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1 Mathematical analysis for infinite population

1.1 Model definition
We consider a dioecious, diploid species with non-overlapping generations. All females have the same fecundity R. There are
L unlinked loci at which there can be two alleles A and B. We assume that the probability that an individual reaches sexual
maturity is multiplied by a factor x, 1, or y for each locus which is respectively AA, AB, or BB. A alleles mutate into B alleles,
and vice-versa, at a rate µ per generation.

Each female mates with a fixed number of males, and produces a brood of offspring; the phenotype determining the number
m of mates is inherited by all female offspring. We assume there are alternating generations of inbreeding and outbreeding.
At even generations, females choose their mates at random from the population as a whole; at odd generations, females may
only mate with (randomly chosen) males from the same brood.

We assume that fecundity is high, so that broods contain large numbers of individuals. We assume, however, that the
population size is kept constant by a limiting process which occurs just before the outbreeding generation. The case of a large
population can therefore be simplified by considering only the average numbers of individuals of each genotype.

1.2 Recurrence relation for single locus case
We shall begin by analysing the single-locus case in detail, postponing until later a discussion of how to extend to general
L. In this section we derive the equations for the general case, where all three genotypes can have different fitness, and later
specialise to the two cases of interest.

Consider a particular mating unit consisting of a single mother and one or more fathers. Let amat be the probability that
a maternal gamete contains an A allele, and bmat = 1 − amat be the probability that it contains a B allele. The corresponding
probabilities for the paternal gamete are apat and bpat = 1−apat. The numbers ωAA, ωAB, and ωBB of offspring1 of, respectively,
genotype AA, AB, and BB are then

ωAA = xRamatapat (1)
ωAB = R(amatbpat + bmatapat) (2)
ωBB = yRbmatbpat. (3)

Equations (1–3) can be applied at any generation, but the gamete frequencies a and b will depend on the mating units, which
differ at odd and even generations.

Even generations: At even generations, the female takesm randomly chosen mates from the whole population. We denote
the even generation mating unit by u = (j0, j1, k0, k1), where j0 and j1 denote the number of mothers in the mating unit of
genotype AA or AB, and k0 and k1 denote the number of fathers of genotype AA or AB (the number of mothers and fathers
of genotype BB being therefore j2 = 1− j0 − j1 and k2 = m− k0 − k1).

Using Mendelian genetics, and taking mutation into account, the probability a maternal gamete contains an A allele is

a
(0)
mat(j0, j1) = (1− µ)(j0 +

j1
2

) + µ(1− j0 −
j1
2

), (4)

where the superscript (0) denotes the fact that it is donated by a parent from the ‘0’th generation. Now consider the paternal
gamete. In the absence of mutation, the probabilty that it contains an A allele would be m0

m + m1
2m . Taking mutation into

1‘Omega’ stands for ‘Offspring’.
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Symbol meaning
A,B Different alleles
x Fitness of AA homozygote relative to heterozygote
y Fitness of BB homozygote relative to heterozygote
µ Mutation rate (both A to B, and B to A)
R Fecundity (same for all females)
L Number of loci

amat(= 1− bmat) Frequency of A allele in maternal gametes
apat(= 1− bpat) Frequency of B allele in paternal gametes
ωAA, ωAB, ωBB Number of offspring of genotype AA, AB, BB

m Polyandry phenotype (number of mates)
u = (j0, j1, k0, k1) Combination of genotypes in mating unit

j0, j1, j2 Number of females of genotype AA, AB, BB in mating unit
k0, k1, k2 Number of males of genotype AA, AB, BB in mating unit
·(0), ·(1), ·(2) Superscripts denoting generations 0, 1, and 2

γAA(u), γAB(u), γBB(u) Number of grandoffspring of genotype AA, AB, BB from mating unit u
ñAA, ñAB, ñBB Number of individuals of genotype AA, AB, BB just before population limitation event
n

(i)
AA, n

(i)
AB, n

(i)
BB Number of individuals of genotype AA, AB, AB at generation i(∈ {0, 1, 2})

N Total population size at even generations
ν(0)(u) Number of mating units of type u at generation 0
·∗ Superscript denoting ‘mutant’

(p(i)
AA, p

(i)
AB, p

(i)
BB) Relative proportion of individuals of genotype AA, AB, BB at generation i.

WS(AA),WS(AB),WS(BB) Fitness of AA, AB, BB genotype on mating with a genetically identical individual
WO Fitness on outbreeding

F (j0, j1, k0, k1) Generic function that depends on the mating unit
q Frequency of A allele among gametes forming generation 1
p Frequency of A allele at generation 1
r Invasion rate (relative increase of mutant populatin per single generation)
δ Inbreeding depression
κ Fitness cost per mate

lAA, lAB, lBB Number of an individual’s loci which have genotype AA, AB,BB

Table 1: Mathematical symbols used in Section 1
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account, we therefore have
a
(0)
pat (m0,m1) = (1− µ)(

m0

m
+
m1

2m
) + µ(1− m0

m
− m1

2m
) (5)

Let ω1
AA(u), ω1

AB(u), ω1
BB(u) denote the number of offspring of genotype AA, AB, BB from this mating unit. These can be

obtained by substituting the parental gamete allele frequencies into the general equations (1–3), i.e.

ω1
AA(u) = xRa

(0)
mat(j0, j1)a

(0)
pat (m0,m1) (6)

ω1
AB(u) = R(a(0)

mat(j0, j1)b
(0)
pat (m0,m1) + b

(0)
mat(gmat)a

(0)
pat (m0,m1)) (7)

ω1
BB(u) = yRb

(0)
mat(j0, j1)b

(0)
pat (m0,m1). (8)

Odd generations: At odd generations, females mate randomly with males from the same brood. Assuming even numbers

of males and females, there will be a total of
ω1

AA(u)+ω1
AB(u)+ω1

BB(u)

2 females in a brood whose parental mating unit is u. The
probability that a parental gamete is an A allele will be

a1
mat = a1

pat =
ω1

AA(u) +
ω1

AB(u)

2

ω1
AA(u) + ω1

AB(u) + ω1
BB(u)

(1− µ)

+
ω1

BB(u) +
ω1

AB(u)

2

ω1
AA(u) + ω1

AB(u) + ω1
BB(u)

µ. (9)

We denote the number of grandchildren of different genotypes from an even generation mating unit u by2 γAA, γAB, γBB.
These can then be obtained by substituting the gamete allele frequencies in Eqn. (9) into the general recurrence relations (1–3)
and multiplying by the total number of females at the odd generation:

γAA(u) = xR
ω1

AA(u) + ω1
AB(u) + ω1

BB(u)
2

a1
mat(u)a

1
pat(u) (10)

γAB(u) = R
ω1

AA(u) + ω1
AB(u) + ω1

BB(u)
2

(a1
mat(u)b

1
pat(u) + b1mat(u)a

1
pat(u)) (11)

γBB(u) = yR
ω1

AA(u) + ω1
AB(u) + ω1

BB(u)
2

b
(0)
mat(u)b

(0)
pat (u). (12)

The population undergoes a limitation event just before the next outbreeding event. Let ñAA, ñAB, and ñBB be the total numbers
of different genotypes just before the event, which are obtained by summing the contributions from all over the contributions
from the contributions from all mating units. If the number of mating units of type u at the zeroth generation is ν(0)(u), then
we have  ñAA

ñAB
ñBB

 =
∑

u

ν(0)(u)

 γAA(u)
γAB(u)
γBB(u)

 . (13)

The population limitation event reduces the population size to N with the same mortality rate for all individuals, so the actual
numbers at generation ‘2’ will then be  n

(2)
AA

n
(2)
AB

n
(2)
BB

 =
N

ñAA + ñAB + ñAB

 ñAA
ñAB
ñBB

 (14)

1.2.1 Monomorphic population

We first consider the case where all females in the population have the same polyandry phenotype m. Let the numbers of
individuals of different genotypes at the zeroth generation be n(0)

AA, n(0)
AB , and n(0)

BB , with n(0)
AA + n

(0)
AB + n

(0)
BB = N . Since there

is random mating at this generation, the number mating units of type u = (j0, j1, k0, k1) is multinomially distributed:

ν(0)(j0, j1, k0, k1) =
m!

k0!k1!k2!
(n(0)

AA)j0(n(0)
AB)j1(n(0)

BB )j2

2N

(
n

(0)
AA

N

)k0
(
n

(0)
AB

N

)k1
(
n

(0)
BB

N

)k2

(15)

The genotype frequencies at even generations are obtained by calculating ν(0) from Equation (15) at one generation, then
substituting these values into Eqn (13), where the γAA, γAB, γBB are calculated from equations (4–12). The population at the
next generation is then obtained from equation (14). After repeated iterations, the system approaches an equilibrium.

2Gamma stands for Grandchildren
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1.2.2 Invasion by a mutant

We now consider a rare mutant with polyandry phenotype m∗ in a wild type population with polyandry phenotype m. The
mutant sub-population will have different genotype abundances n∗AA, n∗AB, n∗BB from the wild type. However, provided the
mutant remains rare, the mutant will give a negligible contribution to the total population, so the wild type population nAA,
nAB, nBB can be calculated by the same procedure as in Section 1.2.1, independently of n∗AA, n∗AB, n∗BB. However, the wild
type population has a very strong influence on the mutant: at even generations, the random mates chosen by mutant females
will overwhelmingly be from the wild type population, so the number of mutant mating units of type u = (j0, j1, k0, k1) will
be

ν(0)∗(j0, j1, k0, k1) =
m!

k0!k1!k2!
(n(0)∗

AA )j0(n(0)∗
AB )j1(n(0)∗

BB )j2

2N

(
n

(0)
AA

N

)k0
(
n

(0)
AB

N

)k1
(
n

(0)
BB

N

)k2

. (16)

The abundance of the mutant population just before the next generation will be given by ñ∗AA
ñ∗AB
ñ∗BB

 =
∑

u

ν∗0(u)

 γ∗AA(u)
γ∗AB(u)
γ∗BB(u)

 , (17)

(where the γ are calculated from Equations (4–12) using m→ m∗). The population limitation event reduces the (overwhelm-
ingly wild type) total population to N , so the mortality rate is N

ñAA+ñAB+ñAB
(the denominator being the total wild type

population size before the limitation event). The mutant population at the next generation is therefore n
(2)∗
AA

n
(2)∗
AB

n
(2)∗
BB

 =
N

ñAA + ñAB + ñAB

 ñ∗AA
ñ∗AB
ñ∗BB

 . (18)

Note that, since j0+j1+j2 = 1, ν(0)∗ is linear in (n(0)∗
AA , n

(0)∗
AB , n

(0)∗
BB ), and Equations (16–18) produce a linear relationship

between the abundances at the zeroth and second generations. The rate at which the mutant invades is given by the dominant
eigenvalue associated with this linear relationship.

1.2.3 Inbreeding depression at odd generations

Because of the alternation between in- and outbreeding, the genotype abundances at odd generations will be different from
those at even generations, even in equilibrium. We are interested in the inbreeding depression measured at odd generations,
because this is the point at which polyandry at even generations influences the level of inbreeding.

Let (p(1)
AA, p

(1)
AB , p

(1)
BB ) = 1

n
(1)

AA+n
(1)

AB+n
(1)
BB

(n(1)
AA, n

(1)
AB , n

(1)
BB ) be the fraction of individuals which of genotypes AA, AB, BB. If

an individual breeds with one that is genetically identical, the number of offspring will be Ws(G) for genotype G, where

Ws(AA) = R[x(1− µ)2 + 2µ(1− µ) + yµ2] (19)

Ws(AB) = R
x+ 2 + y

4
(20)

Ws(BB) = R[xµ2 + 2µ(1− µ) + y(1− µ)2]. (21)

The average fitness on selfing will then be

E(Ws) = Ws(AA)p(1)
AA +Ws(AB)p(1)

AB +Ws(BB)p(1)
BB (22)

Meanwhile, the average mean fitness on outbreeding will be Wo, where

E(Wo) = x[(1− µ)p(1)
AA +

p
(1)
AB

2
+ µp

(1)
BB ]2

+2[p(1)
AA(1− µ) +

p
(1)
AB

2
+ µp

(1)
BB ][µp(1)

AA +
p
(1)
AB

2
+ (1− µ)p(1)

BB ]

+y[µp(1)
AA +

p
(1)
AB

2
+ (1− µ)p(1)

BB ]2

= 1− (1− x)[(1− µ)p(1)
AA +

p
(1)
AB

2
+ µp

(1)
BB ]2 − (1− y)[µp(1)

AA +
p
(1)
AB

2
+ (1− µ)p(1)

BB ]2 (23)
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u (0,0,0,0) (1,0,0,0) (0,1,0,0) (0,0,1,0) (0,0,0,1)

a
(0)
mat µ 1 1

2 0 0
a
(0)
pat µ 0 0 1

m
1

2m

ω1
AA 0 0 0 0 0
ω1

AB 2Rµ R R
2

R
m

R
2m

ω1
BB R(1− 2µ) 0 R

2
R(m−1)

m
R(2m−1)

2m

a1
mat 2µ 1

2
1
4

1
2m

1
4m

γAA 0 xR2

8
xR2

32
xR2

8m2
xR2

32m2

γAB 2R2µ R2

4
3R2

16
R2(2m−1)

4m2
R2(4m−1)

16m2

γBB
R2

2 (1− 4µ) R2

8
9R2

32
R2(2m−1)2

8m2
R2(4m−1)2

32m2

Table 2: Expansion for small µ of various quantities, for different even generation mating units u = (j0, j1, k0, k1). Truncated
to order µ for u = (0, 0, 0, 0), and order 1 for other mating units.

1.3 Recessive, deleterious trait
We first consider the recessive case 0 < x < 1, y = 1. Selection will tend to purge the deleterious allele, and if the mutation
rate µ is numerically small then the abundance of A will also be small. We can therefore develop a perturbation expansion
to determine the properties of the system in the limit where µ is small. We first derive results for the single-locus case, then
explain how to extend these to general L.

1.3.1 Rare allele expansion

The rarity of the deleterious allele can be exploited in Equations such as (15) and (16), which represent an average over even
generation mating units u: the rarity of the deleterious allele determines which u’s contribute to which order in µ, and hence
which mating units need to be considered for a given order in perturbation theory. Let us defing genotype frequencies for
the wild type (p(0)

AA, p
(0)
AB , p

(0)
BB ) = 1

N (n(0)
AA, n

(0)
AB , n

(0)
BB ), and for the mutant (p(0)∗

AA , p
(0)∗
AB , p

(0)∗
BB ) = 1

N(0)∗ (n∗0AA, n
∗0
AB, n

∗0
BB), where

N (0)∗ = n∗0AA + n∗0AB + n∗0BB is the population size of the mutant population at the zeroth generation. Using (16), the average
of any function F (u) over mutant mating units at the zeroth generation is

∑
u

ν(0)∗(u)F (j0, j1, k0, k1) =
∑

j0,j1,k0,k1

m!
k0!k1!k2!

(p(0)∗
AA )j0(p(0)∗

AB )j1(p(0)∗
BB )j2

2

(
p
(0)
AA

)k0
(
p
(0)
AB

)k1
(
p
(0)
BB

)k2

F (j0, j1, k0, k1)

=
N (0)∗

2

[p(0)∗
BB

2

(
p
(0)
BB

)m∗

F (0, 0, 0, 0) +
p
(0)∗
AA

2

(
p
(0)
BB

)m∗

F (1, 0, 0, 0) +

+
p
(0)∗
AB

2

(
p
(0)
BB

)m∗

F (0, 1, 0, 0) + +
p
(0)∗
BB

2
m∗p

(0)
AA

(
p
(0)
BB

)m∗−1

F (0, 0, 1, 0) +

+
p
(0)∗
BB

2
m∗p

(0)
AB

(
p
(0)
BB

)m∗−1

F (0, 0, 0, 1) + . . .
]

=
N (0)∗

2

[F (0, 0, 0, 0)
2

+ p
(0)∗
AA

[F (1, 0, 0, 0)− F (0, 0, 0, 0)]
2

+

+p(0)∗
AB

[F (0, 1, 0, 0)− F (0, 0, 0, 0)]
2

+m∗p
(0)
AA

[F (0, 0, 1, 0)− F (0, 0, 0, 0)]
2

+

+m∗p
(0)
AB

[F (0, 0, 0, 1)− F (0, 0, 0, 0)]
2

+ . . .
]

(24)

where the terms denoted by ‘. . .’ are all of second or higher order in p(0)
AA and p(0)

BB . The average over mating units can in the
wild type population be obtained by substituting m∗ = m, (p(0)∗

AA , p
(0)∗
AB ) = (p(0)

AA, p
(0)
AB) N (0)∗ = N in Eqn. (24).

If one of the parents in an even generation mating unit possesses an A allele, then the allele will be prevalent among the
offspring and grandoffspring of the mating unit, so we cannot assume that it is rare when applying Eqns. (4–12). We can, how-
ever, expand the dependence of these quantities in µ. From Equation (24), we can see that the leading order is obtained by ex-
panding to first order in µ when u = (0, 0, 0, 0) and to zeroth order when u ∈ {(1, 0, 0, 0), (0, 1, 0, 0), (0, 0, 1, 0), (0, 0, 0, 1)}.
The results of this expansion are given in Table 2.
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1.3.2 Monomorphic population

Using the expressions for (γAA, γAB, γBB) in Table 2, and the expansion (24) of Eqn. (15), we find that the genotype abun-
dances of a wild type population with polyandry m just before the limitation event are ñAA

ñAB
ñBB

 =

 0
0

NR2

4

+

 0
1
−1

NR2µ+ p
(0)
AA


xNR2(m+1)

16m
NR2(3m−1)

8m
NR2(1−7m)

16m

+ p
(0)
AB


xNR2(m+1)

64m
NR2(7m−1)

32m
NR2(1−15m)

64m

+ . . . . (25)

Summing the rows in Eqn. (25), the total population size just before the limitation event is

ñAA + ñAB + ñBB =
NR2

4

(
1− (m+ 1)(1− x)

16m
(4p(0)

AA + p
(0)
AB)
)

+ . . . . (26)

Combining Eqns. (14), (25) and (26), the population at generation 2 is n
(2)
AA

n
(2)
AB

n
(2)
BB

 = N

 0
0
1

+

 0
4
−4

Nµ+Np
(0)
AA

 x(m+1)
4m

3m−1
2m

2−6m−x(m+1)
4m

+Np
(0)
AB

 x(m+1)
16m

7m−1
8m

2−14m−x(m+1)
16m

 . (27)

At equilibrium, the genotype frequencies will be the same at all generations, i.e. we would have n(2)
AA = Np

(0)
AA, n(2)

AB = Np
(0)
AB .

Substituting these values into Eqn. (27) yields(
p
(0)
AA

p
(0)
AB

)
=

(
x(m+1)

4m
x(m+1)

16m
3m−1
2m

7m−1
8m

)(
p
(0)
AA

p
(0)
AB

)
+
(

0
4µ

)

⇒

(
p
(0)
AA

p
(0)
AB

)
=

(
2x

1−x
8[4m−x(m+1)]
(m+1)(1−x)

)
µ. (28)

Eqn. (28) gives the genotype frequency at even generations in equilibrium. The genotype frequencies at odd generations
will also reach an equilibrium, but will differ from Eqn. (28). However, the total population at odd generations, summed
over all broods, is just the result of random mating between all the individuals at the even generation. The total genotype
abundances at odd generations are therefore

(n(1)
AA, n

(1)
AB , n

(1)
BB ) =

RN

2
(xq2, 2q(1− q), (1− q)2), (29)

where q = (p(0)
AA +

p
(0)

AB
2 )(1−µ)+(1−p(0)

AA−
p
(0)

AB
2 )µ is the A allele frequency among the gametes forming this generation. The

allele frequency among the odd generation is then p =
n

(1)

AA+
n
(1)

AB
2

n
(1)

AA+n
(1)

AB+n
(1)
BB

, so by applying Eqns (28) and (29) we get, to leading

order,

p =
xq2 + q(1− q)
1− q2(1− x)

=
17m+ 1− 3x(m+ 1)

(m+ 1)(1− x)
µ+ . . . . (30)

In the derivation of Eqn. (28) we have assumed that p(0)
AA and p(0)

AB are numerically small. Equations (4–12) can be solved
numerically for any parameter values, and numerical results are compared with the small µ resault (28) in Fig. 1. The values
of µ are the same as those used in the simulations in the paper. We see that the approximation is very good for the smaller
values of µ and x, but breaks down for larger µ when (1−x) is small. This is because of the factor 1

1−x on the right hand side

of (28), which causes n(0)
AB to be of order 1 when 8µ ∼ (1− x).

1.3.3 Invasion of polyandrous mutant

The dynamics of a rare mutant with a different polyandry phenotype m∗ in the small-µ limit can be obtained by applying
the expansion (24) to Eqn. (17), using the expressions for γAA, γAB, γBB from Table 2 with m → m∗ [taking out a factor of
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Figure 1: Comparison of the low-mutation rate approximation with with numerical results for finite µ, for the monandrous
case m = 1. The y-axis shows the measured value of p(0)

AB divided by the theoretical value from Equation (28).

N(0)∗R2

4 for clarity]

4
N (0)∗R2

 ñ∗AA
ñ∗AB
ñ∗BB

 =

 0
0
1

+

 0
4
−4

µ+ p
(0)∗
AA

 x
4
1
2
− 3

4

+ p
(0)∗
AB

 x
16
3
8
− 7

16

+

+p(0)
AA

 x
4m∗

2m∗−1
2m∗

1−4m∗

4m∗

+ p
(0)
AB

 x
16m∗

4m∗−1
8m∗

1−8m∗

16m∗

+ . . . (31)

Combining Eqns. (26) and (28), we see that, for the wild type population constant population N , the mortality rate at the
population limitation event is N

ñAA+ñAB+ñAB
= 4

R2(1−2µ) . Substituting (31) into Eqn. (18), the mutant genotype abundances
after the population limitation event are

1
N (0)∗

 n
(2)∗
AA

n
(2)∗
AB

n
(2)∗
BB

 =

 0
0
1

+

 0
4
−2

µ+ p
(0)∗
AA

 x
4
1
2
− 3

4

+ p
(0)∗
AB

 x
16
3
8
− 7

16

+

+p(0)
AA

 x
4m∗

2m∗−1
2m∗

1−4m∗

4m∗

+ p
(0)
AB

 x
16m∗

4m∗−1
8m∗

1−8m∗

16m∗

+ . . . (32)

To find the invasion rate of the mutant, we consider the quasistationary state where the mutant population increases by a
constant amount per double generation. If we define r as the invasion rate per single generation, then in this quasistationary
state we would have 1

N(0)∗ (n(2)∗
AA , n

(2)∗
AB , n

(2)∗
BB ) = (1+r)2

N(0)∗ (n(0)∗
AA , n

(0)∗
AB , n

(0)∗
BB ) ≈ (1 + 2r)(p(0)∗

AA , p
(0)∗
AB , p

(0)∗
BB ), where we have

assumed that r is small (which will be the case if the deleterious allele is rate). Substituting this into eqn (32) gives

(1 + 2r)

 p
(0)∗
AA

p
(0)∗
AB

1− p
(0)∗
AA − p

(0)∗
AB

 =

 0
0
1

+

 0
4
−2

µ+ p
(0)∗
AA

 x
4
1
2
− 3

4

+ p
(0)∗
AB

 x
16
3
8
− 7

16

+

+p(0)
AA

 x
4m∗

2m∗−1
2m∗

1−4m∗

4m∗

+ p
(0)
AB

 x
16m∗

4m∗−1
8m∗

1−8m∗

16m∗

+ . . . (33)
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The first two rows of equation (33) give, to lowest order,(
p
(0)∗
AA

p
(0)∗
AB

)
=

(
x
4

x
16

1
2

3
8

)(
p
(0)∗
AA

p
(0)∗
AB

)
+

(
x

4m∗ p
(0)
AA + x

16m∗ p
(0)
AB

2m∗−1
2m∗ p

(0)
AA + 4m∗−1

8m∗ p
(0)
AB + 4µ

)

⇒

(
p
(0)∗
AA

p
(0)∗
AB

)
=

16
10− 3x

(
5
8

x
16

1
2 1− x

4

)(
x

4m∗ p
(0)
AA + x

16m∗ p
(0)
AB

2m∗−1
2m∗ p

(0)
AA + 4m∗−1

8m∗ p
(0)
AB + 4µ

)

⇒ 1
4
p
(0)∗
AA +

9
16
p
(0)∗
AB =

16
10− 3x

(
1
4

9
16

)( 5
8

x
16

1
2 1− x

4

)(
x

4m∗ p
(0)
AA + x

16m∗ p
(0)
AB

2m∗−1
2m∗ p

(0)
AA + 4m∗−1

8m∗ p
(0)
AB + 4µ

)

=
16

10− 3x

(
7x+ (18− 4x)(2m∗ − 1)

64m∗ p
(0)
AA +

7x+ (18− 4x)(4m∗ − 1)
256m∗ p

(0)
AB +

9− 2x
4

µ

)
.(34)

Using the linear combination of p(0)∗
AA and p(0)∗

AB in Eqn. (34), the third row of Eqn. (33) gives, to lowest order,

2r = −2µ+
1
4
p
(0)∗
AA +

9
16
p
(0)∗
AB +

1− 4m∗

4m∗ p
(0)
AA +

1− 8m∗

16m∗ p
(0)
AB

=
16− 2x
10− 3x

µ+
(m∗ + 2)(x− 1)

(10− 3x)m∗ p
(0)
AA +

(m∗ + 1)(x− 1)
2m∗(10− 3x)

p
(0)
AB

=
16(m∗ −m)

(10− 3x)m∗(m+ 1)

⇒ r =
8(m∗ −m)

(10− 3x)m∗(m+ 1)
, (35)

where we have used Eqn. (28) to substitute for p(0)
AA, p(0)

AB .
Since r has the same sign as (m∗−m), higher degrees of polyandry are always favoured in the absence of costs to mating.

If there is a cost κ to each mating event, then the mutant population will grow at a rate (1+ r)(1−κ)m∗−m ≈ r− (m∗−m)κ
relative to the wild type.

1.3.4 Inbreeding depression

Using Equations (19–23) and (29) for the monandrous case m = 1, the average fitness on selfing is

E(Ws) =
x+ 3

4
2q + 1− 2q +O(µ2)

= 1− 3(3− x)µ
2

+O(µ2) (36)

and the fitness on outbreeding is
E(Wo) = 1 +O(µ2). (37)

Therefore, the inbreeding depression is

δ = 1− 3(3− x)µ
2

+O(µ2) (38)

1.3.5 Generalisation to L 6= 1

The case of general L and m is difficult to analyse, as the loci are not necessarily statistically independent. However, we
show in Section 2.2.1 that the loci are indeed independent in the monandrous case m = 1, and that they are approximately
independent in the case when the deleterious alleles are rare.

Independence of loci implies that, if the fraction of individuals of different genotypes for the one-locus case are pAA, pAB, pBB,
then for the L-locus case the probability that an individual has lAA, lAB, lBB loci of genotype AA, AB, and BB is multinomial:

Pr(lAA, lAB, lBB) =
L!

lAA!lAB!lBB!
(pAA)lAA(pAB)lAB(pBB)lBB .

Consider a quantity F whose value for the L-locus case is the product of single-locus values for the genotype at each locus. If
F (AA), F (AB),F (BB) are the single-locus values for genotypes AA, AB, BB, then the average value for the L-locus case
is ∑

lAA+lAB+lBB=L Pr(lAA, lAB, lBB)(F (AA))lAA(F (AB))lAB(F (BB))lBB

= [F (AA)pAA + F (AB)pAB + F (BB)pBB]L,
(39)
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i.e. the average for the single-locus case raised to the L’th power.
Monandrous wild type equilibrium. The independence of the loci imply that the allele frequency at odd generations is still

p from equation (29), and Eqn. (3) from the paper obtains for the case m = 1.
Invasion by a biandrous mutant. Since fitness is a product of factors over loci, the growth rate for the population is the

L’th power of the growth rate in the single-locus case. If 1 + r1 is the relative rate of growth of the mutant growth rate for
the single-locus case, the relative growth rate will be (1 + r1)L ≈ 1 + r1L. The invasion rate r = r1L in Eqnation (4) of the
paper obtains by multiplying Eqn. (35) in this appendix by L for the case m∗ = 2, m = 1.

Inbreeding depression. The fitness on selfing and outcrossing are the L-th powers of the single-locus values, so using
Eqns. (36) and (37) the inbreeding depression is

δ = 1− [1− 3(3− x)µ
2

+O(µ2)]L

=
3(3− x)µL

2
+O(µ2L) (40)

which is Eqn. (4) of the paper.

1.4 Overdominant trait
We now consider the case of symmetric overdominance, x = y, 0 < x < 1. By symmetry, both alleles have average frequency
1
2 over the whole population, so we cannot exploit the rarity of some genotypes to develop a perturbation analysis. Since
polymorphism is maintained even in the absence of mutation, and the genotype frequencies are insensitive to the mutation
rate, we shall in this section assume that µ = 0. Though we present in this section results for symmetric overdominance,
polymorphism is also maintained in this model in the asymmetric case x 6= y (see section 3.2).

An analytical solution of Equations (4–18) is possible, but since it requires the solution of a cubic equation we shall simply
present the results of numerical iterations of these equations.

1.4.1 Equilibrium monomprphic population

The genotype abundances at equilibrium can be readily obtained by iterating Equations (4–15). The heterozygosity at even

generations,
n

(0)

AB
N , is shown in Figure 2. For purposes of comparison, we have also included the result for the case where there

is random mating at all generations, which can straightforwardly be obtained3. We see that the heterozygosity increases as the
number of mates is increased, i.e. as the degree of inbreeding is reduced.

1.4.2 Invasion by a mutant

The rate of invasion by which a mutant with a different degree of polyandry m∗ from the wild type can be obtained by the
methods in section 1.2.2. These invasion rates are illustrated in Figure 3. We find that the growth rate is positive for m∗ > m,
and negative for m∗ < m. Therefore, in the absence of costs to mating, polyandry will invade, the optimal level of polyandry
being m = ∞.

If, however, there is a cost κ per mate, then the growth rate of the mutant relative to the wild type will be

[1 + r(m∗,m)][1− κ]m
∗−m ≈ 1 + r(m∗,m)− (m∗ −m)κ

= 1 + (m∗ −m)[
r(m∗,m)
(m∗ −m)

− κ] (41)

The mutant will therefore invade if (m∗ −m)[ r(m∗,m)
(m∗−m) − κ] > 0, i.e. if

either r(m∗,m)
(m∗−m) > κ and m∗ > m

or r(m∗,m)
(m∗−m) < κ and m∗ < m.

If there are values m1 and m2 for which m1 < m2 and r(m1,m2)
m1−m2

< r(m2,m1)
m2−m1

, i.e. [−r(m1,m2)] < r(m2,m1) , then both

conditions can be satisfied simultaneously, and a mixed strategy will evolve when r(m1,m2)
m1−m2

< κ < r(m2,m1)
m2−m1

. Figure 4 shows

the ratio r(m+1,m)
[−r(m,m+1)] as a function of x for different values of m, and we do indeed find that this ratio is greater than 1. The

phase diagram is illustrated in figure 5, showing that there are regions where two strategies can coexist.

3The allele frequencies amat = apat = 1
2

at all generations, so using Eqns. (1–3) and then setting total population size=N we get
nAB

N
= 1

1+x
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1.4.3 Inbreeding depression

While it is laborious to derive analytically the genotype frequencies at even generations, the total abundance of genotypes at
odd generations may be obtained straightforwardly. By symmetry, the allele frequency is always 1

2 , so from Eqns. (1–3) the
genotype frequencies at the odd generations are (p(1)

AA, p
(1)
AB , p

(1)
BB ) = 1

2(1+x) (x, 2, x). Using Eqns. (22) and (23), the fitness of
in- and outbreeding individuals at odd generations are

E(Ws) =
R

2(1 + x)
(2x2 + x+ 1) (42)

E(Wo) =
R(x+ 1)

2
. (43)

Since the loci are independent when the females are monogamous, we can calculate the ratio of inbreeding to outbreeding
fitness for general L using Eqn. (39), and hence the inbreeding depression for general L is

δ = 1−
(

2x2 + x+ 1
(x+ 1)2

)L

, (44)

which is Equation (6) in the manuscript.

2 Are the loci independent?
Inbreeding can cause nonrandom associations between genotypes at different loci, even in the absence of linkage or selection
(Bennet J.H. & Binet F.E., Heredity 10 51–56 (1956)). This makes it difficult to generalise results for a single-locus model to
the multilocus case. In this section we shall discuss the conditions under which the loci will have independent dynamics in
our model.

We shall adopt a slightly different notation from the previous section, in order to make this discussion as general as
possible. Let us assume that there are L unlinked loci, with the genotype being expressed as an L-tuple G = {gi} of the
genotypes gi at each locus i. Let us assume that each locus has a multiplicative effect, i.e. the number of offspring of genotype
Gc = {gci} arising from a mother of genotype Gm = {gmi} mated with a father of genotype Gp = {gpi} can be expressed
in the form Ω(Gm, Gp, Gc) =

∏
i ωi(gmi, gpi, gci) , where ωi represents the relative contribution from each locus. We make

no assumptions here about the number of alleles at the locus, the expression type of trait (recessive, overdominant,. . . ) or the
presence of mutation. The fitness of the mating unit is

Φ(Gm, Gp) =
∑
Gc

Ω(Gm, Gp, Gc)

=
∑
Gc

∏
i

ωi(gmi, gpi, gci)

=

[∑
gc1

ω1(gm1, gp1, gc1)

][∑
gc2

ω2(gm2, gp2, gc2)

]
. . .

[∑
gcL

ωL(gmL, gpL, gcL)

]
=

∏
i

φi(gmi, gpi),

where φi(gmi, gpi) =
∑

gci
ωi(gmi, gpi, gci) is the contribution to the fitness from locus i. The final equality holds because

the sum over all genotypes can be factorised into independent sums over each locus.

2.1 Monandrous female
Consider a female of genotype Gm that outbreeds with a single male of genotype Gp, where all of her offspring breed with
members of the same brood. The number of matings in the brood between offspring of genotype Gc1 = {gc1i},Gc2 = {gc2i}
will be 1

2Ω(Gm, Gp, Gc1)
Ω(Gm,Gp,Gc2 )

Φ(Gm,Gp) , so the number of grandoffspring of genotype Gg = {ggi} is

Γ(Gm, Gp, Gg) =
∑

Gc1 ,Gc2

1
2
Ω(Gc1 , Gc2 , Gg)Ω(Gm, Gp, Gc1)

Ω(Gm, Gp, Gc2)
Φ(Gm, Gp)
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=
1
2

∑
Gc1 ,Gc2

∏
i

ωi(gc1i, gc2i, ggi)ωi(gmi, gpi, gc1i)
ωi(gmi, gpi, gc2i)
φi(gmi, gpi)

=
1
2

∏
i

γi(gmi, gpi, ggi),

where

γi(gmi, gpi, ggi) =
∑

gc1i,gc2i

ωi(gc1i, gc2i, ggi)ωi(gmi, gpi, gc1i)
ωi(gmi, gpi, gc2i)
φi(gmi, gpi)

.

If there are No(Go) individuals of genotype Go = {goi} at the initial outbreeding generation, then the number of matings
between genotype Gm and Gp is

M(Gm, Gp) =
1
2
No(Gm)No(Gp)

NoT
,

where NoT is the total number of individuals in the population at this generation. The total number of individuals of genotype
Gg at the grandchild generation will then be

Ng(Gg) =
∑

Gm,Gp

Γ(Gm, Gp, Gg)M(Gm, Gp).

If we assume that No(Go) = NoT

∏
i poi(goi), which states that the loci are independent (i.e. in identity equilibrum) at the

outbreeding generation, then

Ng(Gg) =
1
4
NoT

∑
Gm,Gp

∏
i

γi(gmi, gpi, ggi)poi(gmi)poi(gpi)

=
1
4
NoT

∏
i

pgi(ggi),

where pgi(ggi) =
∑

gmi,gpi
γi(gmi, gpi, ggi)poi(gmi)poi(gpi). That is, if the loci are independent at the initial generation, they

will remain independent at all subsequent generations.

2.2 Biandrous female
Consider now an outbreeding female of genotype Gm that mates with two males, respectively of genotype Gp1 = {gp1i},
Gp2 = {gp2i}. We use ΩB(Gm, Gp1 , Gp2 , Gc) to denote the number of offspring of genotype Gc in her brood. Assuming
the female divides her eggs equally among the offspring of either male, ΩB will contain contributions from both males in the
form

ΩB(Gm, Gp1 , Gp2 , Gc) =
1
2
Ω(Gm, Gp1 , Gc) +

1
2
Ω(Gm, Gp2 , Gc),

and her fitness will be
ΦB(Gm, Gp1 , Gp2) =

1
2
Φ(Gm, Gp1) +

1
2
Φ(Gm, Gp2).

In contrast to the monandrous case, neither ΩB nor ΦB factorises into a product of single-locus factors. As we shall see, this
leads to the loci no longer being independent.

When the offspring interbreed with other members of the brood, each female will again take two mates. The number of
matings between a mother of genotype Gc1 and father Gc2 will be

ΩB(Gm, Gp1 , Gp2 , Gc1)
ΩB(Gm, Gp1 , Gp2 , Gc2)

ΦB(Gm, Gp1 , Gp2)

Each mating combination is represented twice as many times as if the females were monandrous at this generation, but the
females devote only half of their eggs to each mate. The number of grandoffspring of genotype Gg will be

ΓB(Gm, Gp1 , Gp2 , Gg) =
∑

Gc1 ,Gc2

1
2
Ω(Gc1 , Gc2 , Gg)ΩB(Gm, Gp1 , Gp2 , Gc1)

ΩB(Gm, Gp1 , Gp2 , Gc2)
ΦB(Gm, Gp1 , Gp2)

=
∑

Gc1 ,Gc2

1
8

Ω(Gc1 , Gc2 , Gg)
ΦB(Gm, Gp1 , Gp2)

×
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[Ω(Gm, Gp1 , Gc1) + Ω(Gm, Gp2 , Gc1)][Ω(Gm, Gp1 , Gc2) + Ω(Gm, Gp2 , Gc2)]

=
1

8ΦB(Gm, Gp1 , Gp2)
×

[
∏

i

ψi(gmi, gp1i, gp1i) +
∏

i

ψi(gmi, gp1i, gp2i) +
∏

i

ψi(gmi, gp2i, gp1i) +
∏

i

ψi(gmi, gp2i, gp2i)]

where

ψi(gmi, gpai, gpbi) =
∑

gc1 ,gc2

ωi(gmi, gpbi, gc1i)ωi(gmi, gpbi, gc2i)

If we assume that the loci are independent at the initial outbreeding generation, so that the number of mating units with geno-
type Gm, Gp1 , Gp2 is 1

2No(Gm)No(Gp1 )No(Gp2 )

N2
oT

= 1
2NoT

∏
i poi(gmi)poi(gp1i)poi(gp2i), then the total number of grandoff-

spring of genotype Gg will be

Ng(Gg) =
∑

Gm,Gp1 ,Gp2

ΓB(Gm, Gp1 , Gp2 , Gg)×
1
2
NoT

∏
i

poi(gmi)poi(gp1i)poi(gp2i)

=
∑

Gm,Gp1 ,Gp2

NoT

16ΦB(Gm, Gp1 , Gp2)
×

[
∏

i

ψi(gmi, gp1i, gp1i) +
∏

i

ψi(gmi, gp1i, gp2i) +
∏

i

ψi(gmi, gp2i, gp1i) +
∏

i

ψi(gmi, gp2i, gp2i)]

×
∏

i

poi(gmi)poi(gp1i)poi(gp2i)

=
∑

Gm,Gp1 ,Gp2

NoT

∏
i poi(gmi)poi(gp1i)poi(gp2i)

4
[
∏

i ψi(gmi, gp1 , gp1) +
∏

i ψi(gmi, gp1 , gp2)]
[
∏

i φi(gmi, gp1i) +
∏

i φi(gmi, gp2i)]
, (45)

where in the last line we have used symmetry to note that ψi(gmi, gpai, gpbi) = ψi(gmi, gpbi, gpai) and ΦB(Gm, Gp1 , Gp2) =
ΦB(Gm, Gp2 , Gp1).

The result on the right hand side of (45) cannot be written as the product of single-locus terms. One reason for this
is the denominator, which is the sum of two products which represent the total number offspring a female has by either
father. However, even if these numbers are the same the numerator contains a sum of two terms, respectively representing the
offspring full-sib and half-sib matings. The population is temporarily separated into two sub-populations, which have different
levels of inbreeding and therefore have different levels of heterozygosity. Even if each the loci in each sub-population were
statistically independent, the sum of these two populations will not be. The loci are therefore not, in general, independent
when the females are biandrous.

2.2.1 Deleterious recessive trait

The terms in the denominator of Eqn. (45) represent the total number of offspring of the female by different fathers. There
are certainly genotype combinations for which these numbers are not equal. However, if the abundance of the deleterious
allele is q, then these differ by an amount that is typically of order Lq2x. Therefore, if q = O(µ), to order µ we will have∏

i φi(gmi, gp1i) =
∏

i φi(gmi, gp2i)] for the mating units that contribute to the dynamics to leading order. Meanwhile, since
we are only interested in the terms in (45) to linear order in µ, the terms which interest us will simply be additive. Therefore,
we can assume the loci are independent to first order in µ.

2.2.2 Overdominant trait

For the overdominant case, we can no longer assume that all relevant broods have the same size. Figure 6 shows the departures
from independence in a biandrous population with two unlinked, symmetrically overdominant loci. We find that there is an
overrepresentation of doubly-homozygous individuals, and also of doubly-heterozygous individuals. Note that the effect
persists in the neutral limit x→ 1, which shows that the effect is due to the combination of two sub populations with different
levels of inbreeding, rather than the differing brood sizes of different mating units. However, the effect is very weak, being no
more that about 1%, so we expect that extensions of one-locus results to the multi-locus case by assuming independent loci
will be a good approximation. This is indeed borne out by the simultaion results in the paper.
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3 Fixation of alleles in finite populations
Genetic drift in finite populations can cause alleles to go to fixation, i.e. all individuals have the same homozygous genotype,
even when this genotype has lower fitness than others. This is one of the ways in which finite populations behave differently
from infinite populations, and the effect is stronger when alleles are only mildly deleterious, and when populations are smaller.
In this section, we shall quantify the effect of fixation on the equilibrium behaviour of our model. We shall consider the case
of a single locus and monandrous females. In finite populations the loci are no longer guaranteed to be statistical independent,
so the behaviour of the many-locus case cannot necessarily be straightforwardly extrapolated.

3.1 Deleterious recessive trait
Here, we consider the case where the fitness of AA, AB, and BB genotypes is x, 1, and 1 respectively. If mutations are rare,
when a deleterious allele is generated it will typically either go to extinction (most likely) or to fixation in a short space of
time. The population will therefore spend most of its time either as all AA or all BB homozygotes, with short transition
periods between these states. We can therefore treat it as a two-state Markov process.

Let fB(x) be the probability that, starting with a single B allele in an otherwise AA population, the population drifts to
become saturated BB homozygotes, and fA(x) be the the probability that, starting with a single A allele in an otherwise BB
population, the population drifts to become saturated AA homozygotes. If µN is the probability at which mutations arise, the
transition rates between the states are

AA → AA at rate µN(1− fB)
AA → BB at rate µNfB

BB → AA at rate µNfA

BB → BB at rate µN(1− fA).

The fixation probability is the fraction of time that the locus is heterozygous AA, i.e.

Pfix =
fA(x)

fA(x) + fB(x)
. (46)

Note that Pfix is independent of µ, provided µ is small.
The probability fA can be measured from simulations by starting with a single A allele in a wiltype BB population, and

recording the fraction of realisations where all individuals become AA before they all become BB. fB can be measured in a
similar fashion. Figure 7 shows the resulting fixation probability Pfix inferred via equation (46). The fixation probability is
found to decay exponentially with large N ; the curves are fits of the form a exp(−bN)to the large-N tail. The figure shows
that we expect no significant degree of fixation for x ≤ 0.9 unless the population size is very small, but when N = 50 and
x = 0.99 we expect the deleterious allele to be fixed at as many as ≈ 20% of the loci.

3.2 Asymmetric, overdominant trait
A finite population will always go to fixation in the absence of mutation, but this can take a very long time if both homozygotes
have the same fitness x. Figure 8 shows the time to fixation Tfixation(in double generations) for a population with a single,
symmetrically overdominant locus. The lines are fits of the form log T = aN+b, with a = 0.0414±0.0008, 0.0154±0.0002,
0.0078± 0.0001 for x = 0.95, 0.98, 0.99 respectively, suggesting a = c(1− x), with c = 0.80± 0.04 (standard errors). The
fits predict that the time to fixation for N = 1000 should be > 2.6× 108 for x = 0.98 and > 1019 for x = 0.95.

The rate at which new mutations appear in the population is µN , but in most cases the mutant allele will go extinct before
it becomes prevalent. For the neutral case x = 1, the probability that a mutant allele will reach the equilibrium frequency 1

2
before going extinct is approximately 1

N ; this probability will be greater when x 6= 1, because selection favours polymorphism.
Therefore, once an allele is fixed, the typical time before it becomes prevalent is approximately µ−1 or less. A given locus
will therefore remain polymorphic, and the infinite-N results for the population genetics applicable, provided Tfixation > µ−1.
For µ = 10−5–10−6, we need Tfixation ≈ 105 or 106.

However, the time to fixation is dramatically reduced when the AA and BB genotypes have different fitness. Indeed, in the
extremely asymmetric case it is possible for selection to remove the less fit allele even in an finite population. The red curve
in Figure 9 shows the locus of (x, y) points where the less fit allele is just driven to extinction, based on numerical iteration
of Eqns. (4–18); the region labelled ‘purging’ is where there is no polymorphic stable equilibrium. In finite populations,
stochastic fluctuations enlarge the region where one allele can become fixed. The black curves in Figure 9 shows the region of
parameter space where polymorphism is expected to be maintained for a population of 1000 individuals. The region labelled
‘polymorphic’ is where the time to extinction was more than 106 timesteps in more than 50% of realisations. We finds that
there is a region of values around x = y = 0.95 where polymorphism is expected to be maintained, but if the trait is extremely
asymmetric then one allele will probably go to fixation.
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Figure 7: Fixation probability of the deleterious allele, for a single-locus recessive trait.
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Figure 8: Time to fixation for the symmetric overdominant case.
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Figure 9: Whether polymorphism persists, or whether one allele goes to fixation, for a population with a single overdominant
locus. Left: the region labeled ‘Purging’ is where selection removes one of the alleles even in an infinite population. The
region labelled ‘Polymorphic’ is where the time to fixation Tfixation is more often greater than 106 than less, the region labelled
‘Fixation’ is where Tfixation is more often less than 106, for a population of sizeN = 1000. The black solid curves delineate the
confidence intervals of the curve where Pr(Tfixation > 106) = 0.5. Right: Same as on the left, but concentrating on y > 0.8.
Black and red curves as before, magenta curves represent confidence intervals of the curve Pr(Tfixation > 105) = 0.5.
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