
�

S U P P L E M E N TA L M AT E R I A L

Duman et al, http://www.jgp.org/cgi/doi/�0.�085/jgp.2007099�5

Provenance of PC12 Cells
The PC12 D19 cells came from Dr. Sandra Bajjalieh (University of Washington) who obtained them
from Dr. Thomas F.J. Martin (University of Wisconsin). The D19 strain had been selected much earlier
by subcloning in the Martin lab for numerous secretory granules and for robust depolarization-induced
calcium responses and was used in all exocytosis studies of the Martin lab. The PC12 cell stock
came to Wisconsin from Dr. Erik Schwietzer and the Regis Kelly lab at UCSF where they had been
conditioned to grow on supplemented DMEM. We thank Dr. Martin for tracing this history for us.

Computer Program for Local Depletion Calculations

//Program written for IGOR Pro (WaveMetrics, Lake Oswego, OR)
#pragma rtGlobals=1 // Use modern global access method.
Function DoItAll() //This function runs all caculations
 PCheck()
 PDiffuse()
end

Function pCheck() //set up arrays but stop before integrating
 PlanarArrays()
 FirstpFlux()
end

//***

//----------------calculate diffusion regimes for a one dimensional planar problem
// December 18, 2007 B.H.
Function PlanarArrays () //defines waves and initializes values

 variable /g plim = 50 //length of waves (number of compartments)
	 Make	/O/N	=	(plim)			dist,		pflux,	ptheory,	topBuff,	pBflux
 Make /O/D/ N = (plim) pcCa, pMCa, pcCaBuff, pMCaBuff //note double precision
 ptheory = 0
 Variable/g dx = 0.02 //thickness in um per compartment
 variable cnt
 //variable MolecsPeruM = 6.022e23*1.e-6*1.e-15
 //print MolecsPeruM // answer is 602 molecules per cubic um in a 1 uM solution
 variable pCaInit =1 //starting concentration, units uM
 pcCa = pCaInit //initialize cytoplasmic Ca
 //pcCa[0] = 10000 //implement this when checking instantaneous point source
 dist = dx/2 //distance from origin (origin = membrane)
 dist += p*dx
 cnt = 0
 pMCa = pcCa * dx //volume assumes 1 um by 1 um square cylinder
 //pMCa is molar quantity in compartment (units umol/1.e15 = 1.e-21 mol)
 variable /g BuffFactor = 300 //Ca binding ratio, kappa
 pMCaBuff = BuffFactor* pMCa //equilibrate Ca-bound buffer moles

 pcCaBuff = pMCaBuff/dx //Ca-bound buffer concentration

 variable /g StartMass
 StartMass = sum (pmca) + sum (pmcabuff) //total free and bound calcium in system
end

Function FirstpFlux() //calculates fluxes for first step to check step size
	 WAVE		dist,	pcCa,	pMCa,	pflux,	ptheory,	pcCaBuff,	pMCaBuff,	topBuff,	pBFlux
 variable /g plim //number of compartments
	 variable/g	D	=	0.3e3	 	 //diff	coefficient	in	um2/s.		Note:	1.e-5	cm2/s	=	1000	um2/s
 variable/g pdt = 0.2e-7 //small time step of integration in sec
 //for 0.02 um compartment widths, pdt can be as high as 200 ns
 //above that the calculation is not stable
 variable /g dx
 variable cnt = 0

 do
 pFlux[cnt] = -pdt * D * (pcCa[cnt] - pcCa[cnt+1]) /dx //assume 1 um2 area
 Cnt += 1

 while (cnt < plim)
 pFlux[plim] = 0
end
//--integrate diffusion in time
Function PDiffuse() //Big repetitive integration of diffusion (Euler method)
	 WAVE		dist,	pcCa,	pMCa,	pflux,	ptheory,	pcCaBuff,	pMCaBuff,	ToPBuff,	pBFlux
 variable /g plim //number of compartments
 variable/g D
 variable pbDFactor =1 // value of 1 means Ca buffer diffuses as fast as free Ca
 nvar dx, pdt
 variable cnt
 variable t =0
 variable /g now =datetime
 variable BuffOn, Buffoff, PumpOut, extruded
 variable /g BuffFactor
 BuffOff = 3.3 * pdt //reciprocal of this rate constant is residence time in sec
 BuffOn = BuffOff*BuffFactor
 variable pdtDdx= pdt*D/dx, pdtbDdx = pdtDdx * pbDFactor
 PumpOut = 127*pdt // sink at origin = pumping, units 1.e-21 mol/s
 do //step through time
 cnt = 0
	 	 do	 	 	 	 	 //calculate	fluxes
 pFlux[cnt] = -pdtDdx * (pcCa[cnt] - pcCa[cnt+1])
 pBFlux[cnt] = -pdtbDdx * (pcCaBuff[cnt] - pcCaBuff[cnt+1])
 ToPBuff[cnt] = BuffOn * pMCa[cnt] - BuffOff * pMCaBuff[cnt]
 Cnt += 1
 while (cnt < plim)

 pMCa[0] += -PumpOut //make a sink at origin = pumping, units 1.e-21 mol/s

 cnt = 0
 do //increment mass and concentrations
 pMCa[cnt] += pFlux[cnt] - ToPBuff[cnt]
 pMCa[cnt+1] += -pFlux[cnt]
 pCCa[cnt] = pMCa[cnt] / dx

�

 pMCaBuff[cnt] += pBFlux[cnt] + ToPBuff[cnt]
 pMCaBuff[cnt+1] += -pBFlux[cnt]
 pCCaBuff[cnt] = pMCaBuff[cnt] / dx

 Cnt += 1
 while (cnt < plim)

 t +=pdt

 while (t <100000*pdt) // insert number of time iterations here

 extruded = PumpOut*t/pdt
 variable /g now
 print datetime - now, “seconds;”, “ extruded”, extruded// timing of calculations
 variable temp1, temp2, Mass = 0 //----solve analytical diffusion equation for point source
 cnt = 0
 Mass = sum (pmca) //total; of free calcium
 cnt = 0
 do //increment distance in evaluating analytic solution
 Temp1 = exp((-(dist[cnt])^2)/(4*D*t))
 Temp2 = (4*pi*D*t)^0.5
 pTheory[cnt] = 2* Mass * Temp1/Temp2//factor of 2 for hemisphere
 cnt += 1
 while (cnt < plim)

 Mass = sum (pmca) + sum (pmcabuff) //total; of free and bound calcium
 variable /g StartMass
 print StartMass, “dMass”, StartMass-Mass,”t”, t-pdt, “[Ca]” , pcCa[0], pcCa[plim-1],”D”, D,
D*pbDFactor,”K”, BuffFactor, buffoff/pdt
end

