Table S1. Specificity of the Sec16 antibody used in immunoelectron microscopy experiments | Organelle | Observed
number of gold
particles | 0.01-µm²
squares | Labeling
density ^a | Expected gold
particles ^b | Relative
labeling
index' | χ² values | |---------------------|---|---------------------|----------------------------------|---|--------------------------------|--------------------| | Nucleus | 7 | 476 | 0.0147 | 4.75 | 1.475 | 1.07 | | Cytosol | 3 | 1,227 | 0.0024 | 12.23 | 0.245 | 6.97 | | ER/ERES | 16 | 409 | 0.0391 | 4.08 | 3.924 ^d | 34.86 ^d | | Mitochondria | 0 | 231 | 0 | 2.30 | 0 | 2.3 | | Multivesicular body | 0 | 65 | 0 | 0.65 | 0 | 0.65 | | Golgi | 0 | 48 | 0 | 0.48 | 0 | 0.48 | | Plasma membrane | 0 | 141 | 0 | 1.41 | 0 | 1.41 | | Other | 0 | 11 | 0 | 0.11 | 0 | 0.11 | | Total | 26 | 2,608 | 0.01 | 26 | 1 | 47.85° | The same procedure described in Table S2 was used to analyze labeling by the Sec16 antibody in the same electron micrographs. Table S2. Specificity of the GFP antibody used in Immunoelectron microscopy experiments | Organelle | Observed
number of
gold particles | 0.01 µm²
squares | Labeling
density ^a | Expected gold
particles ^b | Relative
labeling
index' | χ² values | |---------------------|---|---------------------|----------------------------------|---|--------------------------------|---------------------| | Nucleus | 8 | 476 | 0.02 | 52.02 | 0.154 ^d | 37.25 ^d | | Cytosol | 86 | 1,227 | 0.07 | 134.09 | 0.641° | 17.24° | | ER/ERES | 142 | 409 | 0.35 | 44.70 | 3.1 <i>77</i> ^f | 211.84 ^f | | Mitochondria | 29 | 231 | 0.13 | 25.24 | 1.149 | 0.56 | | Multivesicular body | 7 | 65 | 0.11 | 7.10 | 0.985 | 0 | | Golgi | 5 | 48 | 0.10 | 5.25 | 0.953 | 0.01 | | Plasma membrane | 8 | 141 | 0.06 | 15.41 | 0.519 | 3.56 | | Other | 0 | 11 | 0.00 | 1.20 | 0 | 1.20 | | Total | 285 | 2,608 | 0.11 | 285 | 1 | 270.46 ⁹ | ¹⁰ electron microscopy images (71,250 or 97,500 magnification) of cryosections of HeLa cells expressing FP-17 and incubated at 10°C were divided into 0.01-µm² squares by random superposition of a grid. Each square was classified for the presence of recognizable organelle membranes or cytosol/nucleus (indicated in Organelle column), and the number of gold particles within each square was counted. Since ERES could not always be clearly recognized on the basis of morphology, ER and ERES were considered together. Labeling densities and relative labeling index were then estimated for every organelle and the results were tested for randomness (Mayhew, T.M. 1992. J. Neurocytol. 21:313–328). Table S3. Distribution of FP-17 and -22 between ER and ERES analyzed by immunoelectron microscopy after a 10°C block | Organelle | nun | erved
aber of
particles | gı | ber of
rid
ections | | eling
sity ^a | | ed gold
iclesª | lab | ative
eling
lexª | χ² Ψί | alves | |-----------|---------------|-------------------------------|---------------|--------------------------|-------|----------------------------|---------------|-------------------|------------|------------------------|---------------|--------| | | FP-1 <i>7</i> | FP-22 | FP-1 <i>7</i> | FP-22 | FP-17 | FP-22 | FP-1 <i>7</i> | FP-22 | FP-17 | FP-22 | FP-1 <i>7</i> | FP-22 | | ER | 409 | 161 | 1,196 | 644 | 0.342 | 0.250 | 400.66 | 171.30 | 1.02 | 0.94 | 0.174 | 0.62 | | ERES | 8 | 20 | 48 | 36 | 0.167 | 0.556 | 16.08 | 9.58 | 0.50^{b} | 2.09° | 4.06b | 11.4° | | Total | 417 | 181 | 1,244 | 680 | 0.335 | 0.266 | 417 | 181 | 1 | 1 | 4.234^{d} | 11.97° | A test for randomness was applied to ER and ERES as explained in Material and methods (n = 25 and 19 for FP-17 and -22, respectively). ERES were identified as portions of ER profiles within a distance of 60 nm from 12-nm gold particle (Sec16 antibody). Membrane surface area was estimated stereologically by randomly superimposing a 100 × 100-nm grid on the micrographs and counting the number of intersections between membranes assigned to different compartments and the grid's lines. ^aNumber of gold particles divided by number of grid intersections. ^bNumber of grid intersections multiplied by total labeling density. ^cCompartment labeling density divided by total labeling density. $^{^{}d}$ Number of gold particles significantly higher than the expected value (P < 0.0001). ^eThe distribution of gold particles significantly deviates from random (P < 0.0001). ^aNumber of gold particles divided by number of grid intersections. ^bNumber of grid intersections multiplied by total labeling density. ^cCompartment labeling density divided by total labeling density. $^{^{\}rm d}$ Number of gold particles significantly lower than expected value (P < 0.0001). ^eNumber of gold particles significantly lower than expected value (P = 0.0159). Number of gold particles significantly higher than expected value (P < 0.0001). ⁹Distribution of gold particles significantly deviates from random (P < 0.0001). ^aSee Table S2. ^bNumber of gold particles significantly lower than expected value (P = 0.0439). ^cNumber of gold particles significantly higher than expected value (P = 0.0007). ^dThe distribution of gold particles significantly deviates from random (P = 0.0396). $^{^{\}mathrm{e}}$ The distribution of gold particles significantly deviates from random (P = 0.0005). Table S4. Plasmids and antibodies used in this study | | Source | Additional information | |---|--|---| | Plasmids | | | | VSVG-GFP | J. Lippincott-Schwartz (National Institutes of
Health, Bethesda, MD) | Presley et al. (1997)°; temperature-sensitive version of VSVG under the cytomegalo virus promoter | | VSVG-YFP | A. De Matteis (Mario Negri Sud, S. Maria
Imbaro, Italy) | GFP in VSVG-GFP replaced with YFP | | VSVG-mCerulean | Our laboratory | GFP in VSVG-GFP replaced with mCerulean | | pSar1 p ^{dn} CMUIV | B. Storrie (University of Arkansas for Medical
Sciences, Little Rock, AR) | Storrie et al. (1998) ^b ; dominant-negative (H79G) Sar1 cDNA | | Rtn4a-myc | M. Strittmatter (Yale University Medical School,
New Haven, CT) | GrandPre et al. (2000) ^c ; myc-tagged humar
Rtn4a under the cytomegalo virus promoter | | Sec23A-EYFP | R. Pepperkok (European Molecular Biology
Laboratory, Heidelberg, Germany) | Human Sec23A tagged with EYFP under the
cytomegalo virus promoter (Forster et al.,
2006) ^d | | Antibodies | | | | Anti-ERGIC-53 mouse monoclonals | H.P. Hauri (Biozentrum, Basel, Switzerland) | Schweizer et al. (1988)e | | Anti-Sec 16 sheep polyclonals | D. Stephens (University of Bristol, Bristol, UK) | Watson et al. (2006) ^f | | Anti-ribophorin I rabbit polyclonals | G. Kreibich (New York University Medical
School, NY, NY) | Yu et al. (1990) ⁹ | | Mouse monoclonal anti-myc | Santa Cruz Biotechnology, Inc. | | | Anti-Sec23 rabbit polyclonals | Affinity BioReagents | | | Anti-GFP rabbit polyclonals | AbCam | | | Cy5-conjugated secondary antibodies | Jackson ImmunoResearch Laboratories | | | Gold-conjugated anti–sheep and anti–rabbit antibodies | Jackson ImmunoResearch Laboratories | | | Alexa 568-conjugated secondary antibodies | Invitrogen | | Alexa 568–conjugated secondary antibodies Invitrogen Presley, J.F., N.B. Cole, T.A. Schroer, K. Hirschberg, K.J. Zaal, and J. Lippincott-Schwartz. 1997. Nature. 389:81–85. Storrie, B., J. White, S. Rottger, E.H. Stelzer, T. Suganuma, and T. Nilsson. 1998. J. Cell Biol. 143:1505–1521. GrandPre, T., F. Nakamura, T. Vartanian, and S.M. Strimtatter. 2000. Nature. 403:439–444. Forster, R., M. Weiss, T. Zimmermann, E.G. Reynaud, F. Verissimo, D.J. Stephens, and R. Pepperkok. 2006. Curr. Biol. 16:173–179. eSchweizer, A., J.A.M. Fransen, T. Bachi, L. Ginsel, and H.-P. Hauri. 1988. J. Cell Biol. 107:1643–1653. Watson, P., A.K. Townley, P. Koka, K.J. Palmer, and D.J. Stephens. 2006. *Traffic*. 7:1678–1687. gYu, Y., D.D. Sabatini, and G. Kreibich. 1990. *J. Cell Biol*. 111:1335–1342.