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A Payoff Difference
Based on the previous results of voluntary PGGs (Hauert et al., 2002), we calcu-
late the advantage of a potential defector over a potential cooperator.

The variables xp := pxx̃, yp := py(1 − x̃) and z correspond to the relative
frequencies of the three pure strategies of voluntary PGGs. According to Hauert
et al. (2002), the average payoffs Pc and Pd of a cooperator and a defector are
respectively given by

Pc = σzN−1 + (r − 1)(1 − zN−1) − r
yp

1 − z

(
1 − 1 − zN

N(1 − z)

)
, (A.1)

Pd = σzN−1 + r
xp

1 − z

(
1 − 1 − zN

N(1 − z)

)
, (A.2)

where σ is a fixed payoff of loner-like behaviour.
Using Pc and Pd, the expected payoffs Pc̃ and Pd̃ are given by

Pc̃ = pxPc + (1 − px)σ, (A.3)

Pd̃ = pyPd + (1 − py)σ. (A.4)

Hence, estimating the advantage of a potential defector over a potential cooperator
yields

(1 − z)(Pd̃ − Pc̃)

= σ(px − py)(1 − z) + (xp + yp)(pyPd − pxPc)

= σ(px − py)(1 − z) − (px − py)(xpPc + ypPd) + pxpy(Pd − Pc)

= (px − py)(σ − (xpPc + ypPd + zσ)) + pxpy(Pd − Pc)

= (px − py)(σ − P̄ ) + pxpy(Pd − Pc), (A.5)
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where we use xp + yp + z = 1 and P̄ = xpPc + ypPd + zσ. When z is fixed, this
eqn (A.5) enables us to compare the dynamics of the current model with that of
voluntary PGGs. In particular, for px = py, z is constant (1 − px = z = 1 − py)
and eqn (A.5) is then reduced to

Pd̃ − Pc̃ = (1 − z)(Pd − Pc). (A.6)

Further, substituting eqns (A.1) and (A.2) for Pd̃ − Pc̃, leads to the advantage
function:

Pd̃ − Pc̃

= σ(px − py) + (pyPd − pxPc)

= σ(px − py) + σ(px − py)z
N−1 − (r − 1)px(1 − zN−1)

+
r

1 − z
(pyxp + pxyp)

(
1 − 1 − zN

N(1 − z)

)
= (σ(px − py) − (r − 1)px)(1 − zN−1) + r

pxpy

1 − z

(
1 − 1 − zN

N(1 − z)

)
=: F̃ (z(x̃)),

where we use pyxp + pxyp = pypxx̃ + pxpy(1 − x̃) = pxpy.
We introduce some notations, a := (σ− r +1)px −σpy and b := rpxpy. Then

the derivative of F̃ with respect to z is given by

dF̃

dz
=

d

dz

(
−azN−1 +

b

N

N−2∑
k=0

(N − 1 − k)zk

)

= −a(N − 1)zN−2 +
b

N

N−2∑
k=1

(N − 1 − k)kzk−1 (N ≥ 3),

and F̃ ′(z) = −a (N = 2). In the parameter space (px, py), it is always the case
that a ≤ 0 and b ≥ 0. In particular, a = 0 ∧ b = 0 ⇔ (px, py) = (0, 0). Therefore,
we have dF̃/dz ≥ 0 (dF̃ /dz = 0 ⇔ (px, py) = (0, 0)) and

dF̃

dx̃
=

dF̃

dz

dz

dx̃


> 0 (px < py)
= 0 (px = py)
< 0 (px > py),

where dz/dx̃ = py − px.



ESM: Probabilistic Participation in PGGs 3

B Arrangement of Dynamical Regimes

We separate the parameter space (px, py) depending on whether the signs of F̃ (z(x̃))
at each x̃ = 0, 1 are the same. Consequently we obtain the following four regions:

(i) {F̃ (z(0)) ≥ 0} ∩ {F̃ (z(1)) ≥ 0}
(ii) {F̃ (z(0)) < 0} ∩ {F̃ (z(1)) > 0}
(iii) {F̃ (z(0)) ≤ 0} ∩ {F̃ (z(1)) ≤ 0}
(iv) {F̃ (z(0)) > 0} ∩ {F̃ (z(1)) < 0},

where z(0) = 1 − py and z(1) = 1 − px. Monotonically increasing F̃ (z(x̃)) ⇔
px < py yields that px < py holds in the region (ii). Likewise, monotonically
decreasing F̃ (z(x̃)) ⇔ px > py yields that px > py holds in the region (iv).

On the diagonal px = py, F̃ (z) is equal to (1−z)F (z) (eqns (A.6)). According
to Hauert et al. (2002), F (0) > 0 and F (1) = 0 hold. Then, if F (z) has a unique
interior root ẑ in (0, 1) (r > 2), F (z) > 0 for 0 < z < ẑ and F (z) < 0 for
ẑ < z < 1. If F (z) has no root ẑ there (r ≤ 2), F (z) > 0 for all 0 < z < 1. Let Q
be the point (1− ẑ, 1− ẑ) in (px, py). The properties of F (z) lead to that for r > 2,
at the point Q the diagonal px = py is divided into the two segment covered by (i)
and (iii), and for r ≤ 2, the diagonal is included in (i). We specifically denote the
two points set {(0, 0), Q} as (v) and exclude this from (i) and (iii).

By using F (z), we obtain

F̃ (z(0)) = σ(px − py)(1 − (1 − py)
N−1) + pxF (1 − py),

F̃ (z(1)) = (σ − r + 1)(px − py)(1 − (1 − px)
N−1) + pyF (1 − px).

Let C1 and C2 be the boundary curves of the four regions (i–iv), defined by
g1(px, py) := F̃ (z(1)) = 0 and g2(px, py) := F̃ (z(0)) = 0, respectively. The
monotonicity of F̃ (z(x̃)) yields that if F̃ (z(0)) = F̃ (z(1)), z(0) = z(1) (px =
py) holds. Hence, the intersection of C1 and C2 exists on the diagonal. Since
g1(1− z, 1− z) = g2(1− z, 1− z) = F (z), The intersection consists of the single
point (0, 0) for r ≤ 2 or the two points: (0, 0) and Q for r > 2.

In order to investigate the arrangement of the regions in the vicinity of Q, we
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compute the Jacobian of (g1, g2) at Q as follows:

∂(g1, g2)

∂(px, py)

∣∣∣∣∣
Q

=

∣∣∣∣∣ ∂g1

∂px

∂g1

∂py
∂g2

∂px

∂g2

∂py

∣∣∣∣∣
Q

=

∣∣∣∣ (σ − r + 1)(1 − ẑN) − (1 − ẑ)F ′(ẑ) −(σ − r + 1)(1 − ẑN)
σ(1 − ẑN) −σ(1 − ẑN) − (1 − ẑ)F ′(ẑ)

∣∣∣∣
= (1 − ẑ)F ′(ẑ){(1 − ẑ)F ′(ẑ) + (r − 1)(1 − ẑN)}
= (1 − ẑ)F ′(ẑ){(r − 1)(N − 1)(1 − ẑ)ẑN−2 + (r − 2)(1 − ẑN−1)}.

Because 0 < ẑ < 1, F ′(ẑ) < 0 (Hauert et al., 2002), r > 2 and N ≥ 3, the
Jacobian is nonzero. Therefore, C1 and C2 are transversely crossing at Q, and the
four regions (i–iv) exist in any small neighborhood of Q.

C Average Payoff at Equilibrium
We here calculate the average population payoff in each moment at each type of
equilibria of this model. Let P̄z be the average population payoff at a point z.

Firstly, we consider the case of interior equilibrium, that is, the region (ii) and
(iv), and denote the unique interior fixed point as z̃. We then suppose the case of
r > 2 (Q exists). Considering a sufficient small neighborhood of Q, allows us to
assume that the range of z contains the unique root ẑ of F (z).

Using eqn (A.5):

(1 − z)F̃ (z) = (px − py)(σ − P̄z) + pxpyF (z) (C.1)

leads to
F̃ (ẑ) = 0 ⇔ z̃ = ẑ ⇔ P̄z̃ = σ.

Since the signs of F (z) and F̃ (z) change once from (+) to (−) and from (−) to
(+) in the open interval (0, 1) respectively, we obtain

F̃ (ẑ) > 0 ⇔ z̃ < ẑ ⇔ F (z̃) > 0.

For the region (ii) (px < py), using F̃ (z̃) = 0 in eqn (C.1), we obtain F (z̃) > 0
⇔ P̄z̃ < σ, that is,

F̃ (ẑ) < 0 ⇔ P̄z̃ > σ.

Likewise, for the region (iv) (px > py), F̃ (ẑ) > 0 ⇔ P̄z̃ > σ holds. Let C3 be the
curve F̃ (ẑ) = 0. The above results can be summarized by stating that C3 divides
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each of the region (ii) and (iv) into two subregions which are characterized by
P̄z̃ > σ and P̄z̃ < σ, in the vicinity of Q. P̄z̃ is then equal to σ on C3.

Conversely, if r ≤ 2 (Q does not exists), F (z) > 0 always holds in (0, 1).
Using eqn (C.1) yields that px < py in (ii) ⇒ P̄z̃ < σ, and px > py in (iv)⇒ P̄z̃ >
σ. Other two subregions: P̄ ∗ > σ in (ii) and P̄ ∗ < σ in (iv), do not appear. We
then notice that N = 2 ⇒ r ≤ 2 because of the precondition of the public goods
game: 1 < r < N .

Secondly, we remark the case of trivial equilibrium, that is, both C̃- and D̃-
homogeneous states. In the former, substituting yp = 0 (x̃ = 1) for eqn (A.1)
yields Pc = σzN−1 + (r − 1)(1 − zN−1). Thus, since px = 1 − z and σ < r − 1
(the precondition of PGG with loners), eqn (A.3) yields

Pc̃ = (σ − r + 1){z + (1 − z)zN−1} + (r − 1)

≥ (σ − r + 1) · 1 + (r − 1)

= σ,

where Pc̃ = σ ⇔ px = 0 which means that all of the population are actually pure
loners. In the latter, likewise, substituting xp = 0 (x̃ = 0) for eqn (A.2) yields
Pd = σzN−1. Thus, since py = 1 − z, eqn (A.4) yields

Pd̃ = σ{z + (1 − z)zN−1} ≤ σ,

where Pd̃ = σ ⇔ py = 0.
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