time steps were executed at a fixed G 
value of 0.8. The bottom middle panel shows a color-coded illustration of the various network 
topologies used on the top middle panel. Here the same simulations are shown as on the top 
middle panel with a different color-code emphasizing the different network topologies. The 
various networks are represented by the following colors: regular networks – blue; small-
world networks – green; scale-free networks – yellow; random networks – red (from the angle 
of the figure the random networks are behind some of the small-world networks and, 
therefore are highlighted with a red arrow to make there identification easier). 
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Figure S1.10. Long-term learning and innovative strategy adoption rules extend cooperative 
network topologies in the extended Prisoner’s Dilemma game. The top middle panel shows 
the level of cooperation at different network topologies. small-world (spheres) and scale-free 
(cones) networks were built as described in the Methods. The rewiring probability, p of small-
world networks was increased from 0 to 1 with 0.05 increments, the number of edges linking 
each new node to former nodes in scale-free networks was varied from 1 to 7, and the means 
of shortest path-lengths and clustering coefficients were calculated for each network. Cubes 
and cylinders denote regular (p = 0) and random (p = 1.0) extremes of the small-world 
networks, respectively. For the description of the games and the best-takes-over (green 
symbols); long-term learning best-takes-over (blue symbols); long-term learning innovative 
best-takes-over (magenta symbols) and Q-learning (red symbols) strategy adoption rules used, 
see Methods. The left and right panels show the 2D side views of the 3D top middle panel 
using the same symbol-set. For each network 100 random runs of 5,000 time steps were 
executed at a fixed T value of 1.8. The bottom middle panel shows a color-coded illustration 
of the various network topologies used on the top middle panel. Here the same simulations 
are shown as on the top middle panel with a different color-code emphasizing the different 
network topologies. The various networks are represented by the following colors: regular 
networks – blue; small-world networks – green; scale-free networks – yellow; random 
networks – red (from the angle of the figure the random networks are behind some of the 
small-world networks and, therefore are highlighted with a red arrow to make there 
identification easier).  
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Figure S1.11. Both hawks and doves become isolated in extreme minority, when they use the 
innovative Q-learning strategy adoption rule in Hawk-Dove games on small-world and scale-
free networks. The small-world [2] and scale-free networks [10] were built, and Hawk-Dove 
games were played as described in the Methods using 225 agents. Networks showing the last 
round of 5,000 plays were visualized using the Kamada-Kawai algorithm of the Pajek 
program [116]. Blue and orange dots correspond to hawks and doves, respectively. Green, 
orange and grey lines denote hawk-hawk, dove-dove or dove-hawk contacts, respectively. 
Arrows point to lonely hawks or doves using the respective colors above. A,  Small-world 
network with a rewiring probability of 0.05, G=0.15. B,  Small-world network with a rewiring 
probability of 0.05, G=0.95. C,  Scale-free network with m=3, G=0.1. D,  Scale-free network 
with m=3, G=0.98. We have received similar data when playing extended Prisoner’s 
Dilemma games (data not shown). 

A B

C D
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Figure S1.12. Hawks, and especially doves are not extremely isolated in extreme minority, 
when they use the non-innovative best-takes-over strategy adoption rule in Hawk-Dove 
games on small-world and scale-free networks. The small-world [2] and scale-free networks 
[10] were built, and Hawk-Dove games were played as described in the Methods using 225 
agents. Networks showing the last round of 5,000 plays were visualized using the Kamada-
Kawai algorithm of the Pajek program [116]. Blue and orange dots correspond to hawks and 
doves, respectively. Green, orange and grey lines denote hawk-hawk, dove-dove or dove-
hawk contacts, respectively. Arrows point to lonely hawks or doves using the respective 
colours above. A,  Small-world network with a rewiring probability of 0.05, G=0.15. B,  
Small-world network with a rewiring probability of 0.05, G=0.75. C,  Scale-free network with 
m=3, G=0.1. D,  Scale-free network with m=3, G=0.8. We have received similar data using 
other non-innovative strategy adoption rules, such as pair-wise comparison dynamics, or 
proportional updating, as well as when playing extended Prisoner’s Dilemma games (data not 
shown). 
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