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CD44 in Differentiated Embryonic Stem Cells: Surface
Expression and Transcripts Encoding Multiple Variants
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Expression of the surface-adhesion molecule CD44 was investigated during the in vitro
differentiation of the embryonic stem (ES) cell line D3. By immunofluorescence analysis,
totipotent, undifferentiated ES cells did not show surface expression of CD44, although two
transcripts of approximately 1.6 and 3.3 kb were detected on Northern blots. Following 1
week of differentiation in either suspension or substrate-attached cultures, CD44 appeared
on the surface of some D3 cells, and synthesis of an additional 4.5 kb mRNA species was
detected on Northern blots. At this stage, at least three distinct transcripts encoding CD44
variants were induced within the cultures, resulting from alternative splicing of additional
exons in the variable domains of CD44. From PCR analysis, they all appeared to contain the
variable exon v10, and two of them in addition contained v6. Taken together, these results
suggest that CD44 may play a role in cell migration and adhesion in the early development

of the mouse embryo.
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INTRODUCTION

CD44 is a family of cell-surface glycoproteins,
encoded by a single complex gene. In the adult
animal, the CD44 antigen is expressed by many
cell types: hematolymphoid cells; several types of
epithelia; and a variety of mesenchymal tissues,
including fibroblasts, smooth muscle cells, and as-
trocytes (Trowbridge etal., 1982; Flanagan et al.,
1989; Picker et al., 1989; Kennel et al., 1993). The
extracellular, N-terminal part of the CD44 mole-
cule, whose molecular mass is 85-90 kD, com-
prises a binding site for hyaluronic acid (HA).
Some forms of the CD44 antigen can also be
associated with chondroitin sulfate to yield a pro-
tein of 180-200 kD. CD44 is implicated in cell-cell
and cell-substrate adhesion. It can bind several
ligands such as collagen and fibronectin, which are
important components of extracellular matrixes
(ECM) (Carter and Wagner, 1988; Jalkanen and
Jalkanen, 1992). In addition, CD44 was found to
be a major receptor for hyaluronate (HA) (Aruffo
etal, 1990; Lesley etal., 1990; Miyake etal.,
1990b). Many functions have been attributed to
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CD44 molecules, relating to T-cell and B-cell on-
togeny (Hyman et al.,, 1986; Miyake et al., 1990a),
cell activation (Budd et al., 1987; Tabi et al.,, 1988,
Mobley and Dailey, 1992), lymphocyte extravasa-
tion across endothelial barriers (reviewed by Berg
etal., 1989), degradation of HA (reviewed by Un-
derhill, 1992), and tumor metastasis (Gunthert
etal.,, 1991).

In addition to the “‘standard” form of CD44 (Zhou
et al., 1989), an increasing number of variant CD44
molecules have been described that result from the
insertion of any of ten additional variant (v) exons,
labeled vl to v10, alternatively spliced in the
extracellular/membrane-proximal domain (Hof-
mann etal., 1991; Jackson etal., 1992; Screaton
etal.,, 1992; Tolg et al., 1993). Among these variants,
the p-meta-1 variant (Ganthert etal., 1991), con-
taining the variable exons v4 to v7, has been
implicated in the metastatic spread of tumors. Inter-
estingly, a close variant containing the unique ad-
ditional exon v6 is induced upon lymphocyte
activation in vivo and appears to function as a
homing receptor for lymphocyte entry into lymph
nodes (Arch et al., 1992). This diversity in form and
function suggests that surface expression of CD44
variants must be finely regulated not only in adult
tissues, but also during development.
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The early events of embryogenesis can be mim-
icked in vitro by inducing the differentiation of the
embryonic stem cell (ES) line D3, derived from a
mouse blastocyst (Doetschman etal., 1985, 1987).
This cell line has the potential to participate in the
formation of all three embryonic germ-layer tissues
(ectoderm, mesoderm, and endoderm) when rein-
jected into the cavity of a mouse blastocyst before
reimplantation in vivo. ES/D3 cells have been for-
merly used for differentiation studies in vitro, where
they can spontaneously give rise to a variety of cell
types, in the absence of leukemia inhibitory factor
(LIF) (Martin, 1981; Doestschman etal., 1985,
1987). Two culture systems were used. The first is a
suspension culture system in which ESD3 cells are
able to form highly organized cystic embryoid body
structures, which are analogous to postimplantation
embryos and contain derivatives of all three germ
layers. The second is a monolayer culture on gelatin-
coated dishes in the absence of LIF. In such cultures,
ES cells grow as aggregates.

We have used both culture methods to examine
the expression of CD44 following differentiation in
vitro. Totipotent ESD3 cells do not express surface
CD44, although transcripts hybridizing with the
CD44 cDNA are present. By PCR analysis, these
transcripts do not appear to encode the “standard”
form of the molecule. Surface expression of CD44
can be detected after 7 days in both differentiation
culture conditions. At this stage, the mRNA pat-
tern of CD44 has been considerably modified:
4.5-kb band, which is predominant in cells such as
thymocytes, a T-cell hybridoma, and astrocytes
(Haegel and Ceredig, 1991; Haegel etal., 1993),
appeared on Northern blots, and PCR analysis
showed the presence of “standard” CD44 tran-
scripts. Moreover, at least three distinct transcripts
coding for variant CD44 molecules were detected.
All the PCR-identified transcripts appeared to con-
tain the variable exon v10, and at least two of
them contained v6. The possible implications of
these results regarding the importance of CD44
during embryonic, including hemopoietic, develop-
ment are discussed.

MATERIALS AND METHODS

Culture and Differentiation of ES Cell Line D3

The ES cell line D3 (gift of R. Kemler, Freiburg) was
established from a 129/Sv mouse blastocyst. ESD3
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cells were first propagated on feeder layers of
embryonic fibroblasts inactivated by mitomycin-C
(Doetschman et al., 1985). Then they were adapted
in our laboratory in culture without feeders on
gelatin-coated dishes. To maintain their undifferen-
tiated state, they were grown in the presence of
exogenous LIF (1000 U/ml) in high-glucose DMEM
medium (Sigma) supplemented with 2mM L-
glutamine, 1mM sodium pyruvate, 0.1 mM
B-mercato-ethanol, 50 ug/ml gentamycin, and 15%
fetal calf serum (Gibco). D3 cells cultured in
DMEM +LIF for less than twenty-five passages were
used in this study.

Differentiation was induced by removing LIF
from the medium, and culturing the cells either in
suspension using hydrophobic Petric dishes (Steri-
lin, Staffs, UK) or as substrate-attached cultures in
0.1% gelatin-treated dishes. Cells were harvested at
the indicated times and used for RNA extraction and
immunofluorescence. In the case of adherent cells,
cultures were pretreated for 3 min at 37°C with
0.04% trypsin. Previous studies had shown that this
treatment was insufficient to cleave surface CD44
molecules.

FCM Analysis

Cultures of undifferentiated or differentiated cells
were treated for 30 min at 37°C with 1 mM EDTA
in PBS followed by gentle pipetting. The resultant
cell suspension was filtered through nylon mesh to
remove remaining cell clumps and then centrifuged
over Hypaque-Ficoll to remove cell debris. The
resultant cell suspension was washed twice in
DMEM prior to immunofluorescent staining. Cells
(3x10% in wells of round-bottomed microtitre
plates were stained for 30 min at 4°C with saturat-
ing concentrations of rat monoclonal antibodies
(mAbs) to either CD44 (IM7, IgG,,), CD25 (PCé61,
IgG,) or CD4 (H-129-19.6, IgG,,,). Following two
washes in DMEM without serum, bound mAbs
were revealed with mouse-absorbed FITC-labeled
sheep anti-rat Ig (Silenus). Prior to addition to
labeled ES cells, this second-step reagent was ab-
sorbed with unlabeled ES cells and centrifuged at
10,000 g in a microfuge, in order to reduce any
nonspecific staining. FCM was carried out with a
Coulter Elite flow cytometer and viable cells identi-
fied by a combination of narrow angle forward- and
side-scatter signals.
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RNA Preparation and Northern Blot Analysis

Total RNA was extracted by centrifugation on a
5.7M CsCl cushion as described (Maniatis et al.,
1982), and separated according to size on a 1%
agarose formaldehyde gel that was blotted onto a
Hybond-N nylon filter (Amersham, les Ulis, France).
The amount and quality of the loaded material was
checked by methylene blue staining of the filters
(Maniatis etal., 1982). Probes were obtained by
random priming of the CD44 (Pgp-1) cDNA 1.3-kb
EcoR1 fragment from plasmid Prk-5 (Zhou et al,,
1989). Following hybridization, filters were washed
in 0.1XxSSC, 0.1% SDS at 55°C, and exposed onto
Kodak X-OMAT films (Rochester, NY) for 1 day to 2
weeks.

PCR Amplification of CD44 Variant Region

We used oligonucleotides hybridizing to the stan-
dard CD44 region in positions 5’ and 3’ to the
variable domains (see Fig. 3B: oligos A and D
hybridize in the “standard” CD44 exons s5 and s7),
and in exons v6 and v7 of the variable domain (Tolg
et al.,, 1993). These oligos were a kind gift from Prof.
Peter Herrlich (KFZ Karlsruhe). Approximately 1
microgram of total RNA samples were reverse tran-
scribed using 20 ug/ml oligo dT primer in 50 mM
Tris-HCl, 20 mM KCl, 10 mM MgCl,, 5 mM DTT,
and 1 mM of each dNTP. AMV reverse transcriptase
(9 U) and ribonuclease inhibitor (6 U) (Amersham)
were added in a 20-ul volume, and reverse tran-
scription was achieved after 40 min at 42°C. The
reaction was stopped by adding 80 41 H,O, and 2 ul
of this cDNA preparation was submitted to PCR
amplification.

The amplification was carried out in a buffer
containing 10 mM Tris-HCl, 50 mM KCl, 2 mM
MgCl,, 1% gelatin, and 200 uM of each dNTP.
1uM of each primer pair and 0.5 unit of TAQ
polymerase (Perkin Elmer Cetus) were added in a
final volume of 20 ul. Samples were denatured 7
min at 94°C, followed by thirty-five cycles of 30 sec
at 92°C, 20 sec at 60°C, and 1 min at 72°C, with a
2 sec extension at each cycle, and a final 10 min
elongation at 72°C. PCR products were run on a 2%
agarose gel, blotted onto Hybond-H* (Amersham),
and hybridized to CD44 variant region cDNA
probes (kind gifts of P. Herrlich) corresponding to
exons v6-7 and v10, obtained by random priming.
Filters were exposed to Kodak X-OMAT filters for
intervals of 1 to 3 days.
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RESULTS

Totipotent ESD3 Cells Do Not Express Surface
CD44 but CD44 Transcripts Are Present

We have examined CD44 transcripts in undifferen-
tiated ESD3 cells (Fig. 1, right panel). The amount of
RNA loaded on Northern blots was checked by
methylene blue staining of the filters, and ribosomal
RNA bands were used as size markers (Fig. 1, lower
panel). Two bands were shown to hybridize to a
CD44 ¢DNA probe (Zhou et al.,, 1989). Their sizes
were estimated to be 1.6 and 3.3 kb. They were
compared to the CD44 mRNA pattern of a T-cell
hybridoma, H11.1 (Fig. 1, left panel), known to
express a high level of CD44 protein on the cell
surface and to contain transcripts of 1.6, 3.5, and
4.5 kb (Haegel and Ceredig, 1991). The difference in
size between CD44 mRNA has been proposed to
result from distinct polyadenylation sites or 3'UTR
length (Schtivelman and Bishop, 1991). The pattern
of CD44 transcripts in ES and H11.1 cells was

FIGURE 1.

CD44 mRNAs in undifferentiated ES/D3 cells
(right) compared to the H11.1 hybridoma T cells (left). Northern
blot was hybridized to a standard CD44 ¢cDNA probe (upper
panel), after staining of total RNA with methylene blue (lower
panel). The position of the ribosomal RNA bands of 285 (4.8 kb)
and 18S (1.8 kb) is indicated.
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strikingly different with only the 1.6-kb transcript
being found in both ES and H11.1 cells (Fig. 1).

In Vitro ES Differentiation Induces CD44
Transcripts and Surface Expression in
Individual Cells

Two types of culture conditions were used in which
ESD3 cells were allowed to differentiate spontane-
ously in the absence of LIF: either in substrate-
attached conditions (on gelatin-coated dishes) or in
suspension. We isolated total RNA from cells that
had been left to differentiate for varying lengths of
time. Already after 1 week and under both culture
conditions, the pattern of CD44 mRNAs had been
considerably modified (Fig. 2A). Note that compared
to the D3 cells used in Fig. 1, those in Fig. 2A (left
panel) presented a faint additional mRNA band
slightly smaller than the 1.6 kb species. This differ-
ence may correspond to the later passage number of
cells used in Fig. 2A. Upon differentiation, not only
did the bands corresponding to the 3.3- and 1.6-kb
mRNAs become more intense, but new mRNA
species of 2.5, 3, and 4.5 kb appeared (Fig. 2A, right
panel). The 4.5-kb mRNA species corresponds to
the predominant transcript found in mouse thymo-
cytes, astrocytes (Haegel and Ceredig, 1991; Haegel
etal., 1993), and the H11.1 T-cell line (Fig. 1, left
panel).

Concommitant with the change in mRNA pat-
tern, CD44 surface expression was induced. FCM
analysis of CD44 expression by ES cells (Fig. 2B)
showed that upon differentiation, 31% of cells were
positively stained. In a series of three experiments

FIGURE 2.
undifferentiated ES cells cultured in LIF (left), and ES cells differentiated for 1 week in substrate-attached cultures (right), hybridized
to the standard CD44 ¢cDNA probe. (b) FCM analysis of CD44 expression. Shown are fluorescence histograms of undifferentiated (left
panels) or differentiated (right panels) ES cells stained with (from bottom to top) the second step reagent alone (Control), anti-CD44
(middle histograms), or anti-CD25 (upper histograms). The figures in each panel show the percentage cells staining above the control.
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with ES cells differentiated for 3 weeks in either
culture conditions, a mean of 25% of cells were
positively stained. Shown in Fig. 2B are the staining
profiles with an irrelevant rat mAb to CD 25. Similar
low-level staining was obtained with a rat Ig
subclass-matched (IgG,,) anit-CD4 mAb H-129-
19.6 (data not shown).

Induction of Variant CD44 mRNAs Upon ES
Cell Differentiation

We investigated the presence of transcripts encoding
CD44 variants in ES cell cultures. Northern blots of
total RNA from ESD3 or differentiated cultures were
screened using a probe corresponding to exons v4 to
v10. However, we could not obtain detectable sig-
nals using this technique. Therefore, a PCR strategy
was chosen (see scheme in Fig. 3, lower panel).
Combinations of four oligonucleotides were used in
experiments where reverse-transcribed total RNA
was subjected to PCR. Oligos A and D (lanes 3 and
6 in Fig. 3) should be able to amplify the whole
variable domain, from the 5’ to the 3’ constant
region. Oligos B and D (lanes 1 and 4 in Fig. 3)
amplify the region located between v6 and 3’
constant region, whereas A and C (lanes 2 and 5 in
Fig. 3) amplify from the 5’ constant region up to and
including v7. The PCR products were submitted to
electrophoresis on a 2% agarose gel. Given the very
low amount of PCR-amplified material detected by
ethidium bromide staining (Fig. 3, lower panel), gels
were Southern blotted with probes corresponding to
either the v6-v7 (Fig. 3, upper panel) or the v10
exon (lower panel).

UNDIFFERENTIATED (+LIF) DIFFERENTIATED (-LIF)

1.2 % 5.3% PC61 (CD25)

P

r1T0 rrre

Jm %:0.9% IM7 (CDA4)

rrve

0.1%

CONTROL

s

FITC FLUORESCENCE INTENSITY

In vitro differentiation of ES/D3 cells induces CD44 mRNAs and surface expression. (a) Northern blot on total RNA of
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In undifferentiated ESD3 cells, oligos A and C or
D did not amplify a detectable transcript. However,
oligos B and D amplified one band containing exon
v10 (lane 1 in Fig. 3). This transcript also contained
v6, because the fragment was amplified using oligo
B in this exon, but the corresponding signal was
very faint by hybridization to v6-v7. From the size
of this PCR product (approx. 750 bp), it could be
assumed that all additional exons from v6 to v10
were present in this transcript.

In ES cells that had been left to differentiate for 1
week either in suspension or in substrate-attached
conditions, PCR amplification with the external oli-
gos A and D and ethidium bromide staining of the
gel revealed a band of 290 bp corresponding to the
“standard’” form of CD44 (Fig. 3, lower right panel).
As noted before, this 290-bp band was absent in
undifferentiated ES cells (Fig. 3, lower left panel),
suggesting that the sequence corresponding to oligo
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FIGURE 3. PCR amplification of
variant CD44 transcripts in undiffer-
entiated ES/D3 cells and 1-week-
differentiated cultures. At the bottom
of the figure is shown a schematic
structure of the p-meta-1 variant
(Gunthert etal, 1991). Standard
CD44 sequences (open bars), exons
from the variant region (shaded bars),
and the transmembrane region
(hatched bar) are shown. Localization
of the additional exons (dashed lines)
identified in larger CD44 variants is
according to Arch and colleagues
(1992). Oligonucleotides A, B, C, and
D hybridize to positions 653-680,
1039-1070, 1146-1173, and 1328-
1356, respectively. At the top, cDNA
from undifferentiated ES/D3 cells or
1-week-differentiated cultures were
amplified using the primer pairs indi-
cated. The PCR products separated in
2% agarose gel, stained with ethidum
bromide (bottom panel) were South-
ern blotted and hybridized to cDNA
probes corresponding either to vari-
able exons v6-v7 (upper panel) or to
exon v10 (middle panel).

A (located in the 5/ constant exon 5) may be missing
in the CD44 transcripts of these cells.

Upon differentiation, a dramatic induction of at
least three distinct variant-encoding CD44 tran-
scripts was detected (Fig. 3, upper panels, lanes
4-6). All additional transcripts contained the vari-
able exon v10. At least two contained exon v6 (Fig.
3, upper panel, lane 4), and at least one of them
contained exon v7 (Fig. 3, upper panel, lane 5). By
analyzing the sizes of these transcripts, it appears
that (1) one of the variant CD44 transcripts contains
all additional exons from v6 to v10; (2) another
variant CD44 mRNA contains exons v6 and v10 and
one unique additional exon in between (v7, v8, or
v9); and (3) the smallest variant identified is com-
posed of only two additional exons, either vé or v7
in combination with v10.

In addition, a 600-bp band hybridizing with v10
but not v6 appears to be induced upon differentia-
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tion (Fig. 3, upper right, lane 6). This product might
result from the presence of an epithelial-type CD44
variant (Stamenkovic etal., 1991), which contains
exons v8 to v10. However, hybridization to appro-
priate oligonucleotides would be required to clearly
characterize this variant. In differentiated ES cells,
we have not detected either the variant of CD44
containing exon v6 but not v10, analogous to the
v4-v7 variant p-meta-1 (Gunthert etal., 1991) or
the v6-only variant, known to be induced upon in
vivo activation of lymphocytes (Arch et al., 1992).

DISCUSSION

While totipotent ESD3 cells do not express CD44
adhesion molecules on their surface, we show that
in vitro differentiation in the absence of LIF not only
results in the induction of surface CD44 on individ-
ual cells, but also allows the appearance of new
transcripts coding for “standard” CD44 and variants
containing exon v10.

The sequence of events occurring early in embry-
onic development can be followed in vitro by spon-
taneous differentiation of ES cells; several studies
show that the simple embryoid bodies that have
developed within 6 days are analogous to the
4.5-day blastocyst, with endodermal cells and inner-
cell mass stem cells (Doetschman et al., 1985, 1987).
From day 6 to day § in vitro, the embryoid bodies
become complex as ectoderm like cells develop
underneath basal lamina. This stage is related to day
5.5 of embryonic development. After 8 days in
culture, complex embryoid bodies become cystic
(CEBs) and appear analogous to the visceral yolk sac
(days 9-10). CEBs contain cell types of mesodermal
origin: a variety of hematopoietic cells such as
erythroid cells, granulocytes, macrophages, pro-B
and pro-T lymphoid progenitors develop in blood
islands (Doetschman etal.,, 1985; Schmitt etal.,
1991; Wiles and Keller, 1991; Chen, 1992;
Guttierez-Ramos and Palacios, 1992; Keller et al.,
1993). Myocardium, endocardium, and neural cell
types (Doetschman et al., 1987) can also be obtained
by in vitro culture of ESD3 cells in the absence of
LIF. Many attempts are being made toward moni-
toring ES cultures in order to induce specific differ-
entiation pathways.

CD44 expression has been extensively character-
ized in the adult mouse and particularly along
hematopoietic cell lineages. CD44 expression ap-
pears early during T-cell and B-cell ontogeny (Trow-
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bridge et al., 1982; Miyake et al., 1990Db), and >80%
of fetal thymocytes are CD44+ by days 13-14 of
gestation (Lesley et al., 1985). CD44-mediated cell-
cell interactions are essential for the development of
mature lymphocytes, and bone marrow precursors
need the CD44 molecule to migrate to the thymic
microenvironment (Hyman etal., 1986). Mature
macrophages, granulocytes, and erythrocytes also
bear surface CD44. It has been shown previously
(Guttierez-Ramos and Palacios, 1992) and con-
firmed herein that surface expression of CD44 is
seen on differentiated ES cells. In this study, we
have analyzed CD44 transcripts by Northern blots
and a PCR strategy that allows us to identify some
of the CD44 variant transcripts expressed.

Totipotent ES cells do not bear surface CD44 but
express at least two transcripts encoding CD44 (Figs.
1 and 2). Presence of transcripts but absence of
surface expression have been found in the case of
other surface molecules, such as Thy-1 (Schmitt
etal.,, 1991) or the EGF-Receptor (Joh et al., 1992).
In the latter case, EGF-R molecules are present
inside ES cells but are not exported to the surface;
differentiation induced by retinoic acid is able to
promote EGF-R surface expression. In the case of
CD44, we did not detect intracellular protein by
immunofluorescence (data not shown). Several hy-
pothesis may explain this feature: One is that the
existing CD44 transripts cannot be translated in ES
cells possibly by a suppressor mechanism. Another
is that CD44 molecules are synthesized but are not
exported to the cell surface. Immunofluorescence
may not be a sensitive enough technique to detect
small numbers of surface molecules. Because by
PCR analysis of undifferentiated ES cells, transcripts
encoding “standard” CD44 were not amplified, an
alternative possibility is that the bands detected on
Northern blots may not encode complete “stan-
dard” CD44 molecules. A deletion in the standard
CD44 sequence 5’ to the variable region is sug-
gested by our PCR results. Indeed, a splice site
within the s5 exon of human CD44 was previously
reported by Screaton and colleagues (1992). In the
mouse, this splice donor site has not been demon-
strated but it is possible that a splicing takes place in
the s5 exon.

In a previous study, we found a correlation
between CD44 surface expression and the presence
of the 4.5kb mRNA band on Northern blots of
mouse thymocytes and T-cell hybridoma (Haegel
and Ceredig, 1991). Whether the lack of detectable
surface CD44 expression on undifferentiated ES
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cells is due to the absence of the 4.5 kb transcript
cannot be excluded.

In our ES cultures, the induction of three variant
CD44 transcripts (Fig. 3) also correlated with the
time when CD44+ cells arose in the cultures.
Because monoclonal antibodies to variant parts of
mouse CD44 molecules were not available, we were
unable to determine whether proteins containing
these variable exons were effectively expressed on
the cell surface. As mentioned previously, about
20% of cells from CEBs cultured for 5 weeks
appeared to express CD44 (Fig. 2B and not shown).
From the very low amount of variant CD44 tran-
scripts, undetected on Northern blots using oligo-
nucleotide probes to variable exons, it would seem
that if efficiently expressed, these variants are quan-
titatively of minor importance compared to the
“standard” CD44. An interesting characteristics of
these variants is that they all seem to contain the
v10 exon, and at least two of them bear the v6 exon
in addition (Fig. 3). The longest appears to be similar
to one CD44 variant isolated from the murine
carcinoma line KLN205 (He et al., 1992). The vari-
ant containing v6 and v10 plus one intermediate
exon is close if not identical to one recently de-
scribed in human carcinomas (Hofmann etal.,
1991). In contrast, their structure is clearly distinct
from CD44 variants containing v6 but not v10, a
variant that can be induced notably by in wvivo
lymphocyte (Arch et al., 1992) or astrocyte (Haegel
etal.,, 1993) activation and expressed on metastatic
cell (Gunthert et al.,, 1991). We conclude that these
CD44 variants do not appear early during embry-
onic development. In contrast, variants containing
v10 in addition to vé6 can be induced very early
upon in vitro ES development.

Our results led us to speculate on the possible
roles of CD44 in early embryonic development.
Actin molecules, to which CD44 may be associated
(Kalomiris and Bourguignon 1989) have been found
concentrated at contact regions between differenti-
ating blastomeres in the mouse preimplantation
embryo (Slager etal, 1992). The appearance of
CD44 surface expression coincides with the forma-
tion of cystic embryoid bodies. At this time (days
8-12 in culture) mesoderm-derived cells have been
shown to develop and migrate (Doetschman et al.,
1987). In addition, CD44 is known as the main
ligand for hyaluronate (HA), which appears to be
involved in embryo implantation on mouse endom-
etrium (Brown and Papaioannou, 1992). Moreover,
the synthesis of collagen, a ligand for chondroitin-
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sulfate-associated CD44, is enhanced upon decidu-
alization (Aplin etal, 1988). CD44 expression
leading to HA degradation may allow morphological
changes in the developing tissues (Underhill, 1992).
Finally, when day-8.5 yolk sac cells were cultured in
the presence of lymphokines, hemopoietic cells
were generated, which by immunofluorescence
analysis were CD44+ (Hapel and Ceredig, unpub-
lished observation). Taken together, our results sug-
gest that the CD44 gene is activated early and cD44
molecules may play an important role in early
embryonic development, particularly as it relates to
hemopoiesis.
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