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An artificial neural network model for the recognition of Escherichia coli O157:H7 restriction patterns was
designed. In the training phase, images of two classes of E. coli isolates (0157:H7 and non-O157:H7) were
digitized and transmitted to the neural network. The system was then tested for recognition of images not
included in the training set. Promising results were achieved with the designed network configuration, pro-
viding a basis for further study. This application of a new generation of computational technology serves as an

example of its usefulness in microbiology.

In recent years molecular typing methods have revolution-
ized the epidemiologic investigation of food-borne illnesses
(17) by facilitating very specific identifications of suspected
agents. The pulsed-field gel electrophoresis (PFGE) procedure
(23), modified by contour-clamped homogeneous electric field
technology (4), separates up to megabase-range fragments of
genomic DNA after digestion with restriction enzymes. Re-
striction profiles of Klebsiella pneumoniae DNA, generated by
PFGE, allowed the precise characterization of strains and iso-
lates beyond the species level (7). A computer-assisted pattern
recognition model has been used to identify mycobacteria to
the species level on the basis of restriction fragment length
polymorphism analysis (20).

Differences among phenotypically similar Escherichia coli
O157:H7 (1) isolates have been detected by molecular means,
and this form of fingerprinting has distinguished E. coli
O157:H7 from nontoxigenic E. coli and Shiga-like-toxin-pro-
ducing E. coli strains of other serogroups (3). Probe hybridiza-
tion to Southern blots of various E. coli isolates indicated that
various virulence-associated genes were located on DNA frag-
ments of different lengths (18). This analytical means has been
described as highly discriminatory for detecting genomic dif-
ferences among strains (8).

The present study was designed to test the usefulness of an
advanced form of computer-based pattern recognition which in
this case was adapted to bacterial discrimination and identifi-
cation. Basic pattern scanning is currently available via manual
optical imaging, and pattern comparison can be done by ex-
pensive software. Our intention in this study was to design a
computer-based decision algorithm to accomplish automated
discrimination (19) at a modest cost. Conventional computer
systems with sequential processors and distinct memory units
are not equipped to handle a large amount of information that
is fuzzy, probabilistic, noisy, inconsistent, or mutually interact-
ing (5, 16). Artificial neural network (ANN) models, i.e., soft-
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ware composed of elements known as neurons or nodes and
interconnections known as synapses or weights, have been pro-
posed as alternatives (9, 10). Such systems have been used for
the analysis of pyrolysis mass spectra for identification of My-
cobacterium tuberculosis complex species (6) and prediction of
E. coli promoter sites (11). ANN models store information in
the strength of connections between nodes, which is adjusted
to improve performance. This process is called adaptation,
learning, or training. Among many ANN models, the multi-
layer feedforward network model is the most popular for a
variety of applications and was chosen for this work. Our intent
was to determine how such a model would perform when an
ordinary personal computer and inexpensive software were used.

MATERIALS AND METHODS

Samples. One hundred one isolates of E. coli O157:H7 and 99 isolates of
non-O157:H7 E. coli were analyzed. Samples, collected over a period of several
years, were provided by the Missouri, Texas, Kansas, Utah, and Pennsylvania
Departments of Health and by Health Canada. The Canadian samples were
specifically selected to include isolates from various parts of the country. All
isolates were previously identified by standard biochemical means and serology
and were reconfirmed by similar methods in our laboratory. All O157:H7 sam-
ples were determined to be the same ribotype. Identified phage types included 1,
2, 8, 14, 23, and 32. Most isolates were derived from human diarrhea stool
specimens, but some animal isolates were also included in the study (Table 1).

Preparation of bacterial DNA. All isolates were cultured to log phase in brain
heart infusion broth. An aliquot (1.3 ml of cell suspension) of each isolate was
centrifuged at 12,000 X g for 90 s, the supernatant was removed, and the pellet
was washed twice in 1.0 ml of SE (75 mM NaCl, 25 mM EDTA, pH 8.0) buffer
under the same centrifugation conditions. The optical density at 610 nm of the
suspension was adjusted to 1.2 with SE diluent. The final suspension was mixed
with an equal volume of warm 1% agarose prepared in modified TE buffer (10
mM Tris, 0.1 mM EDTA, pH 8.0), poured into molds (10 by 15 mm), and
allowed to solidify. Agarose plugs were incubated overnight at 50°C in lysis buffer
(50 mM Tris [pH 8.0], 50 mM EDTA [pH 8.0], 1% Sarcosine, 1 mg of proteinase
K per ml). The plugs were rinsed briefly with deionized sterile water, TE buffer
containing 15.0 pl of phenylmethylsulfonyl fluoride (17 mg/ml in isopropanol)
per ml was added to tubes containing the plugs, and the samples were incubated
at room temperature for 30 min. After a second wash with TE buffer containing
phenylmethylsulfonyl fluoride, the blocks were again rinsed briefly with sterile
deionized H,O, and the final four washes were in TE buffer for 30 min each. The
agarose plugs were stored in TE buffer at 4°C.

Restriction digests. Plugs were cut into slices to fit the gel wells and equili-
brated twice at 15-min intervals in tubes containing 200 pl of restriction enzyme
buffer (Stratagene, La Jolla, Calif.). The buffer was removed, and 15 U of Xbal
with specific buffer was added to the tubes containing the gel plugs. Samples were
incubated for 4 h at 37°C, and the enzyme solution was replaced by 0.5X TBE
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TABLE 1. E. coli isolates used in this study

Class and source No. of
of isolates isolates
O157:H7
Animal.... 28
Human...
TOLAL .ottt ettt r b neenn 101
Non-O157:H7
Animal.... 15
026.
o111
069.
Other
Human
TOLAL oottt 99
TOLAL .ttt ettt ese et et b e b b nnenans 200

(0.089 M Tris-borate, 0.002 M EDTA) buffer and equilibrated for at least 10 min
prior to electrophoresis.

PFGE. A 1.0% SeaKem (FMC, Rockland, Maine) gel was prepared in 0.5X
TBE buffer approximately 1 h before completion of the restriction digestion of
bacterial DNA and allowed to solidify at room temperature. Enzymatically
digested DNA in gel slices was placed into the wells of the SeaKem gel and
sealed in place with warm 1% agarose in TBE buffer. After the sealing agar
solidified, the gel was transferred into the electrophoresis chamber (CHEF DRII
or DRIII; Bio-Rad, Hercules, Calif.) and submerged in chilled 0.5X TBE. Elec-
trophoresis was performed at 200 V for 20 h with the pulse time ramped from 5
to 50 s and the buffer temperature maintained at 14°C. The gel was stained with
an ethidium bromide (0.5 wg/ml) solution for approximately 30 min at room
temperature and then destained in distilled water for a minimum of 1 h prior to
photography under UV light.

Digital imaging. Polaroid photographs of PFGE patterns were recorded by a
desktop scanner (Hewlett-Packard, Boise, Idaho). Two separate processes were
used to accomplish feature extraction. The first method involved a preprocessing
function, performed on the entire pattern profile, to detect and digitize the first
10 bands (peaks) along the medial axis of the trace from the level of the largest
marker band. The two parameters associated with each peak are normalized
height and relative location, with respect to the trace origin. The location was
normalized within the context of 0 and 1, representing the trace length compared
with the marker lane. The pattern contains 261 pixels and is normalized between
0 and 255, with the lowest point equal to zero. Figure 1 represents the profile
extracted from an O157:H7 lane pattern. A generic imaging software program
(NIH Image), which allows calls from other software programs, was used to
generate the profiles (Fig. 1A) along the medial axes of patterns. The profiles
were used to automatically determine peaks (Fig. 1B) representing scanned
bands located in the range between 100 kb and the largest marker band. The
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design of the second method of feature extraction was based on the presence of
a major band at approximately 300 kb which was frequently a part of the
0157:H7 pattern profile. By using a sliding window of one-sixth of the profile
length, the band region with the highest summed density was determined. The
regions above and below the most intense segment were then subdivided to
generate six band regions. The extracted features became the midpoint location
and average intensity of each of the six regions. The features generated by each
extraction method were input to the ANN separately. Since many feature vectors
for the two classes (O157:H7 and non-O157:H7) are very similar, crisp desired
outputs were not assigned to the training vectors. Instead, fuzzy labels (2) were
used to indicate the degree to which the features resemble other vectors from
each class. Fuzzy memberships were assigned by using a modified version of the
fuzzy K-nearest-neighbor algorithm (12).

Neural network software. The neural network architecture (Fig. 2) consisted of
a multilayer feedforward network with 20 input nodes, 50 hidden nodes, and two
output nodes (one for each class). The ANN was “trained” to relate each set of
features, extracted by both methods described above, to a distinct class (O157:H7
or non-O157:H7) designation by using a back-propagation algorithm (21). Pat-
tern recognition involves the estimation of a function that assigns a class label to
the PFGE image. The multilayer feedforward network is used to assign a value
of between 0 and 1 for each class of E. coli, indicating the degree to which the
input pattern represents that class. The nodes in each layer are in contact
through weighted interconnections that undergo modification during the “learn-
ing” process, resulting in pattern recognition.

Computer analysis and identification of PFGE patterns. PFGE patterns are
scanned into computer memory as a digital image. To accomplish class distinc-
tion, i.e., E. coli O157:H7 or non-O157:H7, the ANN was trained to learn the
distinctive features of E. coli O157:H7 profiles and determine to which class an
unknown image belongs. Images presented during the learning phase were des-
ignated either O157:H7 or non-O157:H7.

Pulsed-field gels, containing a total of 101 E. coli O157:H7 isolates and 99
non-O157:H7 isolates, were analyzed. Ninety-one E. coli O157:H7 profiles and
89 non-E. coli O157:H7 profiles were used in each training iteration. For each
subsequent interrogation, the remaining O157:H7 and non-O157:H7 profiles
were input to the network as a “leave-20-out” strategy. This training-testing
process was iterated 100 times so that in each instance 20 different isolates were
used for testing; thus, each isolate was used “blindly” in 10 of the test iterations.
The average of the ANN outputs of the two sets of input features was used to
determine class recognition. Statistical analyses of sensitivity, specificity, positive
predictive value, and negative predictive value were performed to evaluate the
data generated (22).

A concomitant exercise based on human visual examination of all restriction
patterns was performed to compare the accuracy of the computer with the
recognition skills of two laboratory technicians who were experienced in the
analysis of PFGE patterns. The technicians, who had seen all of the isolate
profiles previously, were asked to classify the entire pattern profiles, which were
presented blindly for their observation. The comparative performances of the
ANN and the technicians were determined by calculation of pre- and posttest
probability values for E. coli O157:H7 classification (22).

RESULTS

PFGE. Pulsed-field profiles of E. coli isolates were com-
posed of distinct patterns with well-resolved bands (Fig. 1).
Variations in the protocol led to differences in the patterns
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FIG. 1. Computer-generated image profile of PFGE pattern (A) and corresponding peaks extracted to minimize data (B). Values on the vertical axis represent
relative band intensities; values on the horizontal axis represent relative band distances from the point of origin, the level of the largest marker band.
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FIG. 2. Schematic of three-layer ANN model. Pattern features become in-
puts to the network at the input node layer. Numerical values for features are
computed at noninput nodes; outputs of nodes are functions of weighted sum-
mations of values from units in the previous layer. Each sequential pair of the 20
input nodes records both the locations and heights of the first 10 recorded peaks
(bands).

generated for individual isolates which affected subsequent
analysis. However, the necessary reproducibility, in the form of
the nearly identical patterns essential for ANN analysis, was
achieved by strict adherence to prescribed gel protocols, qual-
ity control of large reagent batches, and very specific photo-
graphic conditions. Early recognition of operator-related dif-
ferences indicated the additional requirement that multiple
operators perform procedures in an identical manner.

Test of neural network ability to detect E. coli O157:H7.
Numerous ANN designs, with and without data preprocessing
functions, were tested and compared for accuracy. Data nor-
malization and preprocessing were found to dramatically im-
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TABLE 2. Classification of E. coli by an ANN

ANN No. of isolates

class O157:H7 Non-O157:H7 Total
Positive 98 9 107¢
Negative 3 90 93t
Total 101° 99¢ 200

“ Positive predictive value, 98/107 = 0.916.
b Negative predictive value, 90/93 = 0.968.
¢ Sensitivity, 98/101 = 0.970.
< Specificity, 90/99 = 0.909.

prove ANN performance. With the leave-10-out (for each
class) approach to testing, the ANN correctly identified 98 of
101 E. coli O157:H7 images (Fig. 3A) and 90 of 99 non-
0157:H7 images (Fig. 3B). These scores represented averages
of the two ANN outputs, one for each set of extracted features.
The software program scored 3% false negatives and 9% false
positives. This level of performance essentially represents a
97% sensitivity in recognition of the O157:H7 images and a 90
or 91% specificity in recognition of the non-O157:H7 images
(Table 2).

For human pattern analysis, performed for comparison with
the ANN, we initially asked technicians to base their conclu-
sions on the entire restriction pattern of each isolate. Com-
ments from personnel indicated that they learned to center
their attention on roughly the first 80% of the pattern array.
Frequent variations in the smaller fragments (below 100 kb)
seemed to be misleading and inconsequential in the process of
isolate comparison. Technician 1 classified 79 of 101 O157:H7
isolates correctly and 91 of 99 non-O157:H7 isolates correctly.
This level of recognition represented a sensitivity of 78.2%, a
specificity of 91.9%, and an overall accuracy of 170 of 200 or
85%. Technician 2 correctly classified 65 of 101 O157:H7 iso-
lates and 89 of 99 non-O157:H7 isolates, representing 64.4%
sensitivity, 89.9% specificity, and 77% overall accuracy. Mod-
erate agreement between the technicians was reflected by the
derivation of a kappa statistic of 0.50. The agreement between
technician 1 and the ANN was 0.62, and that between techni-
cian 2 and the ANN was 0.49. The kappa measurement (rang-
ing between 0.0 and 1.0, with 1.0 perfect) reflects agreement
between individuals or test methods in excess of that expressed
by chance (22).

I THUE

FIG. 3. PFGE patterns of E. coli O157:H7 isolates (A) and non-O157:H7 isolates (B). The outside lanes of each panel show size markers (in kilobases).
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FIG. 4. Comparison of probabilities for classification of E. coli O157:H7 by the ANN and two technicians. Closed symbols, positive classification; open symbols,

negative classification; squares, ANN; circles, technician 1; triangles, technician 2.

Comparisons of posterior probabilities for the technicians
and the ANN are depicted in Fig. 4. The graphs correspond to
the likelihood that a DNA profile is actually E. coli O157:H7,
given a positive or negative test result (22). The uppermost
lines (representing the ANN and technician 1 in classifying a
pattern as E. coli O157:H7) are almost superimposed, indicat-
ing the best (and almost identical) performances. The ANN
recognition of non-O157:H7, represented by the bottommost
trace, was singularly best in this category. The ANN positive
predictive value was 91.6%, and the negative predictive value
was 96.2% (Table 2).

DISCUSSION

Numerous software programs successfully perform pattern
analysis, clustering, and comparison, but the ANN is uniquely
designed to render a “learned decision-making” function. We
examined the task of identification of E. coli O157:H7 as an
approach to the application of ANN technology, and the re-
sults indicate that recognition of microorganism patterns by
ANN can be accomplished with a high level of accuracy. The
described network training and testing exercises were accom-
plished with only a modest number of samples, and it is im-
portant to note that performance improved as sample size
increased. The package described here is not commercially
available. It is still in the developmental stage but could be
made available for use, especially by reference laboratories,
after additional modification and testing and publication of the
final structure.

By comparison with human visual inspection, our ANN

model appeared to process decision parameters in a superior
fashion. It is not possible to determine the parameters upon
which ANN decisions are based, but they could relate to the
recognition of individual and relative fragment positions sim-
ilar to those described by the technicians as typical for
O157:H7 patterns, including heavy bands at 450 and 300 kb
and four or five bands clustered between 300 and 200 kb (Fig.
3A). The ANN positive predictive value represents the pro-
portion of test-positive samples that are actually O157:H7. The
negative predictive value represents the proportion of ANN
test-negative samples that are truly negative. Superior test sys-
tems are reflected in the probability graph (Fig. 4) by greater
curvature above and below a diagonal from the origin. Predic-
tive values are dependent on the prevalence (53.5% in this
study), and with increasing prevalence the positive predictive
value increases and the negative predictive value decreases.
The opposite is true for decreasing prevalence. Therefore, if an
isolate has a higher (>53.5%) probability of being O157:H7,
the positive predictive value would be higher than that found in
the present study. If the isolate has a lower (<53.5%) proba-
bility of being O157:H7, the positive predictive value would be
less than that reported for the present ANN results.

There are numerous strategies which may be employed to
further improve the computer-based analytical process. The
described method of preparation for PFGE plus the run time
requires approximately 4 days from sample receipt to final
classification. We have recently shown that modifications can
shorten the process to 3 days. Clustering algorithms can be
used to combine training patterns into groups, thereby estab-
lishing subclass categories of both O157:H7 and non-O157:H7
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samples. Multiple output nodes may then be designed to allow
the computer program a wider range of class possibilities.
Fuzzy logic can be applied to this phase of the system by
implementation of fuzzy classes representing a “probable or
undecided” category (2, 13). Isolates so designated could be
subjected to further test analysis (e.g., genomic patterns pro-
duced by another method) or presented to a second-stage
ANN. There are numerous connections between fuzzy logic
and neural networks (2, 14, 15), including trainable network
structures which implement fuzzy set theoretic operations.
These structures explicitly model the uncertainty present in the
data and could be used to improve the overall classification.

We recognize the natural extensions and ramifications of
ANN-based pattern analysis. The software described in this
report was not designed to address functions such as the iden-
tification of differences or similarities between isolate patterns,
which is valuable information for epidemiology. Work (unpub-
lished) in our laboratory indicates that the PFGE method,
using Xbal, is a very specific means of fingerprinting for this
approach to isolate identification. Several E. coli strains tested
had nearly identical patterns, and a subsequent check of pa-
tient records confirmed similarities, substantiating the proba-
bility of the occurrence of an outbreak. In this regard, an ANN
model could be designed specifically to detect outbreaks by
class recognition. Very costly commercial software is currently
available for the performance of such functions, but an ANN-
based system of pattern analysis can be assembled in most
laboratories for $10,000 to $20,000.

The described method of image recognition may be appli-
cable to a wide range of microorganisms. The ANN model
could be combined with a clustering algorithm so that various
genera (classes) could translate to respective output nodes.
The ANN model may also be applied to any preparative
method that generates “fingerprint-like” patterns, such as ran-
dom amplified polymorphic DNA analysis. Initial studies on
the comparison of these methods of pattern generation in our
laboratory indicated that PFGE profiles are superior to ran-
dom amplified polymorphic DNA analysis in the establishment
of clusters established on the basis of similarity. The ultrasen-
sitive random amplified polymorphic DNA analysis procedure
tends to magnify differences between isolates, making cluster-
ing difficult. We therefore submit that the pulsed-field method
yields an appropriate level of pattern complexity for ANN
recognition.
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