Electronic supplementary material: Probabilistic participation in public goods games

Tatsuya Sasaki Isamu Okada Tatsuo Unemi

July 19, 2007

A Payoff Difference

Based on the previous results of voluntary PGGs (Hauert *et al.*, 2002), we calculate the advantage of a potential defector over a potential cooperator.

The variables $x_p := p_x \tilde{x}$, $y_p := p_y(1 - \tilde{x})$ and z correspond to the relative frequencies of the three pure strategies of voluntary PGGs. According to Hauert *et al.* (2002), the average payoffs P_c and P_d of a cooperator and a defector are respectively given by

$$P_c = \sigma z^{N-1} + (r-1)(1-z^{N-1}) - r \frac{y_p}{1-z} \left(1 - \frac{1-z^N}{N(1-z)}\right), \quad (A.1)$$

$$P_d = \sigma z^{N-1} + r \frac{x_p}{1-z} \left(1 - \frac{1-z^N}{N(1-z)} \right), \tag{A.2}$$

where σ is a fixed payoff of loner-like behaviour.

Using P_c and P_d , the expected payoffs $P_{\tilde{c}}$ and $P_{\tilde{d}}$ are given by

$$P_{\tilde{c}} = p_x P_c + (1 - p_x)\sigma, \tag{A.3}$$

$$P_{\tilde{d}} = p_y P_d + (1 - p_y)\sigma. \tag{A.4}$$

Hence, estimating the advantage of a potential defector over a potential cooperator yields

$$(1-z)(P_{\tilde{d}} - P_{\tilde{c}}) = \sigma(p_x - p_y)(1-z) + (x_p + y_p)(p_y P_d - p_x P_c) = \sigma(p_x - p_y)(1-z) - (p_x - p_y)(x_p P_c + y_p P_d) + p_x p_y(P_d - P_c) = (p_x - p_y)(\sigma - (x_p P_c + y_p P_d + z\sigma)) + p_x p_y(P_d - P_c) = (p_x - p_y)(\sigma - \bar{P}) + p_x p_y(P_d - P_c),$$
(A.5)

where we use $x_p + y_p + z = 1$ and $\overline{P} = x_p P_c + y_p P_d + z\sigma$. When z is fixed, this eqn (A.5) enables us to compare the dynamics of the current model with that of voluntary PGGs. In particular, for $p_x = p_y$, z is constant $(1 - p_x = z = 1 - p_y)$ and eqn (A.5) is then reduced to

$$P_{\tilde{d}} - P_{\tilde{c}} = (1 - z)(P_d - P_c).$$
(A.6)

Further, substituting eqns (A.1) and (A.2) for $P_{\tilde{d}} - P_{\tilde{c}}$, leads to the advantage function:

$$\begin{split} P_{\tilde{d}} - P_{\tilde{c}} \\ &= \sigma(p_x - p_y) + (p_y P_d - p_x P_c) \\ &= \sigma(p_x - p_y) + \sigma(p_x - p_y) z^{N-1} - (r-1) p_x (1 - z^{N-1}) \\ &\quad + \frac{r}{1 - z} (p_y x_p + p_x y_p) \left(1 - \frac{1 - z^N}{N(1 - z)} \right) \\ &= (\sigma(p_x - p_y) - (r-1) p_x) (1 - z^{N-1}) + r \frac{p_x p_y}{1 - z} \left(1 - \frac{1 - z^N}{N(1 - z)} \right) \\ &=: \widetilde{F}(z(\tilde{x})), \end{split}$$

where we use $p_y x_p + p_x y_p = p_y p_x \tilde{x} + p_x p_y (1 - \tilde{x}) = p_x p_y$. We introduce some notations, $a := (\sigma - r + 1)p_x - \sigma p_y$ and $b := rp_x p_y$. Then the derivative of \widetilde{F} with respect to z is given by

$$\frac{d\widetilde{F}}{dz} = \frac{d}{dz} \left(-az^{N-1} + \frac{b}{N} \sum_{k=0}^{N-2} (N-1-k)z^k \right)$$
$$= -a(N-1)z^{N-2} + \frac{b}{N} \sum_{k=1}^{N-2} (N-1-k)kz^{k-1} \quad (N \ge 3),$$

and $\widetilde{F}'(z) = -a$ (N = 2). In the parameter space (p_x, p_y) , it is always the case that $a \leq 0$ and $b \geq 0$. In particular, $a = 0 \land b = 0 \Leftrightarrow (p_x, p_y) = (0, 0)$. Therefore, we have $d\widetilde{F}/dz \ge 0$ $(d\widetilde{F}/dz = 0 \Leftrightarrow (p_x, p_y) = (0, 0))$ and

$$\frac{d\widetilde{F}}{d\widetilde{x}} = \frac{d\widetilde{F}}{dz}\frac{dz}{d\widetilde{x}} \begin{cases} > & 0 \quad (p_x < p_y) \\ = & 0 \quad (p_x = p_y) \\ < & 0 \quad (p_x > p_y), \end{cases}$$

where $dz/d\tilde{x} = p_y - p_x$.

B Arrangement of Dynamical Regimes

We separate the parameter space (p_x, p_y) depending on whether the signs of $\tilde{F}(z(\tilde{x}))$ at each $\tilde{x} = 0, 1$ are the same. Consequently we obtain the following four regions:

 $\begin{array}{ll} \text{(i)} & \{\widetilde{F}(z(0)) \geq 0\} \cap \{\widetilde{F}(z(1)) \geq 0\} \\ \text{(ii)} & \{\widetilde{F}(z(0)) < 0\} \cap \{\widetilde{F}(z(1)) > 0\} \\ \text{(iii)} & \{\widetilde{F}(z(0)) \leq 0\} \cap \{\widetilde{F}(z(1)) \leq 0\} \\ \text{(iv)} & \{\widetilde{F}(z(0)) > 0\} \cap \{\widetilde{F}(z(1)) < 0\}, \end{array}$

where $z(0) = 1 - p_y$ and $z(1) = 1 - p_x$. Monotonically increasing $\widetilde{F}(z(\tilde{x})) \Leftrightarrow p_x < p_y$ yields that $p_x < p_y$ holds in the region (ii). Likewise, monotonically decreasing $\widetilde{F}(z(\tilde{x})) \Leftrightarrow p_x > p_y$ yields that $p_x > p_y$ holds in the region (iv).

On the diagonal $p_x = p_y$, $\tilde{F}(z)$ is equal to (1-z)F(z) (eqns (A.6)). According to Hauert *et al.* (2002), F(0) > 0 and F(1) = 0 hold. Then, if F(z) has a unique interior root \hat{z} in (0,1) (r > 2), F(z) > 0 for $0 < z < \hat{z}$ and F(z) < 0 for $\hat{z} < z < 1$. If F(z) has no root \hat{z} there $(r \le 2)$, F(z) > 0 for all 0 < z < 1. Let **Q** be the point $(1-\hat{z}, 1-\hat{z})$ in (p_x, p_y) . The properties of F(z) lead to that for r > 2, at the point **Q** the diagonal $p_x = p_y$ is divided into the two segment covered by (i) and (iii), and for $r \le 2$, the diagonal is included in (i). We specifically denote the two points set $\{(0,0), \mathbf{Q}\}$ as (v) and exclude this from (i) and (iii).

By using F(z), we obtain

$$\widetilde{F}(z(0)) = \sigma(p_x - p_y)(1 - (1 - p_y)^{N-1}) + p_x F(1 - p_y),$$

$$\widetilde{F}(z(1)) = (\sigma - r + 1)(p_x - p_y)(1 - (1 - p_x)^{N-1}) + p_y F(1 - p_x).$$

Let \mathbf{C}_1 and \mathbf{C}_2 be the boundary curves of the four regions (i-iv), defined by $g_1(p_x, p_y) := \widetilde{F}(z(1)) = 0$ and $g_2(p_x, p_y) := \widetilde{F}(z(0)) = 0$, respectively. The monotonicity of $\widetilde{F}(z(\tilde{x}))$ yields that if $\widetilde{F}(z(0)) = \widetilde{F}(z(1))$, z(0) = z(1) ($p_x = p_y$) holds. Hence, the intersection of \mathbf{C}_1 and \mathbf{C}_2 exists on the diagonal. Since $g_1(1-z, 1-z) = g_2(1-z, 1-z) = F(z)$, The intersection consists of the single point (0,0) for $r \leq 2$ or the two points: (0,0) and \mathbf{Q} for r > 2.

In order to investigate the arrangement of the regions in the vicinity of \mathbf{Q} , we

compute the Jacobian of (g_1, g_2) at **Q** as follows:

$$\begin{split} \frac{\partial(g_1, g_2)}{\partial(p_x, p_y)} \bigg|_{\mathbf{Q}} &= \bigg| \begin{array}{c} \frac{\partial g_1}{\partial p_x} & \frac{\partial g_1}{\partial p_y} \\ \frac{\partial g_2}{\partial p_x} & \frac{\partial g_2}{\partial p_y} \\ &= \bigg| \begin{array}{c} (\sigma - r + 1)(1 - \hat{z}^N) - (1 - \hat{z})F'(\hat{z}) & -(\sigma - r + 1)(1 - \hat{z}^N) \\ & \sigma(1 - \hat{z}^N) & -\sigma(1 - \hat{z}^N) - (1 - \hat{z})F'(\hat{z}) \\ &= (1 - \hat{z})F'(\hat{z})\{(1 - \hat{z})F'(\hat{z}) + (r - 1)(1 - \hat{z}^N)\} \\ &= (1 - \hat{z})F'(\hat{z})\{(r - 1)(N - 1)(1 - \hat{z})\hat{z}^{N-2} + (r - 2)(1 - \hat{z}^{N-1})\}. \end{split}$$

Because $0 < \hat{z} < 1$, $F'(\hat{z}) < 0$ (Hauert *et al.*, 2002), r > 2 and $N \ge 3$, the Jacobian is nonzero. Therefore, C_1 and C_2 are transversely crossing at Q, and the four regions (i–iv) exist in any small neighborhood of Q.

C Average Payoff at Equilibrium

We here calculate the average population payoff in each moment at each type of equilibria of this model. Let \bar{P}_z be the average population payoff at a point z.

Firstly, we consider the case of interior equilibrium, that is, the region (ii) and (iv), and denote the unique interior fixed point as \tilde{z} . We then suppose the case of r > 2 (**Q** exists). Considering a sufficient small neighborhood of **Q**, allows us to assume that the range of z contains the unique root \hat{z} of F(z).

Using eqn (A.5):

$$(1-z)\widetilde{F}(z) = (p_x - p_y)(\sigma - \bar{P}_z) + p_x p_y F(z)$$
(C.1)

leads to

$$\widetilde{F}(\hat{z}) = 0 \Leftrightarrow \tilde{z} = \hat{z} \Leftrightarrow \bar{P}_{\tilde{z}} = \sigma$$

Since the signs of F(z) and $\tilde{F}(z)$ change once from (+) to (-) and from (-) to (+) in the open interval (0, 1) respectively, we obtain

$$F(\hat{z}) > 0 \Leftrightarrow \tilde{z} < \hat{z} \Leftrightarrow F(\tilde{z}) > 0.$$

For the region (ii) $(p_x < p_y)$, using $\widetilde{F}(\tilde{z}) = 0$ in eqn (C.1), we obtain $F(\tilde{z}) > 0$ $\Leftrightarrow \overline{P}_{\tilde{z}} < \sigma$, that is,

$$\bar{F}(\hat{z}) < 0 \Leftrightarrow \bar{P}_{\tilde{z}} > \sigma.$$

Likewise, for the region (iv) $(p_x > p_y)$, $\tilde{F}(\hat{z}) > 0 \Leftrightarrow \bar{P}_{\tilde{z}} > \sigma$ holds. Let \mathbb{C}_3 be the curve $\tilde{F}(\hat{z}) = 0$. The above results can be summarized by stating that \mathbb{C}_3 divides

each of the region (ii) and (iv) into two subregions which are characterized by $\bar{P}_{\bar{z}} > \sigma$ and $\bar{P}_{\bar{z}} < \sigma$, in the vicinity of **Q**. $\bar{P}_{\bar{z}}$ is then equal to σ on **C**₃.

Conversely, if $r \leq 2$ (**Q** does not exists), F(z) > 0 always holds in (0, 1). Using eqn (C.1) yields that $p_x < p_y$ in (ii) $\Rightarrow \bar{P}_{\tilde{z}} < \sigma$, and $p_x > p_y$ in (iv) $\Rightarrow \bar{P}_{\tilde{z}} > \sigma$. Other two subregions: $\bar{P}^* > \sigma$ in (ii) and $\bar{P}^* < \sigma$ in (iv), do not appear. We then notice that $N = 2 \Rightarrow r \leq 2$ because of the precondition of the public goods game: 1 < r < N.

Secondly, we remark the case of trivial equilibrium, that is, both \tilde{C} - and \tilde{D} homogeneous states. In the former, substituting $y_p = 0$ ($\tilde{x} = 1$) for eqn (A.1)
yields $P_c = \sigma z^{N-1} + (r-1)(1-z^{N-1})$. Thus, since $p_x = 1-z$ and $\sigma < r-1$ (the precondition of PGG with loners), eqn (A.3) yields

$$P_{\tilde{c}} = (\sigma - r + 1) \{ z + (1 - z) z^{N-1} \} + (r - 1)$$

$$\geq (\sigma - r + 1) \cdot 1 + (r - 1)$$

$$= \sigma,$$

where $P_{\tilde{c}} = \sigma \Leftrightarrow p_x = 0$ which means that all of the population are actually pure loners. In the latter, likewise, substituting $x_p = 0$ ($\tilde{x} = 0$) for eqn (A.2) yields $P_d = \sigma z^{N-1}$. Thus, since $p_y = 1 - z$, eqn (A.4) yields

$$P_{\tilde{d}} = \sigma\{z + (1-z)z^{N-1}\} \le \sigma,$$

where $P_{\tilde{d}} = \sigma \Leftrightarrow p_y = 0$.

References

 Hauert, C., De Monte, S., Hofbauer, J. and Sigmund, K. 2002 Replicator dynamics for optional public goods games. *J. Theor. Biol.* 218, 187–194. (DOI: 10.1006/jtbi.2002.3067)